Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Anti-Müllerian hormone and Inhibin B after stem cell transplant in childhood: a comparison of myeloablative, reduced intensity and treosulfan-based chemotherapy regimens

A Correction to this article was published on 24 April 2020

This article has been updated

Abstract

Serum concentrations of Anti-Müllerian hormone (AMH) and Inhibin B were used to assess potential fertility in survivors of childhood haematopoietic stem cell transplantation (HSCT) after three chemotherapy-conditioning regimens of differing intensity. Of 428 patients transplanted between 1990–2012 for leukaemia and immunodeficiency 121 surviving >1 year after a single HSCT were recruited. Group A had a treosulfan-based regimen (low-toxicity); Group B had fludarabine/melphalan (Flu-Mel) (reduced-intensity) and Group C had busulphan/cyclophosphamide (Bu-Cy) (myelo-ablative). Mean age at HSCT and follow-up and length of follow-up were 3.6, 11.8 and 9.9 years. Mean AMH standard deviation scores (SDS) were significantly higher in Group A (−1.047) and Group B (−1.255) than Group C (−1.543), suggesting less ovarian reserve impairment after treosulfan and Flu-Mel than after Bu-Cy. Mean serum AMH concentration was significantly better with treosulfan (>1.0 μg/l) than with Flu-Mel or Bu-Cy. In males, mean Inhibin B SDS was significantly higher in Group A (−0.506) than in Group B (−2.53) and Group C (−1.23) with the Flu-Mel group suffering greatest impairment. In conclusion, a treosulfan-based regimen confers a more favourable outlook for gonadal reserve than Flu-Mel or Bu-Cy in both sexes. Higher values of Inhibin B after Bu-Cy than after Flu-Mel may reflect recovery over time.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Flow diagram of patient recruitment.
Fig. 2: Comparative AMH standard deviation scores (SDS) in females treated with three differing-intensity conditioning regimens.
Fig. 3: Comparative Inhibin B standard deviation scores (SDS) in males treated with three differing-intensity conditioning regimens.

Similar content being viewed by others

Change history

References

  1. Brennan BM, Shalet SM. Endocrine late effects after bone marrow transplant. Br J Haematol. 2002;118:58–66.

    PubMed  Google Scholar 

  2. Leiper AD. Non-endocrine late complications of bone marrow transplantation in childhood: part I. Br J Haematol. 2002;118:3–22.

    PubMed  Google Scholar 

  3. Leiper AD. Non-endocrine late complications of bone marrow transplantation in childhood: part II. Br J Haematol. 2002;118:23–43.

    PubMed  Google Scholar 

  4. Green DM, Kawashima T, Stovall M, Leisenring W, Sklar CA, Mertens AC, et al. Fertility of male survivors of childhood cancer: a report from the Childhood Cancer Survivor Study. J Clin Oncol. 2010;28:332–9.

    PubMed  Google Scholar 

  5. Green DM, Kawashima T, Stovall M, Leisenring W, Sklar CA, Mertens AC, et al. Fertility of female survivors of childhood cancer: a report from the Childhood Cancer Survivor Study. J Clin Oncol. 2009;27:2677–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Sklar CA, Mertens AC, Mitby P, Whitton J, Stovall M, Kasper C, et al. Premature menopause in survivors of childhood cancer: a report from the childhood cancer survivor study. J Natl Cancer Inst. 2006;98:890–6.

    PubMed  Google Scholar 

  7. Grigg AP, McLachlan R, Zaja J, Szer J. Reproductive status in long-term bone marrow transplant survivors receiving busulfan-cyclophosphamide (120 mg/kg). Bone Marrow Transpl. 2000;26:1089–95.

    CAS  Google Scholar 

  8. Sanders JE, Hawley J, Levy W, Gooley T, Buckner CD, Deeg HJ, et al. Pregnancies following high-dose cyclophosphamide with or without high-dose busulfan or total-body irradiation and bone marrow transplantation. Blood. 1996;87:3045–52.

    CAS  PubMed  Google Scholar 

  9. Teinturier C, Hartmann O, Valteau-Couanet D, Benhamou E, Bougneres PF. Ovarian function after autologous bone marrow transplantation in childhood: high-dose busulfan is a major cause of ovarian failure. Bone Marrow Transpl. 1998;22:989–94.

