Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Vitamin D levels and busulphan kinetics in patients undergoing hematopoietic stem cell transplantation, a multicenter study

Abstract

Vitamin D (Vit-D), an essential nutrient, interacts with different drugs including chemotherapeutic agents like busulphan, an alkylating agent used for conditioning prior to stem cell transplantation. The correlation between Vit-D plasma levels and busulphan clearance was investigated in an uncontrolled prospective study in patients and mice. Plasma 25(OH)D levels were measured and busulphan pharmacokinetics calculated in 81 patients. Adults received oral busulphan (n = 34) while children received busulphan orally (n = 19) or intravenously (n = 28). Patients received no Vit-D supplementation. To confirm our findings, pharmacokinetics after a single dose of busulphan (oral or intravenous) were evaluated in two groups of mice (n = 60) receiving high or standard-level Vit-D supplementation. Both busulphan clearance (P < 0.0001) and 25(OH)D levels (P = 0.0004) were significantly higher in adults compared to children. A significant negative correlation (P = 0.041) was found between busulphan clearance and 25(OH)D levels in children treated orally. No such correlation was observed in adults or in children receiving intravenous busulphan. In addition, no significant effect of Vit-D levels on busulphan pharmacokinetics in mice regardless of the administration route. In conclusion, 25(OH)D can affect oral busulphan pharmacokinetics in children and its level should be considered when personalizing oral busulphan treatment. Further studies are warranted to confirm the underlying mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Correlation between 25-hydroxyvitamin D levels and busulphan AUCs.
Fig. 2: Correlation between 25-hydroxyvitamin D levels and busulphan clearance.
Fig. 3: Comparison of busulphan AUCs following different administration routes with respect to Vit-D insufficiency.
Fig. 4: Comparison of busulphan clearance following different administration routes with respect to Vit-D insufficiency.
Fig. 5: Busulphan AUCs in the different patient groups.
Fig. 6: Busulphan clearance in the different patient groups.
Fig. 7: 25-hydroxyvitamin D levels in different patient groups.

Similar content being viewed by others

References

  1. Grochow LB. Busulfan disposition: the role of therapeutic monitoring in bone marrow transplantation induction regimens. Semin Oncol. 1993;20:18–25. quiz 26.

    CAS  PubMed  Google Scholar 

  2. Hassan M, Ehrsson H, Ljungman P. Aspects concerning busulfan pharmacokinetics and bioavailability. Leuk Lymphoma. 1996;22:395-&.

    Article  Google Scholar 

  3. Geddes M, Kangarloo SB, Naveed F, Quinlan D, Chaudhry MA, Stewart D, et al. High busulfan exposure is associated with worse outcomes in a daily i.v. busulfan and fludarabine allogeneic transplant regimen. Biol Blood Marrow Transpl. 2008;14:220–8.

    Article  CAS  Google Scholar 

  4. Andersson BS, Thall PF, Madden T, Couriel D, Wang XM, Tran HT, et al. Busulfan systemic exposure relative to regimen-related toxicity and acute graft-versus-host disease: Defining a therapeutic window for IV BuCy2 in chronic myelogenous leukemia. Biol Blood Marrow Transplant. 2002;8:477–85.

    Article  CAS  PubMed  Google Scholar 

  5. Slattery JT, Risler LJ. Therapeutic monitoring of busulfan in hematopoietic stem cell transplantation. Ther Drug Monit. 1998;20:543–9.

    Article  CAS  PubMed  Google Scholar 

  6. Hassan M, El-Serafi I. Personalized treatment: the future of medicine. A perspective on the preconditioning for stem cell transplantation. MOJ Cell Sci Rep. 2015;2:81–3.

    Article  Google Scholar 

  7. Palmer J, McCune JS, Perales MA, Marks D, Bubalo J, Mohty M, et al. Personalizing Busulfan-based conditioning: considerations from the American Society for Blood and Marrow Transplantation Practice Guidelines Committee. Biol Blood Marrow Transplant. 2016;22:1915–25. https://doi.org/10.1016/j.bbmt.2016.07.013.

    Article  CAS  PubMed  Google Scholar 

  8. Beumer JH, Owzar K, Lewis LD, Jiang C, Holleran JL, Christner SM, et al. Effect of age on the pharmacokinetics of busulfan in patients undergoing hematopoietic cell transplantation; an alliance study (CALGB 10503, 19808, and 100103). Cancer Chemother Pharmacol. 2014;74:927–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Savic RM, Cowan MJ, Dvorak CC, Pai SY, Pereira L, Bartelink IH, et al. Effect of weight and maturation on busulfan clearance in infants and small children undergoing hematopoietic cell transplantation. Biol Blood Marrow Transpl. 2013;19:1608–14.

