Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Prognostic impact of TP53 mutation, monosomal karyotype, and prior myeloid disorder in nonremission acute myeloid leukemia at allo-HSCT

Abstract

Outcomes after allogeneic hematopoietic stem cell transplantation (allo-HSCT) in nonremission acute myeloid leukemia (AML) are dismal [2-year overall survival (OS): 20–30%]. Though several risk classifications have been used, some factors are unavailable until the start of conditioning or transplantation. We analyzed prognostic gene mutations by targeted next-generation sequencing to identify predisposing factors for predicting OS at 1 month before transplantation. We enrolled 120 patients with nonremission AML who underwent first allo-HSCT between 2005 and 2018. Mutations were found in 98 patients; frequently mutated genes were FLT3-ITD, TP53, RUNX1, and WT1. TP53 mutation was detected in 21 patients and was the only predictor of poor OS. Multivariate analysis using Cox regression hazard model revealed primary AML, monosomal karyotype (MK), and TP53 mutation as independent factors for predicting poor OS. Based on these, patients were stratified into three groups. The low-risk group included patients with prior myeloid disorder without MK (n = 26). Among the rest, patients with TP53 mutation were assigned to the high-risk group (n = 19) and the rest into the intermediate-risk group (n = 75). Two-year OS in low-, intermediate-, and high-risk groups differed significantly (50.0%, 24.9%, and 0%, respectively). This suggests that the indication of allo-HSCT should be carefully judged for high-risk patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Transplant outcomes of patients with nonremission AML at the time of allo-HSCT.
Fig. 2: Landscape of gene abnormalities in nonremission AML patients at the time of allo-HSCT.
Fig. 3: Karyotypic profiles and their prognostic impact.
Fig. 4: TP53 mutation profile and its prognostic impact.
Fig. 5: Prognostic impact of the combination of three factors.
Fig. 6: Risk stratification according to pretransplant factors.

Similar content being viewed by others

References

  1. Armand P, Kim HT, Logan BR, Wang Z, Alyea EP, Kalaycio ME, et al. Validation and refinement of the Disease Risk Index for allogeneic stem cell transplantation. Blood. 2014;123:3664–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Duval M, Klein JP, He W, Cahn JY, Cairo M, Camitta BM, et al. Hematopoietic stem-cell transplantation for acute leukemia in relapse or primary induction failure. J Clin Oncol. 2010;28:3730–8.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Nagler A, Savani BN, Labopin M, Polge E, Passweg J, Finke J, et al. Outcomes after use of two standard ablative regimens in patients with refractory acute myeloid leukaemia: a retrospective, multicentre, registry analysis. Lancet Haematol. 2015;2:e384–92.

    Article  PubMed  Google Scholar 

  4. Gyurkocza B, Lazarus HM, Giralt S. Allogeneic hematopoietic cell transplantation in patients with AML not achieving remission: potentially curative therapy. Bone Marrow Transplant. 2017;52:1083–90.

    Article  CAS  PubMed  Google Scholar 

  5. Tachibana T, Kanda J, Ishizaki T, Najima Y, Tanaka M, Doki N, et al. Prognostic index for patients with relapsed or refractory acute myeloid leukemia who underwent hematopoietic cell transplantation: a KSGCT multicenter analysis. Leukemia. 2019;33:2610–8.

    Article  CAS  PubMed  Google Scholar 

  6. Lindsley RC, Saber W, Mar BG, Redd R, Wang T, Haagenson MD, et al. Prognostic mutations in myelodysplastic syndrome after stem-cell transplantation. N Engl J Med. 2017;376:536–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Thol F, Gabdoulline R, Liebich A, Klement P, Schiller J, Kandziora C, et al. Measurable residual disease monitoring by NGS before allogeneic hematopoietic cell transplantation in AML. Blood. 2018;132:1703–13.

    Article  CAS  PubMed  Google Scholar 

  8. Duncavage EJ, Jacoby MA, Chang GS, Miller CA, Edwin N, Shao J, et al. Mutation clearance after transplantation for myelodysplastic syndrome. N Engl J Med. 2018;379:1028–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wong HY, Sung AD, Lindblad KE, Sheela S, Roloff GW, Rizzieri D, et al. Molecular measurable residual disease testing of blood during AML cytotoxic therapy for early prediction of clinical response. Front Oncol. 2018;8:669.