    CAS  Google Scholar 

  10. Michel G, Socié G, Gebhard F, Bernaudin F, Thuret I, Vannier JP, et al. Late effects of allogeneic bone marrow transplantation for children with acute myeloblastic leukemia in first complete remission: the impact of conditioning regimen without total-body irradiation - a report from the Société Française de Greffe de Moelle. J Clin Oncol. 1997;15:2238–46.

    CAS  Google Scholar 

  11. Thibaud E, Rodriguez-Macias K, Trivin C, Espérou H, Michon J, Brauner R. Ovarian function after bone marrow transplantation during childhood. Bone Marrow Transpl. 1998;21:287–90.

    CAS  Google Scholar 

  12. Afify Z, Shaw PJ, Clavano-Harding A, Cowell CT. Growth and endocrine function in children with acute myeloid leukaemia after bone marrow transplantation using busulfan/cyclophosphamide. Bone Marrow Transpl. 2000;25:1087–92.

    CAS  Google Scholar 

  13. Laporte S, Couto-Silva AC, Trabado S, Lemaire P, Brailly-Tabard S, Espérou H, et al. Inhibin B and anti-Müllerian hormone as markers of gonadal function after hematopoietic cell transplantation during childhood. BMC Pediatr. 2011;11:20.

    PubMed  PubMed Central  Google Scholar 

  14. Borgmann-Staudt A, Rendtorff R, Reinmuth S, Hohmann C, Keil T, Schuster FR, et al. Fertility after allogeneic haematopoietic stem cell transplantation in childhood and adolescence. Bone Marrow Transpl. 2012;47:271–6.

    CAS  Google Scholar 

  15. Bresters D, Emons JA, Nuri N, Ball LM, Kollen WJ, Hannema SE, et al. Ovarian insufficiency and pubertal development after hematopoietic stem cell transplantation in childhood. Pediatr Blood Cancer. 2014;61:2048–53.

    PubMed  Google Scholar 

  16. Rao K, Amrolia PJ, Jones A, Cale CM, Naik P, King D, et al. Improved survival after unrelated donor bone marrow transplantation in children with primary immunodeficiency using a reduced-intensity conditioning regimen. Blood. 2005;105:879–85.

    CAS  PubMed  Google Scholar 

  17. Chiesa R, Veys P. Reduced-intensity conditioning for allogeneic stem cell transplant in primary immune deficiencies. Expert Rev Clin Immunol. 2012;8:255–66.

    CAS  PubMed  Google Scholar 

  18. Shimizu M, Sawada A, Yamada K, Kondo O, Koyama-Sato M, Shimizu S, et al. Encouraging results of preserving ovarian function after allo-HSCT with RIC. Bone Marrow Transpl. 2012;47:141–2.

    CAS  Google Scholar 

  19. Papageorgiou SG, Ahmed O, Narvekar N, Davies M, Kottaridis PD. Preservation of fertility in women undergoing reduced-intensity conditioning allogeneic transplantation with a fludarabine-based regime. Transplantation. 2012;94:e29–30.

    PubMed  Google Scholar 

  20. Singhal S, Powles R, Treleaven J, Horton C, Swansbury GJ, Mehta J. Melphalan alone prior to allogeneic bone marrow transplantation from HLA-identical sibling donors for hematologic malignancies: alloengraftment with potential preservation of fertility in women. Bone Marrow Transpl. 1996;18:1049–55.

    CAS  Google Scholar 

  21. Jackson GH, Wood A, Taylor PR, Lennard AL, Lucraft H, Heppleston A, et al. Early high dose chemotherapy intensification with autologous bone marrow transplantation in lymphoma associated with retention of fertility and normal pregnancies in females. Scotland and Newcastle Lymphoma Group, UK. Leuk Lymphoma. 1997;28:127–32.

    CAS  PubMed  Google Scholar 

  22. Panasiuk A, Nussey SS, Veys P, Amrolia P, Rao K, Krawczuk-Rybak M, et al. Gonadal function and fertility after stem cell transplantation in childhood: comparison of a reduced intensity conditioning regimen containing melphalan with a myeloablative regimen containing busulfan. Br J Haematol. 2015;170:719–26.

    CAS  PubMed  Google Scholar 

  23. Madden LM, Hayashi RJ, Chan KW, Pulsipher MA, Douglas D, Hale GA, et al. Long-term follow-up after reduced-intensity conditioning and stem cell transplantation for childhood nonmalignant disorders. Biol Blood Marrow Transpl. 2016;22:1467–72.