    Article  CAS  Google Scholar 

  10. ten Brink MH, van Bavel T, Swen JJ, van der Straaten T, Bredius RGM, Lankester AC, et al. Effect of genetic variants GSTA1 and CYP39A1 and age on busulfan clearance in pediatric patients undergoing hematopoietic stem cell transplantation. Pharmacogenomics. 2013;14:1683–90.

    Article  PubMed  CAS  Google Scholar 

  11. Buggia I, Zecca M, Alessandrino EP, Locatelli F, Rosti G, Bosi A, et al. Itraconazole can increase systemic exposure to busulfan in patients given bone marrow transplantation. GITMO (Gruppo Italiano Trapianto di Midollo Osseo). Anticancer Res. 1996;16:2083–8.

    CAS  PubMed  Google Scholar 

  12. El-Serafi I, Terelius Y, Abedi-Valugerdi M, Naughton S, Saghafian M, Moshfegh A, et al. Flavin-containing monooxygenase 3 (FMO3) role in busulphan metabolic pathway. PLoS One. 2017;12:e0187294.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Hassan M, Svensson JO, Nilsson C, Hentschke P, Al-Shurbaji A, Aschan J, et al. Ketobemidone may alter busulfan pharmacokinetics during high-dose therapy. Ther Drug Monit. 2000;22:383–5.

    Article  CAS  PubMed  Google Scholar 

  14. Nilsson C, Aschan J, Hentschke P, Ringden O, Ljungman P, Hassan M. The effect of metronidazole on busulfan pharmacokinetics in patients undergoing hematopoietic stem cell transplantation. Bone Marrow Transpl. 2003;31:429–35.

    Article  CAS  Google Scholar 

  15. Bikle DD. Vitamin D metabolism, mechanism of action, and clinical applications. Chem Biol. 2014;21:319–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ross AC, Manson JE, Abrams SA, Aloia JF, Brannon PM, Clinton SK, et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. J Clin Endocrinol Metab. 2011;96:53–8.

    Article  CAS  PubMed  Google Scholar 

  17. Webb AR, Kline L, Holick MF. Influence of season and latitude on the cutaneous synthesis of vitamin D3: exposure to winter sunlight in Boston and Edmonton will not promote vitamin D3 synthesis in human Skin. J Clin Endocrinol Metab. 1988;67:373–8.

    Article  CAS  PubMed  Google Scholar 

  18. Cheng JB, Levine MA, Bell NH, Mangelsdorf DJ, Russell DW. Genetic evidence that the human CYP2R1 enzyme is a key vitamin D 25-hydroxylase. Proc Natl Acad Sci USA. 2004;101:7711–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Holick MF. Vitamin D deficiency. N. Engl J Med. 2007;357:266–81.

    Article  CAS  PubMed  Google Scholar 

  20. Parise RA, Egorin MJ, Kanterewicz B, Taimi M, Petkovich M, Lew AM, et al. CYP24, the enzyme that catabolizes the antiproliferative agent vitamin D, is increased in lung cancer. Int J Cancer. 2006;119:1819–28.

    Article  CAS  PubMed  Google Scholar 

  21. Holick MF, Siris ES, Binkley N, Beard MK, Khan A, Katzer JT, et al. Prevalence of Vitamin D inadequacy among postmenopausal North American women receiving osteoporosis therapy. J Clin Endocrinol Metab. 2005;90:3215–24.

    Article  CAS  PubMed  Google Scholar 

  22. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, et al. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2011;96:1911–30.

    Article  CAS  PubMed  Google Scholar 

  23. Cannell JJ, Hollis BW. Use of vitamin D in clinical practice. Alter Med Rev. 2008;13:6–20.

    Google Scholar 

  24. Jeon SM, Shin EA. Exploring vitamin D metabolism and function in cancer. Exp Mol Med. 2018;50:20.

    PubMed Central  Google Scholar 

  25. Ng K, Nimeiri HS, McCleary NJ, Abrams TA, Yurgelun MB, Cleary JM, et al. Effect of high-dose vs standard-dose vitamin D3 supplementation on progression-free survival among patients with advanced or metastatic colorectal cancer: the SUNSHINE randomized clinical trial. JAMA. 2019;321:1370–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chae YJ, Cho KH, Yoon IS, Noh CK, Lee HJ, Park Y, et al. Vitamin D receptor-mediated upregulation of CYP3A4 and MDR1 by quercetin in Caco-2 cells. Planta Med. 2016;82:121–30.

