Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Multidimensional geriatric assessment for elderly hematological patients (≥60 years) submitted to allogeneic stem cell transplantation. A French–Italian 10-year experience on 228 patients

Abstract

Nowadays, the evaluation of elderly patients' eligibility for allogeneic stem cell transplantation (allo-SCT) is crucial. We evaluated the feasibility and efficacy of a multidimensional geriatric assessment, the Fondazione Italiana Linfomi (FIL) score, on a cohort of 228 patients older than 60 years submitted to allo-SCT in Italy and France from 2008 to 2018. Based on FIL score, available in 215 patients, 125 (58%) patients were classified as “fit” and 90 as “unfit/frail.” The hematopoietic cell transplantation-specific comorbidity index (HCT-CI) was measured in 222 patients (97%); 71 (32%) patients had HCT-CI 0, 75 (34%) patients scored 1–2, and 76 (34%) ≥3. A total of 121 (53%) patients died after a median follow-up of 36 months. FIL score was found to highly predict survival, due to an excess of NRM in unfit/frail group, and confirmed its independent prognostic role on OS (HR: 0.37; 95% CI: 0.25–0.55; p < 0.0001). On the contrary, the HCI-CI failed in allo-SCT outcome prediction (HR: 1.06; 95% CI: 0.96–1.16; p = 0.27). In summary, a comprehensive geriatric assessment with FIL score seems to add significant prognostic information in elderly patients submitted to allo-SCT. The pretransplant adoption of this easy-to-use tool could help the patients’ selection and management.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Outcomes after allo-SCT.
Fig. 2: Karnofsky Performance Status distribution among different FIL categories (overall p value < 0.001).
Fig. 3: Outcomes after allo-SCT according to HCT-CI and CIRS-G score.
Fig. 4: Outcomes after allo-SCT according to FIL score.
Fig. 5: Factors associated with OS and NRM.

References

  1. 1.

    Passweg JR, Baldomero H, Basak GW, Chabannon C, Corbacioglu S, Duarte R, et al. The EBMT activity survey report 2017: a focus on allogeneic HCT for nonmalignant indications and on the use of non-HCT cell therapies. Bone Marrow Transplant. 2019;54:1575–85. https://doi.org/10.1038/s41409-019-0465-9.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Ringden O, Boumendil A, Labopin M, Canaani J, Beelen D, Ehninger G, et al. Outcome of allogeneic hematopoietic stem cell transplantation in patients age >69 years with acute myelogenous leukemia: on behalf of the acute leukemia working party of the european society for blood and marrow transplantation. Biol Blood Marrow Transplant. 2019;25:1975–83. https://doi.org/10.1016/j.bbmt.2019.05.037.

    Article  PubMed  Google Scholar 

  3. 3.

    Yates JW, Chalmer B, McKegney FP. Evaluation of patients with advanced cancer using the Karnofsky Performance Status. Cancer. 1980;45:2220–4. 10.1002/1097-0142(19800415)45:8<2220::aid-cncr2820450835>3.0.co;2-q.

    CAS  Article  Google Scholar 

  4. 4.

    Sorror M, Storer B, Sandmaier BM, Maloney DG, Chauncey TR, Langston A, et al. Hematopoietic cell transplantation-comorbidity index and Karnofsky Performance Status are independent predictors of morbidity and mortality after allogeneic nonmyeloablative hematopoietic cell transplantation. Cancer. 2008;112:1992–2001. https://doi.org/10.1002/cncr.23375.

    Article  PubMed  Google Scholar 

  5. 5.

    Artz AS, Pollyea DA, Kocherginsky M, Stock W, Rich E, Odenike O, et al. Performance status and comorbidity predict transplant-related mortality after allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2006;12:954–64. https://doi.org/10.1016/j.bbmt.2006.05.015.

    Article  PubMed  Google Scholar 

  6. 6.

    Katz S, Akpom CA. A measure of primary sociobiological functions. Int J Health Serv. 1976;6:493–508. https://doi.org/10.2190/UURL-2RYU-WRYD-EY3K.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Lawton MP, Brody EM. Assessment of older people: self-maintaining and instrumental activities of daily living. Gerontologist. 1969;9:179–86.

    CAS  Article  Google Scholar 

  8. 8.

    Muffly LS, Kocherginsky M, Stock W, Chu Q, Bishop MR, Godley LA, et al. Geriatric assessment to predict survival in older allogeneic hematopoietic cell transplantation recipients. Haematologica. 2014;99:1373–9. https://doi.org/10.3324/haematol.2014.103655.

    Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Artz AS. Biologic vs physiologic age in the transplant candidate. Hematol Am Soc Hematol Educ Program. 2016;2016:99–105. https://doi.org/10.1182/asheducation-2016.1.99.

    Article  Google Scholar 

  10. 10.

    Sorror ML, Maris MB, Storb R, Baron F, Sandmaier BM, Maloney DG, et al. Hematopoietic cell transplantation (HCT)-specific comorbidity index: a new tool for risk assessment before allogeneic HCT. Blood. 2005;106:2912–9. https://doi.org/10.1182/blood-2005-05-2004.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Miller MD, Paradis CF, Houck PR, Mazumdar S, Stack JA, Rifai AH, et al. Rating chronic medical illness burden in geropsychiatric practice and research: application of the Cumulative Illness Rating Scale. Psychiatry Res. 1992;41:237–48. https://doi.org/10.1016/0165-1781(92)90005-n.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Muffly LS, Boulukos M, Swanson K, Kocherginsky M, Cerro PD, Schroeder L, et al. Pilot study of comprehensive geriatric assessment (CGA) in allogeneic transplant: CGA captures a high prevalence of vulnerabilities in older transplant recipients. Biol Blood Marrow Transplant. 2013;19:429–34. https://doi.org/10.1016/j.bbmt.2012.11.006.

    Article  PubMed  Google Scholar 

  13. 13.

    Liu JJ, Extermann M. Comprehensive geriatric assessment and its clinical impact in oncology. Clin Geriatr Med. 2012;28:19–31. https://doi.org/10.1016/j.cger.2011.10.001.

    Article  PubMed  Google Scholar 

  14. 14.

    Abel GA, Klepin HD. Frailty and the management of hematologic malignancies. Blood. 2018;131:515–24. https://doi.org/10.1182/blood-2017-09-746420.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Tucci A, Martelli M, Rigacci L, Riccomagno P, Cabras MG, Salvi F, et al. Comprehensive geriatric assessment is an essential tool to support treatment decisions in elderly patients with diffuse large B-cell lymphoma: a prospective multicenter evaluation in 173 patients by the Lymphoma Italian Foundation (FIL). Leuk Lymphoma. 2015;56:921–6. https://doi.org/10.3109/10428194.2014.953142.

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Tucci A, Ferrari S, Bottelli C, Borlenghi E, Drera M, Rossi G. A comprehensive geriatric assessment is more effective than clinical judgment to identify elderly diffuse large cell lymphoma patients who benefit from aggressive therapy. Cancer. 2009;115:4547–53. https://doi.org/10.1002/cncr.24490.

    Article  PubMed  Google Scholar 

  17. 17.

    Armand P, Kim HT, Logan BR, Wang Z, Alyea EP, Kalaycio ME, et al. Validation and refinement of the disease risk index for allogeneic stem cell transplantation. Blood. 2014;123:3664–71. https://doi.org/10.1182/blood-2014-01-552984.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Harris AC, Young R, Devine S, Hogan WJ, Ayuk F, Bunworasate U, et al. International, multicenter standardization of acute graft-versus-host disease clinical data collection: a report from the Mount Sinai Acute GVHD International Consortium. Biol Blood Marrow Transplant. 2016;22:4–10. https://doi.org/10.1016/j.bbmt.2015.09.001.

    Article  PubMed  Google Scholar 

  19. 19.

    Jagasia MH, Greinix HT, Arora M, Williams KM, Wolff D, Cowen EW, et al. National Institutes of Health Consensus Development Project on criteria for clinical trials in chronic graft-versus-host disease: I. The 2014 Diagnosis and Staging Working Group report. Biol Blood Marrow Transplant. 2015;21:389–401 e381. https://doi.org/10.1016/j.bbmt.2014.12.001.

    Article  PubMed  Google Scholar 

  20. 20.

    McGee S. Simplifying likelihood ratios. J Gen Intern Med. 2002;17:646–9. https://doi.org/10.1046/j.1525-1497.2002.10750.x.

    Article  PubMed  Google Scholar 

  21. 21.

    Harrell FE Jr, Lee KL, Califf RM, Pryor DB, Rosati RA. Regression modelling strategies for improved prognostic prediction. Stat Med. 1984;3:143–52. https://doi.org/10.1002/sim.4780030207.

    Article  PubMed  Google Scholar 

  22. 22.

    Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 2013;48:452–8. https://doi.org/10.1038/bmt.2012.244.

    CAS  Article  Google Scholar 

  23. 23.