    Google Scholar 

  24. Fujino H, Ishida H, Iguchi A, Onuma M, Kato K, Shimizu M, et al. High rates of ovarian function preservation after hematopoietic cell transplantation with melphalan-based reduced intensity conditioning for pediatric acute leukemia: an analysis from the Japan Association of Childhood Leukemia Study (JACLS). Int J Hematol. 2019;109:578–83.

    PubMed  Google Scholar 

  25. ten Brink MH, Zwaveling J, Swen JJ, Bredius RG, Lankester AC, Guchelaar HJ. Personalized busulfan and treosulfan conditioning for pediatric stem cell transplantation: the role of pharmacogenetics and pharmacokinetics. Drug Discov Today. 2014;19:1572–86.

    PubMed  Google Scholar 

  26. Slatter MA, Rao K, Abd Hamid IJ, Flood T, Abinun M, Hambleton S, et al. Treosulfan and fludarabine conditioning for hematopoietic stem cell transplantation in children with primary immunodeficiency: UK experience. Biol Blood Marrow Transpl. 2018;24:529–36.

    CAS  Google Scholar 

  27. Levi M, Stemmer SM, Stein J, Shalgi R, Ben-Aharon I. Treosulfan induces distinctive gonadal toxicity compared with busulfan. Oncotarget. 2018;9:19317–27.

    PubMed  PubMed Central  Google Scholar 

  28. Greystoke B, Bonanomi S, Carr TF, Gharib M, Khalid T, Coussons M, et al. Treosulfan-containing regimens achieve high rates of engraftment associated with low transplant morbidity and mortality in children with non-malignant disease and significant co-morbidities. Br J Haematol. 2008;142:257–62.

    CAS  PubMed  Google Scholar 

  29. Slatter MA, Rao K, Amrolia P, Flood T, Abinun M, Hambleton S, et al. Treosulfan-based conditioning regimens for hematopoietic stem cell transplantation in children with primary immunodeficiency: United Kingdom experience. Blood. 2011;117:4367–75.

    CAS  PubMed  Google Scholar 

  30. Slatter MA, Boztug H, Pötschger U, Sykora KW, Lankester A, Yaniv I, et al. Treosulfan-based conditioning regimens for allogeneic haematopoietic stem cell transplantation in children with non-malignant diseases. Bone Marrow Transpl. 2015;50:1536–41.

    CAS  Google Scholar 

  31. Faraci M, Diesch T, Labopin M, Dalissier A, Lankester A, Gennery A, et al. Gonadal function after busulfan compared with treosulfan in children and adolescents undergoing allogeneic hematopoietic stem cell transplant. Biol Blood Marrow Transpl. 2019;25:1786–91.

    CAS  Google Scholar 

  32. Anderson RA. What does anti-Müllerian hormone tell you about ovarian function? Clin Endocrinol. 2012;77:652–5.

    CAS  Google Scholar 

  33. Broer SL, Broekmans FJ, Laven JS, Fauser BC. Anti-Müllerian hormone: ovarian reserve testing and its potential clinical implications. Hum Reprod Update. 2014;20:688–701.

    CAS  PubMed  Google Scholar 

  34. Kelsey TW, Wright P, Nelson SM, Anderson RA, Wallace WH. A validated model of serum anti-müllerian hormone from conception to menopause. PLoS ONE. 2011;6:e22024. https://doi.org/10.1371/journal.pone.0022024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lie Fong S, Visser JA, Welt CK, de Rijke YB, Eijkemans MJ, Broekmans FJ, et al. Serum anti-müllerian hormone levels in healthy females: a nomogram ranging from infancy to adulthood. J Clin Endocrinol Metab. 2012;97:4650–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Brougham MF, Crofton PM, Johnson EJ, Evans N, Anderson RA, Wallace WH. Anti-Müllerian hormone is a marker of gonadotoxicity in pre- and postpubertal girls treated for cancer: a prospective study. J Clin Endocrinol Metab. 2012;97:2059–67.

    CAS  PubMed  Google Scholar 

  37. George SA, Williamson Lewis R, Schirmer DA, Effinger KE, Spencer JB, Mertens AC, et al. Early detection of ovarian dysfunction by anti-mullerian hormone in adolescent and young adult-aged survivors of childhood cancer. J Adolesc Young- Adult Oncol. 2019;8:18–25.

    PubMed  Google Scholar 

  38. Pierik FH, Vreeburg JT, Stijnen T, De Jong FH, Weber RF. Serum inhibin B as a marker of spermatogenesis. J Clin Endocrinol Metab. 1998;83:3110–4.