    CAS  PubMed  Google Scholar 

  27. Wang ZC, Schuetz EG, Xu Y, Thummel KE. Interplay between vitamin D and the drug metabolizing enzyme CYP3A4. J Steroid Biochem Mol Biol. 2013;136:54–8.

    Article  CAS  PubMed  Google Scholar 

  28. Wigington DP, Urben CM, Strugnell SA, Knutson JC. Combination study of 1,24(S)-dihydroxyvitamin D2 and chemotherapeutic agents on human breast and prostate cancer cell lines. Anticancer Res. 2004;24:2905–12.

    CAS  PubMed  Google Scholar 

  29. Hongeng S, Pakakasama S, Chuansumrit A, Sirachainan N, Sura T, Ungkanont A, et al. Reduced intensity stem cell transplantation for treatment of class 3 Lucarelli severe thalassemia patients. Am J Hematol. 2007;82:1095–8.

    Article  CAS  PubMed  Google Scholar 

  30. Leblanc AF, Huang KM, Uddin ME, Anderson JT, Chen M, Hu S. Murine pharmacokinetic studies. Bio Protoc. 2018;8:e3056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lang E, Jilani K, Bissinger R, Rexhepaj R, Zelenak C, Lupescu A, et al. Vitamin D-rich diet in mice modulates erythrocyte survival. Kidney Blood Press Res. 2015;40:403–12.

    Article  CAS  PubMed  Google Scholar 

  32. Lewis CA, Manning J, Barr C, Peake K, Humphries RK, Rossi F, et al. Myelosuppressive conditioning using busulfan enables bone marrow cell accumulation in the spinal cord of a mouse model of amyotrophic lateral sclerosis. PLoS ONE. 2013;8:e60661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Peake K, Manning J, Lewis CA, Barr C, Rossi F, Krieger C. Busulfan as a myelosuppressive agent for generating stable high-level bone marrow chimerism in mice. J Vis Exp. 2015;e52553. https://doi.org/10.3791/52553.

  34. Sjoo F, El-Serafi I, Enestig J, Mattsson J, Liwing J, Hassan M. Comparison of algorithms for oral busulphan area under the concentration-time curve limited sampling estimate. Clin Drug Investig. 2013. https://doi.org/10.1007/s40261-013-0148-z.

  35. Riley RS, Idowu M, Chesney A, Zhao S, McCarty J, Lamb LS, et al. Hematologic aspects of myeloablative therapy and bone marrow transplantation. J Clin Lab Anal. 2005;19:47–79.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Burt RK, Loh Y, Pearce W, Beohar N, Barr WG, Craig R, et al. Clinical applications of blood-derived and marrow-derived stem cells for nonmalignant diseases. JAMA. 2008;299:925–36. e-pub ahead of print 2008/03/04[pii]. https://doi.org/10.1001/jama.299.8.925.

    Article  CAS  PubMed  Google Scholar 

  37. Socie G, Clift RA, Blaise D, Devergie A, Ringden O, Martin PJ, et al. Busulfan plus cyclophosphamide compared with total-body irradiation plus cyclophosphamide before marrow transplantation for myeloid leukemia: long-term follow-up of 4 randomized studies. Blood. 2001;98:3569–74.

    Article  CAS  PubMed  Google Scholar 

  38. McCune JS, Gibbs JP, Slattery JT. Plasma concentration monitoring of busulfan: does it improve clinical outcome? Clin Pharmacokinet. 2000;39:155–65.

    Article  CAS  PubMed  Google Scholar 

  39. Masson E, Zamboni WC. Pharmacokinetic optimisation of cancer chemotherapy. Eff Outcomes Clin Pharmacokinet. 1997;32:324–43.

    Article  CAS  Google Scholar 

  40. Hassan M, Ljungman P, Bolme P, Ringden O, Syruckova Z, Bekassy A, et al. Busulfan bioavailability. Blood. 1994;84:2144–50.

    Article  CAS  PubMed  Google Scholar 

  41. Andersson BS, Bhagwatwar HP, Chow DS. Parenteral busulfan for treatment of malignant disease. Google Patents; 1995.

  42. Nguyen L, Fuller D, Lennon S, Leger F, Puozzo C. IV busulfan in pediatrics: a novel dosing to improve safety/efficacy for hematopoietic progenitor cell transplantation recipients. Bone Marrow Transplant. 2004;33:979.