    Article  PubMed  Google Scholar 

  10. Breems DA, Van Putten WL, De Greef GE, Van Zelderen-Bhola SL, Gerssen-Schoorl KB, Mellink CH, et al. Monosomal karyotype in acute myeloid leukemia: a better indicator of poor prognosis than a complex karyotype. J Clin Oncol. 2008;26:4791–7.

    Article  PubMed  Google Scholar 

  11. Au CH, Wa A, Ho DN, Chan TL, Ma ES. Clinical evaluation of panel testing by next-generation sequencing (NGS) for gene mutations in myeloid neoplasms. Diagn Pathol. 2016;11:11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016;44:D733–45.

    Article  CAS  PubMed  Google Scholar 

  13. Forbes SA, Beare D, Boutselakis H, Bamford S, Bindal N, Tate J, et al. COSMIC: somatic cancer genetics at high-resolution. Nucleic Acids Res. 2017;45:D777–83.

    Article  CAS  PubMed  Google Scholar 

  14. Landrum MJ, Lee JM, Riley GR, Jang W, Rubinstein WS, Church DM, et al. ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res. 2014;42:D980–5.

    Article  CAS  PubMed  Google Scholar 

  15. Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536:285–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Little RJ, Rubin DB. Causal effects in clinical and epidemiological studies via potential outcomes: concepts and analytical approaches. Annu Rev Public Health. 2000;21:121–45.

    Article  CAS  PubMed  Google Scholar 

  17. Cole SR, Hernan MA. Adjusted survival curves with inverse probability weights. Comput Methods Prog Biomed. 2004;75:45–49.

    Article  Google Scholar 

  18. Konuma T, Harada K, Yamasaki S, Mizuno S, Uchida N, Takahashi S, et al. Upfront allogeneic hematopoietic cell transplantation (HCT) versus remission induction chemotherapy followed by allogeneic HCT for acute myeloid leukemia with multilineage dysplasia: a propensity score matched analysis. Am J Hematol. 2019;94:103–10.

    Article  PubMed  Google Scholar 

  19. Fuji S, Yamaguchi T, Inoue Y, Utsunomiya A, Moriuchi Y, Owatari S, et al. VCAP-AMP-VECP as a preferable induction chemotherapy in transplant-eligible patients with aggressive adult T-cell leukemia-lymphoma: a propensity score analysis. Bone Marrow Transplant. 2019;54:1399–405.

    Article  CAS  PubMed  Google Scholar 

  20. Mizutani M, Takami A, Hara M, Mizuno S, Yanada M, Chou T, et al. Comparison of autologous and unrelated transplants for cytogenetically normal acute myelogenous leukemia. Biol Blood Marrow Transplant. 2017;23:1447–54.

    Article  PubMed  Google Scholar 

  21. Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND, et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016;374:2209–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wong TN, Ramsingh G, Young AL, Miller CA, Touma W, Welch JS, et al. Role of TP53 mutations in the origin and evolution of therapy-related acute myeloid leukaemia. Nature. 2015;518:552–5.

    Article  CAS  PubMed  Google Scholar 

  23. McNeer NA, Philip J, Geiger H, Ries RE, Lavallee VP, Walsh M, et al. Genetic mechanisms of primary chemotherapy resistance in pediatric acute myeloid leukemia. Leukemia. 2019;33:1934–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dohner H, Estey E, Grimwade D, Amadori S, Appelbaum FR, Buchner T, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129:424–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Sakaguchi M, Yamaguchi H, Najima Y, Usuki K, Ueki T, Oh I, et al. Prognostic impact of low allelic ratio FLT3-ITD and NPM1 mutation in acute myeloid leukemia. Blood Adv. 2018;2:2744–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bazarbachi A, Labopin M, Battipaglia G, Djabali A, Forcade E, Arcese W, et al. Allogeneic stem cell transplantation for FLT3-mutated acute myeloid leukemia: in vivo T-Cell depletion and posttransplant sorafenib maintenance improve survival. A retrospective acute leukemia working party-European society for blood and marrow transplant study. Clin Hematol Int. 2019;1:58–74.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Xuan L, Wang Y, Huang F, Jiang E, Deng L, Wu B, et al. Effect of sorafenib on the outcomes of patients with FLT3-ITD acute myeloid leukemia undergoing allogeneic hematopoietic stem cell transplantation. Cancer. 2018;124:1954–63.