    CAS  PubMed  Google Scholar 

  39. Crofton PM, Thomson AB, Evans AE, Groome NP, Bath LE, Kelnar CJ, et al. Is inhibin B a potential marker of gonadotoxicity in prepubertal children treated for cancer? Clin Endocrinol. 2003;58:296–301.

    CAS  Google Scholar 

  40. Chada M, Průsa R, Bronský J, Kotaska K, Sídlová K, Pechová M, et al. Inhibin B, follicle stimulating hormone, luteinizing hormone and testosterone during childhood and puberty in males: changes in serum concentrations in relation to age and stage of puberty. Physiol Res. 2003;52:45–51.

    CAS  PubMed  Google Scholar 

  41. van der Kooi ALF, van den Heuvel-Eibrink MM, van den Berg SAA, van Dorp W, Pluijm SMF, Laven JSE. Changes in anti-müllerian hormone and inhibin B in children treated for cancer. J Adolesc Young- Adult Oncol. 2019;8:281–90.

    PubMed  Google Scholar 

  42. van Beek RD, Smit M, van den Heuvel-Eibrink MM, de Jong FH, Hakvoort-Cammel FG, van den Bos C, et al. Inhibin B is superior to FSH as a serum marker for spermatogenesis in men treated for Hodgkin’s lymphoma with chemotherapy during childhood. Hum Reprod. 2007;22:3215–22.

    PubMed  Google Scholar 

  43. van Casteren NJ, van der Linden GH, Hakvoort-Cammel FG, Hählen K, Dohle GR, van den Heuvel-Eibrink MM. Effect of childhood cancer treatment on fertility markers in adult male long-term survivors. Pediatr Blood Cancer. 2009;52:108–12.

    PubMed  Google Scholar 

  44. Crofton PM, Evans AE, Groome NP, Taylor MR, Holland CV, Kelnar CJ. Inhibin B in boys from birth to adulthood: relationship with age, pubertal stage, FSH and testosterone. Clin Endocrinol. 2002;56:215–21.

    CAS  Google Scholar 

  45. van Beek RD, van den Heuvel-Eibrink MM, Laven JS, de Jong FH, Themmen AP, Hakvoort-Cammel FG, et al. Anti-Mullerian hormone is a sensitive serum marker for gonadal function in women treated for Hodgkin’s lymphoma during childhood. J Clin Endocrinol Metab. 2007;92:3869–74.

    PubMed  Google Scholar 

  46. Krawczuk-Rybak M, Leszczynska E, Poznanska M, Zelazowska-Rutkowska B, Wysocka J. Anti-müllerian hormone as a sensitive marker of ovarian function in young cancer survivors. Int J Endocrinol 2013;2013:125080

  47. Miyoshi Y, Ohta H, Namba N, Tachibana M, Miyamura T, Miyashita E, et al. Low serum concentrations of anti-Müllerian hormone are common in 53 female childhood cancer survivors. Horm Res Paediatr. 2013;79:17–21.

    CAS  PubMed  Google Scholar 

  48. Lunsford AJ, Whelan K, McCormick K, McLaren JF. Anti-müllerian hormone as a measure of reproductive function in female childhood cancer survivors. Fert Steril. 2014;101:227–31.

    CAS  Google Scholar 

  49. Charpentier AM, Chong AL, Gingras-Hill G, Ahmed S, Cigsar C, Gupta AA, et al. Anti-Müllerian hormone screening to assess ovarian reserve among female survivors of childhood cancer. J Cancer Surviv. 2014;8:548–54.

    PubMed  Google Scholar 

  50. Hann IM, Stevens RF, Goldstone AH, Rees JK, Wheatley K, Gray RG, et al. Randomized comparison of DAT versus ADE as induction chemotherapy in children and younger adults with acute myeloid leukemia. Results of the Medical Research Council’s 10th AML trial (MRC AML10). Adult and Childhood Leukaemia Working Parties of the Medical Research Council. Blood. 1997;89:2311–8.

    CAS  PubMed  Google Scholar 

  51. Gibson BE, Webb DK, Howman AJ, De Graaf SS, Harrison CJ, Wheatley K, United Kingdom Childhood Leukaemia Working Group and the Dutch Childhood Oncology Group. Results of a randomized trial in children with Acute Myeloid Leukaemia: medical research council AML12 trial. Br J Haematol. 2011;155:366–76.