    Article  CAS  PubMed  Google Scholar 

  43. Malar R, Sjoo F, Rentsch K, Hassan M, Gungor T. Therapeutic drug monitoring is essential for intravenous busulfan therapy in pediatric hematopoietic stem cell recipients. Pediatr Transpl. 2011;15:580–8.

    CAS  Google Scholar 

  44. Wallace G, Jodele S, Howell J, Myers KC, Teusink A, Zhao X, et al. Vitamin D deficiency and survival in children after hematopoietic stem cell transplant. Biol Blood Marrow Transpl. 2015;21:1627–31.

    Article  CAS  Google Scholar 

  45. Peng J, Liu Y, Xie J, Yang G, Huang Z. Effects of vitamin D on drugs: response and disposal. Nutrition. 2020;74:110734. e-pub ahead of print 2020/03/18.

    Article  CAS  PubMed  Google Scholar 

  46. Schwartz JB. Effects of vitamin D supplementation in atorvastatin-treated patients: a new drug interaction with an unexpected consequence. Clin Pharm Ther. 2009;85:198–203. e-pub ahead of print 2008/08/30.

    Article  CAS  Google Scholar 

  47. Hansson ME, Norlin AC, Omazic B, Wikstrom AC, Bergman P, Winiarski J, et al. Vitamin d levels affect outcome in pediatric hematopoietic stem cell transplantation. Biol Blood Marrow Transpl. 2014;20:1537–43.

    Article  CAS  Google Scholar 

  48. Liu C, Weng H, Chen L, Yang S, Wang H, Debnath G, et al. Impaired intestinal calcium absorption in protein 4.1R-deficient mice due to altered expression of plasma membrane calcium ATPase 1b (PMCA1b). J Biol Chem. 2013;288:11407–15. e-pub ahead of print 2013/03/06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Grochow LB, Krivit W, Whitley CB, Blazar B. Busulfan disposition in children. Blood. 1990;75:1723–7. e-pub ahead of print 1990/04/15.

    Article  CAS  PubMed  Google Scholar 

  50. Wong GK, Shulman RJ, Chumpitazi BP. Gastric emptying scintigraphy results in children are affected by age, anthropometric factors, and study duration. Neurogastroenterol Motil. 2015;27:356–62. e-pub ahead of print 2015/01/06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Giraldi G, Fioravanti A, De Luca d’Alessandro E, Palmery M, Martinoli L. Investigation of the effects of vitamin D and calcium on intestinal motility: in vitro tests and implications for clinical treatment. Acta Pharm. 2015;65:343–9. e-pub ahead of print 2015/10/03.

    Article  CAS  PubMed  Google Scholar 

  52. Kedar A, Nikitina Y, Henry OR, Abell KB, Vedanarayanan V, Griswold ME, et al. Gastric dysmotility and low serum vitamin D levels in patients with gastroparesis. Horm Metab Res. 2013;45:47–53. e-pub ahead of print 2012/09/08.

    CAS  PubMed  Google Scholar 

  53. Hassan M, Ehrsson H, Ljungman P. Aspects concerning busulfan pharmacokinetics and bioavailability. Leuk Lymphoma. 1996;22:395–407.

    Article  CAS  PubMed  Google Scholar 

  54. Assa A, Vong L, Pinnell LJ, Avitzur N, Johnson-Henry KC, Sherman PM. Vitamin D deficiency promotes epithelial barrier dysfunction and intestinal inflammation. J Infect Dis. 2014;210:1296–305. e-pub ahead of print 2014/04/24.

    Article  CAS  PubMed  Google Scholar 

  55. Pielichowski W, Gawronski K, Mlot B, Oborska S, Wasko-Grabowska A, Rzepecki P. Triple drug combination in the prevention of nausea and vomiting following busulfan plus cyclophosphamide chemotherapy before allogeneic hematopoietic stem cell transplantation. J BUON. 2011;16:541–6.

    CAS  PubMed  Google Scholar 

  56. Hassan M, Ehrsson H. Metabolism of 14C-busulfan in isolated perfused rat liver. Eur J Drug Metab Pharmacokinet. 1987;12:71–6. e-pub ahead of print 1987/01/01.

    Article  CAS  PubMed  Google Scholar 

  57. Hassan M, Ehrsson H. Urinary metabolites of busulfan in the rat. Drug Metab Dispos. 1987;15:399–402. e-pub ahead of print 1987/05/01.

    CAS  PubMed  Google Scholar 

  58. Hassan M, Ehrsson H, Wallin I, Eksborg S. Pharmacokinetic and metabolic studies of busulfan in rat plasma and brain. Eur J Drug Metab Pharmacokinet. 1988;13:301–5. e-pub ahead of print 1988/10/01.