    Article  CAS  PubMed  Google Scholar 

  28. Schlenk RF, Weber D, Fiedler W, Salih HR, Wulf G, Salwender H, et al. Midostaurin added to chemotherapy and continued single-agent maintenance therapy in acute myeloid leukemia with FLT3-ITD. Blood. 2019;133:840–51.

    Article  CAS  PubMed  Google Scholar 

  29. Yoshizato T, Nannya Y, Atsuta Y, Shiozawa Y, Iijima-Yamashita Y, Yoshida K, et al. Genetic abnormalities in myelodysplasia and secondary acute myeloid leukemia: impact on outcome of stem cell transplantation. Blood. 2017;129:2347–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Donehower LA, Soussi T, Korkut A, Liu Y, Schultz A, Cardenas M, et al. Integrated analysis of TP53 gene and pathway alterations in the cancer genome atlas. Cell Rep. 2019;28:1370–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hou HA, Chou WC, Kuo YY, Liu CY, Lin LI, Tseng MH, et al. TP53 mutations in de novo acute myeloid leukemia patients: longitudinal follow-ups show the mutation is stable during disease evolution. Blood Cancer J. 2015;5:e331.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kadia TM, Jain P, Ravandi F, Garcia-Manero G, Andreef M, Takahashi K, et al. TP53 mutations in newly diagnosed acute myeloid leukemia: clinicomolecular characteristics, response to therapy, and outcomes. Cancer. 2016;122:3484–91.

    Article  CAS  PubMed  Google Scholar 

  33. Rucker FG, Schlenk RF, Bullinger L, Kayser S, Teleanu V, Kett H, et al. TP53 alterations in acute myeloid leukemia with complex karyotype correlate with specific copy number alterations, monosomal karyotype, and dismal outcome. Blood. 2012;119:2114–21.

    Article  CAS  PubMed  Google Scholar 

  34. Ciurea SO, Chilkulwar A, Saliba RM, Chen J, Rondon G, Patel KP, et al. Prognostic factors influencing survival after allogeneic transplantation for AML/MDS patients with TP53 mutations. Blood. 2018;131:2989–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Leung GMK, Zhang C, Ng NKL, Yang N, Lam SSY, Au CH, et al. Distinct mutation spectrum, clinical outcome and therapeutic responses of typical complex/monosomy karyotype acute myeloid leukemia carrying TP53 mutations. Am J Hematol. 2019;94:650–7.

    Article  CAS  PubMed  Google Scholar 

  36. Baron F, Stevens-Kroef M, Kicinski M, Meloni G, Muus P, Marie JP, et al. Impact of induction regimen and allogeneic hematopoietic cell transplantation on outcome in younger adults with acute myeloid leukemia with a monosomal karyotype. Haematologica. 2019;104:1168–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Brands-Nijenhuis AV, Labopin M, Schouten HC, Volin L, Socie G, Cornelissen JJ, et al. Monosomal karyotype as an adverse prognostic factor in patients with acute myeloid leukemia treated with allogeneic hematopoietic stem-cell transplantation in first complete remission: a retrospective survey on behalf of the ALWP of the EBMT. Haematologica. 2016;101:248–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Oran B, Dolan M, Cao Q, Brunstein C, Warlick E, Weisdorf D. Monosomal karyotype provides better prognostic prediction after allogeneic stem cell transplantation in patients with acute myelogenous leukemia. Biol Blood Marrow Transplant. 2011;17:356–64.

    Article  CAS  PubMed  Google Scholar 

  39. Grimwade D, Hills RK, Moorman AV, Walker H, Chatters S, Goldstone AH, et al. Refinement of cytogenetic classification in acute myeloid leukemia: determination of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United Kingdom Medical Research Council trials. Blood. 2010;116:354–65.

    Article  CAS  PubMed  Google Scholar 

  40. Medeiros BC, Othus M, Fang M, Roulston D, Appelbaum FR. Prognostic impact of monosomal karyotype in young adult and elderly acute myeloid leukemia: the Southwest Oncology Group (SWOG) experience. Blood. 2010;116:2224–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sallman DA, Komrokji R, Vaupel C, Cluzeau T, Geyer SM, McGraw KL, et al. Impact of TP53 mutation variant allele frequency on phenotype and outcomes in myelodysplastic syndromes. Leukemia. 2016;30:666–73.