    CAS  PubMed  Google Scholar 

  52. Bergsten E, Horne A, Aricó M, Astigarraga I, Egeler RM, Filipovich AH, et al. Confirmed efficacy of etoposide and dexamethasone in HLH treatment: long-term results of the cooperative HLH-2004 study. Blood. 2017;130:2728–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Andersson AM, Petersen JH, Jørgensen N, Jensen TK, Skakkebaek NE. Serum inhibin B and follicle-stimulating hormone levels as tools in the evaluation of infertile men: significance of adequate reference values from proven fertile men. J Clin Endocrinol Metab. 2004;89:2873–9.

    CAS  PubMed  Google Scholar 

  54. Wigny KM, van Dorp W, van der Kooi AL, de Rijke YB, de Vries AC, Smit M, et al. Gonadal function in boys with newly diagnosed cancer before the start of treatment. Hum Reprod. 2016;31:2613–8.

    CAS  PubMed  Google Scholar 

  55. Mörse H, Elfving M, Lindgren A, Wölner-Hanssen P, Andersen CY, Øra I. Acute onset of ovarian dysfunction in young females after start of cancer treatment. Pediatr Blood Cancer. 2013;60:676–81.

    PubMed  Google Scholar 

  56. van Dorp W, van den Heuvel-Eibrink MM, de Vries AC, Pluijm SM, Visser JA, Pieters R, et al. Decreased serum anti-Müllerian hormone levels in girls with newly diagnosed cancer. Hum Reprod. 2014;29:337–42.

    PubMed  Google Scholar 

  57. Lie Fong S, Laven JS, Hakvoort-Cammel FG, Schipper I, Visser JA, Themmen AP, et al. Assessment of ovarian reserve in adult childhood cancer survivors using anti-Müllerian hormone. Hum Reprod. 2009;24:982–90.

    CAS  PubMed  Google Scholar 

  58. Thomas-Teinturier C, Allodji RS, Svetlova E, Frey MA, Oberlin O, Millischer AE, et al. Ovarian reserve after treatment with alkylating agents during childhood. Hum Reprod. 2015;30:1437–46.

    CAS  PubMed  Google Scholar 

  59. van den Berg MH, Overbeek A, Lambalk CB, Kaspers GJL, Bresters D, van den Heuvel-Eibrink MM, et al. Long-term effects of childhood cancer treatment on hormonal and ultrasound markers of ovarian reserve. Hum Reprod. 2018;33:1474–88.

    PubMed  Google Scholar 

  60. Miyoshi Y, Yasuda K, Tachibana M, Yoshida H, Miyashita E, Miyamura T, et al. Longitudinal observation of serum anti-Müllerian hormone in three girls after cancer treatment. Clin Pediatr Endocrinol. 2016;25:119–26.

    PubMed  PubMed Central  Google Scholar 

  61. Jadoul P, Anckaert E, Dewandeleer A, Steffens M, Dolmans MM, Vermylen C, et al. Clinical and biologic evaluation of ovarian function in women treated by bone marrow transplantation for various indications during childhood or adolescence. Fertil Steril. 2011;96:126–33.

    CAS  PubMed  Google Scholar 

  62. La Marca A, Giulini S, Tirelli A, Bertucci E, Marsella T, Xella S, et al. Anti-Müllerian hormone measurement on any day of the menstrual cycle strongly predicts ovarian response in assisted reproductive technology. Hum Reprod. 2007;22:766–71.

    PubMed  Google Scholar 

  63. La Marca A, Grisendi V, Giulini S, Sighinolfi G, Tirelli A, Argento C, et al. Live birth rates in the different combinations of the Bologna criteria poor ovarian responders: a validation study. J Assist Reprod Genet. 2015;32:931–7.

    PubMed  PubMed Central  Google Scholar 

  64. Nelson SM, Yates RW, Lyall H, Jamieson M, Traynor I, Gaudoin M, et al. Anti-Müllerian hormone-based approach to controlled ovarian stimulation for assisted conception. Hum Reprod. 2009;24:867–75.

    CAS  PubMed  Google Scholar 

  65. La Marca A, Sighinolfi G, Radi D, Argento C, Baraldi E, Artenisio AC, et al. Anti-Mullerian hormone (AMH) as a predictive marker in assisted reproductive technology (ART). Hum Reprod Update. 2010;16:113–30.