    Article  CAS  PubMed  Google Scholar 

  59. Hassan M, Oberg G, Ehrsson H, Ehrnebo M, Wallin I, Smedmyr B, et al. Pharmacokinetic and metabolic studies of high-dose busulphan in adults. Eur J Clin Pharm. 1989;36:525–30. e-pub ahead of print 1989/01/01.

    Article  CAS  Google Scholar 

  60. McCune JS, Bemer MJ, Barrett JS, Scott Baker K, Gamis AS, Holford NH. Busulfan in infant to adult hematopoietic cell transplant recipients: a population pharmacokinetic model for initial and Bayesian dose personalization. Clin Cancer Res. 2014;20:754–63.

    Article  CAS  PubMed  Google Scholar 

  61. Czerwinski M, Gibbs JP, Slattery JT. Busulfan conjugation by glutathione S-transferases alpha, mu, and pi. Drug Metab Dispos. 1996;24:1015–9.

    CAS  PubMed  Google Scholar 

  62. Gibbs JP, Czerwinski M, Slattery JT. Busulfan-glutathione conjugation catalyzed by human liver cytosolic glutathione S-transferases. Cancer Res. 1996;56:3678–81.

    CAS  PubMed  Google Scholar 

  63. Gibbs JP, Yang JS, Slattery JT. Comparison of human liver and small intestinal glutathione S-transferase-catalyzed busulfan conjugation in vitro. Drug Metab Dispos. 1998;26:52–5.

    CAS  PubMed  Google Scholar 

  64. Herman TF, Santos C. First Pass Effect. In: StatPearls: Treasure Island (FL); 2020.

  65. Uppugunduri CR, Rezgui MA, Diaz PH, Tyagi AK, Rousseau J, Daali Y, et al. The association of cytochrome P450 genetic polymorphisms with sulfolane formation and the efficacy of a busulfan-based conditioning regimen in pediatric patients undergoing hematopoietic stem cell transplantation. Pharmacogenomics J. 2014;14:263–71.

    Article  CAS  PubMed  Google Scholar 

  66. Qin X, Wang X. Role of vitamin D receptor in the regulation of CYP3A gene expression. Acta Pharm Sin B. 2019;9:1087–98.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Drocourt L, Ourlin JC, Pascussi JM, Maurel P, Vilarem MJ. Expression of CYP3A4, CYP2B6, and CYP2C9 is regulated by the vitamin D receptor pathway in primary human hepatocytes. J Biol Chem. 2002;277:25125–32.

    Article  CAS  PubMed  Google Scholar 

  68. Tateishi T, Nakura H, Asoh M, Watanabe M, Tanaka M, Kumai T, et al. A comparison of hepatic cytochrome P450 protein expression between infancy and postinfancy. Life Sci. 1997;61:2567–74.

    Article  CAS  PubMed  Google Scholar 

  69. Beath SV. Hepatic function and physiology in the newborn. Semin Neonatol. 2003;8:337–46.

    Article  CAS  PubMed  Google Scholar 

  70. Ginty F, Cavadini C, Michaud PA, Burckhardt P, Baumgartner M, Mishra GD, et al. Effects of usual nutrient intake and vitamin D status on markers of bone turnover in Swiss adolescents. Eur J Clin Nutr. 2004;58:1257–65.

    Article  CAS  PubMed  Google Scholar 

  71. Gordon CM, DePeter KC, Feldman HA, Grace E, Emans SJ. Prevalence of vitamin D deficiency among healthy adolescents. Arch Pediatr Adolesc Med. 2004;158:531–7.

    Article  PubMed  Google Scholar 

  72. Balasubramanian S, Ganesh R. Vitamin D deficiency in exclusively breast-fed infants. Indian J Med Res. 2008;127:250–5.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Swedish Cancer Society (CAN2014/759), the Swedish Childhood Cancer Foundation (PR2017-0083), KI funds (2018-02377) and (2018-02344), and Radiumhemmets Research Funding (grant no. 161082). The authors would like to express their gratitude to Professor Per Ljungman for his valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moustapha Hassan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Serafi, A., He, R., Zheng, W. et al. Vitamin D levels and busulphan kinetics in patients undergoing hematopoietic stem cell transplantation, a multicenter study. Bone Marrow Transplant 56, 807–817 (2021). https://doi.org/10.1038/s41409-020-01091-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41409-020-01091-y

Search

Quick links