    Article  CAS  PubMed  Google Scholar 

  42. Hamilton BK, Rybicki L, Hirsch C, Przychodzen B, Nazha A, Gerds AT, et al. Mutation clonal burden and allogeneic hematopoietic cell transplantation outcomes in acute myeloid leukemia and myelodysplastic syndromes. Bone Marrow Transplant. 2019;54:1281–6.

    Article  CAS  PubMed  Google Scholar 

  43. Welch JS, Petti AA, Miller CA, Fronick CC, O’Laughlin M, Fulton RS, et al. TP53 and decitabine in acute myeloid leukemia and myelodysplastic syndromes. N Engl J Med. 2016;375:2023–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Takahashi K, Patel K, Bueso-Ramos C, Zhang J, Gumbs C, Jabbour E, et al. Clinical implications of TP53 mutations in myelodysplastic syndromes treated with hypomethylating agents. Oncotarget. 2016;7:14172–87.

    Article  PubMed  PubMed Central  Google Scholar 

  45. DiNardo CD, Pratz KW, Letai A, Jonas BA, Wei AH, Thirman M, et al. Safety and preliminary efficacy of venetoclax with decitabine or azacitidine in elderly patients with previously untreated acute myeloid leukaemia: a non-randomised, open-label, phase 1b study. Lancet Oncol. 2018;19:216–28.

    Article  CAS  PubMed  Google Scholar 

  46. Wei AH, Strickland SA Jr., Hou JZ, Fiedler W, Lin TL, Walter RB, et al. Venetoclax combined with low-dose cytarabine for previously untreated patients with acute myeloid leukemia: results from a phase Ib/II Study. J Clin Oncol. 2019;37:1277–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sallman DA, DeZern AE, Steensma DP, Sweet KL, Cluzeau T, Sekeres MA, et al. Phase 1b/2 combination study of APR-246 and azacitidine (AZA) in patients with TP53 mutant myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). Blood. 2018;132:3091.

    Article  Google Scholar 

  48. Shouval R, Fein JA, Shouval A, Danylesko I, Shem-Tov N, Zlotnik M, et al. External validation and comparison of multiple prognostic scores in allogeneic hematopoietic stem cell transplantation. Blood Adv. 2019;3:1881–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Styczynski J, Tridello G, Koster L, Iacobelli S, van Biezen A, van der Werf S, et al. Death after hematopoietic stem cell transplantation: changes over calendar year time, infections and associated factors. Bone Marrow Transplant. 2020;55:126–36.

    Article  PubMed  Google Scholar 

  50. Ding L, Ley TJ, Larson DE, Miller CA, Koboldt DC, Welch JS, et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature. 2012;481:506–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cocciardi S, Dolnik A, Kapp-Schwoerer S, Rucker FG, Lux S, Blatte TJ, et al. Clonal evolution patterns in acute myeloid leukemia with NPM1 mutation. Nat Commun. 2019;10:2031.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Stone RM, Mandrekar SJ, Sanford BL, Laumann K, Geyer S, Bloomfield CD, et al. Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation. N Engl J Med. 2017;377:454–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Roloff GW, Griffiths EA. When to obtain genomic data in acute myeloid leukemia (AML) and which mutations matter. Blood Adv. 2018;2:3070–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The present research work was supported by Clinical Research Fund of Tokyo Metropolitan Government.

Author information

Authors and Affiliations

Authors

Contributions

YN, YH, K. Oboki, HH, and K. Ohashi designed the study. DS and CH performed NGS analysis. YN, DS, YH, K. Oboki, and HH carried out research and analyzed data. YN, TT, ND, KH, and YO collected patients’ samples. YN, TT, ND, KY, MA, KI, AI, TK, KK, HS, HH, and K. Ohashi performed patient care. YN, YH, K. Oboki, TT, and K. Ohashi wrote the manuscript. All the authors reviewed and approved the final manuscript.

Corresponding author

Correspondence to Yuka Harada.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najima, Y., Sadato, D., Harada, Y. et al. Prognostic impact of TP53 mutation, monosomal karyotype, and prior myeloid disorder in nonremission acute myeloid leukemia at allo-HSCT. Bone Marrow Transplant 56, 334–346 (2021). https://doi.org/10.1038/s41409-020-01016-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41409-020-01016-9

This article is cited by

Search

Quick links