    PubMed  Google Scholar 

  66. van Rooij IA, Tonkelaar ID, Broekmans FJ, Looman CW, Scheffer GJ, de Jong FH, et al. Anti-müllerian hormone is a promising predictor for the occurrence of the menopausal transition. Menopause. 2004;11:601–6.

    PubMed  Google Scholar 

  67. Sowers MR, Eyvazzadeh AD, McConnell D, Yosef M, Jannausch ML, Zhang D, et al. Anti-mullerian hormone and inhibin B in the definition of ovarian aging and the menopause transition. J Clin Endocrinol Metab. 2008;93:3478–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. van den Berg MH, van Dulmen-den Broeder E, Overbeek A, Twisk JW, Schats R, van Leeuwen FE, et al. Comparison of ovarian function markers in users of hormonal contraceptives during the hormone-free interval and subsequent natural early follicular phases. Hum Reprod. 2010;25:1520–7.

    PubMed  Google Scholar 

  69. Hamre H, Kiserud CE, Ruud E, Thorsby PM, Fosså SD. Gonadal function and parenthood 20 years after treatment for childhood lymphoma: a cross-sectional study. Pediatr Blood Cancer. 2012;59:271–7.

    PubMed  Google Scholar 

  70. Dillon KE, Sammel MD, Ginsberg JP, Lechtenberg L, Prewitt M, Gracia CR. Pregnancy after cancer: results from a prospective cohort study of cancer survivors. Pediatr Blood Cancer. 2013;60:2001–6.

    PubMed  PubMed Central  Google Scholar 

  71. van Dorp W, van der Geest IM, Laven JS, Hop WC, Neggers SJ, de Vries AC, et al. Gonadal function recovery in very long-term male survivors of childhood cancer. Eur J Cancer. 2013;49:1280–6.

    PubMed  Google Scholar 

  72. Rovó A, Tichelli A, Passweg JR, Heim D, Meyer-Monard S, Holzgreve W, et al. Spermatogenesis in long-term survivors after allogeneic hematopoietic stem cell transplantation is associated with age, time interval since transplantation, and apparently absence of chronic GvHD. Blood. 2006;108:1100–5.

    PubMed  Google Scholar 

  73. Anserini P, Chiodi S, Spinelli S, Costa M, Conte N, Copello F, et al. Semen analysis following allogeneic bone marrow transplantation. Additional data Evid-based counselling Bone Marrow Transpl. 2002;30:447–51.

    CAS  Google Scholar 

  74. Pfitzer C, Orawa H, Balcerek M, Langer T, Dirksen U, Keslova P, et al. Dynamics of fertility impairment and recovery after allogenic haematopoietic stem cell transplantation in childhood and adolescence: results from a longitudinal study. J Cancer Res Clin Oncol. 2015;141:135–42.

    CAS  PubMed  Google Scholar 

  75. Liesner RJ, Leiper AD, Hann IM, Chessells JM. Late effects of intensive treatment for acute myeloid leukemia and myelodysplasia in childhood. J Clin Oncol. 1994;12:916–24.

    CAS  PubMed  Google Scholar 

  76. Molgaard-Hansen L, Skou AS, Juul A, Glosli H, Jahnukainen K, Jarfelt M, et al. Pubertal development and fertility in survivors of childhood acute myeloid leukemia treated with chemotherapy only: a NOPHO-AML study. Pediatr Blood Cancer. 2013;60:1988–95.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Great Ormond Street Hospital Childrens’ Charity (GOSHCC) who funded Dr Alison Leiper on a research grant, to make this research possible. Also thanks to Professor Yolanda de Rijke, head of the department of clinical chemistry, Erasmus MC, Netherlands and to Dr Helen Aitkenhead heading the clinical chemistry laboratory at GOSH, London, UK for ensuring the timely assay of AMH and Inhibin B samples. This work is supported by a grant (W1091) from the Great Ormond Street Hospital Childrens’ Charity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alison Leiper.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

The study was reviewed and approved by the Research Ethics Committee (REC reference 14/WA/0115).

Informed consent

Patients were identified from the HSCT database and informed written consent obtained from all subjects.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leiper, A., Houwing, M., Davies, E.G. et al. Anti-Müllerian hormone and Inhibin B after stem cell transplant in childhood: a comparison of myeloablative, reduced intensity and treosulfan-based chemotherapy regimens. Bone Marrow Transplant 55, 1985–1995 (2020). https://doi.org/10.1038/s41409-020-0866-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41409-020-0866-9

This article is cited by

Search

Quick links