    Muffly L, Pasquini MC, Martens M, Brazauskas R, Zhu X, Adekola K, et al. Increasing use of allogeneic hematopoietic cell transplantation in patients aged 70 years and older in the United States. Blood. 2017;130:1156–64. https://doi.org/10.1182/blood-2017-03-772368.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Passweg JR, Baldomero H, Bader P, Basak GW, Bonini C, Duarte R, et al. Is the use of unrelated donor transplantation leveling off in Europe? The 2016 European Society for Blood and Marrow Transplant activity survey report. Bone Marrow Transplant. 2018;53:1139–48. https://doi.org/10.1038/s41409-018-0153-1.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Raimondi R, Tosetto A, Oneto R, Cavazzina R, Rodeghiero F, Bacigalupo A, et al. Validation of the hematopoietic cell transplantation-specific comorbidity index: a prospective, multicenter GITMO study. Blood. 2012;120:1327–33. https://doi.org/10.1182/blood-2012-03-414573.

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Sorror ML, Logan BR, Zhu X, Rizzo JD, Cooke KR, McCarthy PL, et al. Prospective validation of the predictive power of the hematopoietic cell transplantation comorbidity index: a Center for International Blood and Marrow Transplant Research Study. Biol Blood Marrow Transplant. 2015;21:1479–87. https://doi.org/10.1016/j.bbmt.2015.04.004.

    Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Nakaya A, Mori T, Tanaka M, Tomita N, Nakaseko C, Yano S, et al. Does the hematopoietic cell transplantation specific comorbidity index (HCT-CI) predict transplantation outcomes? A prospective multicenter validation study of the Kanto Study Group for Cell Therapy. Biol Blood Marrow Transplant. 2014;20:1553–9. https://doi.org/10.1016/j.bbmt.2014.06.005.

    Article  PubMed  Google Scholar 

  28. 28.

    Mohile SG, Dale W, Somerfield MR, Hurria A. Practical assessment and management of vulnerabilities in older patients receiving chemotherapy: ASCO Guideline for Geriatric Oncology Summary. J Oncol Pract. 2018;14:442–6. https://doi.org/10.1200/JOP.18.00180.

    Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Pamukcuoglu M, Bhatia S, Weisdorf DJ, DeFor TE, Ustun C, Nayar M, et al. Hematopoietic cell transplant-related toxicities and mortality in frail recipients. Biol Blood Marrow Transplant. 2019;25:2454–60. https://doi.org/10.1016/j.bbmt.2019.07.030.

    Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Lin RJ, Elko TA, Devlin SM, Shahrokni A, Jakubowski AA, Dahi PB, et al. Impact of geriatric vulnerabilities on allogeneic hematopoietic cell transplantation outcomes in older patients with hematologic malignancies. Bone Marrow Transplant. 2019. https://doi.org/10.1038/s41409-019-0654-6.

  31. 31.

    Deschler B, Ihorst G, Schnitzler S, Bertz H, Finke J. Geriatric assessment and quality of life in older patients considered for allogeneic hematopoietic cell transplantation: a prospective risk factor and serial assessment analysis. Bone Marrow Transplant. 2018;53:565–75. https://doi.org/10.1038/s41409-017-0021-4.

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Turner A, Hochschild A, Burnett J, Zulfiqar A, Dyer CB. High prevalence of medication non-adherence in a sample of community-dwelling older adults with adult protective services-validated self-neglect. Drugs Aging. 2012;29:741–9. https://doi.org/10.1007/s40266-012-0007-2.

    Article  PubMed  Google Scholar 

  33. 33.

    Mizokami F, Mase H, Kinoshita T, Kumagai T, Furuta K, Ito K. Adherence to medication regimens is an effective indicator of cognitive dysfunction in elderly individuals. Am J Alzheimers Dis Other Demen. 2016;31:132–6. https://doi.org/10.1177/1533317515598859.

    Article  PubMed  Google Scholar 

  34. 34.

    Beaudart C, Zaaria M, Pasleau F, Reginster JY, Bruyere O. Health outcomes of sarcopenia: a systematic review and meta-analysis. PLoS ONE. 2017;12:e0169548. https://doi.org/10.1371/journal.pone.0169548.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nicola Polverelli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Polverelli, N., Tura, P., Battipaglia, G. et al. Multidimensional geriatric assessment for elderly hematological patients (≥60 years) submitted to allogeneic stem cell transplantation. A French–Italian 10-year experience on 228 patients. Bone Marrow Transplant 55, 2224–2233 (2020). https://doi.org/10.1038/s41409-020-0934-1

Download citation

Further reading

Search

Quick links