Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

MicroRNAs in graft-versus-host disease: a review of the latest data

Abstract

Detectable in biopsies and body fluids, the measurement of a single or panels of microRNAs have been reported to be quite sensitive and specific for the prediction, diagnosis, and prognosis of many diseases. Interest in the use of microRNAs as biomarkers and eventual therapeutic targets has increased exponentially in the last decade. However, in the field of graft-versus-host disease (GVHD), the discovery of their involvement in biological processes and their predictive value is only emerging. With 30–75% of patients developing GVHD following allogeneic hematopoietic cell transplant and the absence of routinely used predictive biomarkers, microRNAs are promising for early detection and follow-up of this condition. We aim to summarize the current knowledge on the involvement of these small RNAs in the pathophysiology of this disease. We also review studies investigating the potential of miRNAs as biomarkers for early detection, follow-up, and prognosis of GVHD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75:843–54.

    Article  CAS  PubMed  Google Scholar 

  2. Tetreault N, De Guire V. miRNAs: their discovery, biogenesis and mechanism of action. Clin Biochem. 2013;46:842–5.

    Article  CAS  PubMed  Google Scholar 

  3. De Guire V, Robitaille R, Tetreault N, Guerin R, Menard C, Bambace N, et al. Circulating miRNAs as sensitive and specific biomarkers for the diagnosis and monitoring of human diseases: promises and challenges. Clin Biochem. 2013;46:846–60.

    Article  PubMed  CAS  Google Scholar 

  4. Okamura K, Phillips MD, Tyler DM, Duan H, Chou YT, Lai EC. The regulatory activity of microRNA* species has substantial influence on microRNA and 3′ UTR evolution. Nat Struct Mol Biol. 2008;15:354–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Eulalio A, Huntzinger E, Izaurralde E. Getting to the root of miRNA-mediated gene silencing. Cell. 2008;132:9–14.

    Article  CAS  PubMed  Google Scholar 

  6. Flynt AS, Lai EC. Biological principles of microRNA-mediated regulation: shared themes amid diversity. Nat Rev Genet. 2008;9:831–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Huang Y, Shen XJ, Zou Q, Wang SP, Tang SM, Zhang GZ. Biological functions of microRNAs: a review. J Physiol Biochem. 2011;67:129–39.

    Article  CAS  PubMed  Google Scholar 

  8. Lawrie CH, Gal S, Dunlop HM, Pushkaran B, Liggins AP, Pulford K, et al. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol. 2008;141:672–5.

    Article  PubMed  Google Scholar 

  9. Weber JA, Baxter DH, Zhang S, Huang DY, Huang KH, Lee MJ, et al. The microRNA spectrum in 12 body fluids. Clin Chem. 2010;56:1733–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA. 2008;105:10513–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9:654–9.

    Article  CAS  PubMed  Google Scholar 

  12. Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci USA. 2011;108:5003–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 2002;99:15524–9.

  14. Chen X, Hu Z, Wang W, Ba Y, Ma L, Zhang C, et al. Identification of ten serum microRNAs from a genome-wide serum microRNA expression profile as novel noninvasive biomarkers for nonsmall cell lung cancer diagnosis. Int J Cancer. 2012;130:1620–8.

    Article  CAS  PubMed  Google Scholar 

  15. Li LM, Hu ZB, Zhou ZX, Chen X, Liu FY, Zhang JF, et al. Serum microRNA profiles serve as novel biomarkers for HBV infection and diagnosis of HBV-positive hepatocarcinoma. Cancer Res. 2010;70:9798–807.

    Article  CAS  PubMed  Google Scholar 

  16. Heneghan HM, Miller N, Kelly R, Newell J, Kerin MJ. Systemic miRNA-195 differentiates breast cancer from other malignancies and is a potential biomarker for detecting noninvasive and early stage disease. Oncologist. 2010;15:673–82.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mastroianni J, Stickel N, Andrlova H, Hanke K, Melchinger W, Duquesne S, et al. miR-146a controls immune response in the melanoma microenvironment. Cancer Res. 2019;79:183–95.

    Article  CAS  PubMed  Google Scholar 

  18. Danylesko I, Shimoni A, Nagler A. Allogeneic stem cell transplantation and targeted immunotherapy for multiple myeloma. Clin Lymphoma Myeloma Leuk. 2013;13:S330–48.

    Article  PubMed  Google Scholar 

  19. Juric MK, Ghimire S, Ogonek J, Weissinger EM, Holler E, van Rood JJ, et al. Milestones of hematopoietic stem cell transplantation—from first human studies to current developments. Front Immunol. 2016;7:470.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Shlomchik WD. Graft-versus-host disease. Nat Rev Immunol. 2007;7:340–52.

    Article  CAS  PubMed  Google Scholar 

  21. Jagasia M, Arora M, Flowers ME, Chao NJ, McCarthy PL, Cutler CS, et al. Risk factors for acute GVHD and survival after hematopoietic cell transplantation. Blood. 2012;119:296–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Reddy P, Zeiser R. Editorial: non-coding RNAs and graft versus host disease. Front Immunol. 2018;9:2713.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Peltier D, Reddy P. Non-coding RNA mediated regulation of allogeneic T cell responses after hematopoietic transplantation. Front Immunol. 2018;9:1110.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Xiao B, Wang Y, Li W, Baker M, Guo J, Corbet K, et al. Plasma microRNA signature as a noninvasive biomarker for acute graft-versus-host disease. Blood. 2013;122:3365–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Reddy P, Ferrara JL. Immunobiology of acute graft-versus-host disease. Blood Rev. 2003;17:187–94.

    Article  PubMed  Google Scholar 

  26. Koenecke C, Krueger A. MicroRNA in T-cell development and t-cell mediated acute graft-versus-host disease. Front Immunol. 2018;9:992.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Atarod S, Dickinson AM. MicroRNAs: the missing link in the biology of graft-versus-host disease? Front Immunol. 2013;4:420.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Ranganathan P, Heaphy CE, Costinean S, Stauffer N, Na C, Hamadani M, et al. Regulation of acute graft-versus-host disease by microRNA-155. Blood. 2012;119:4786–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rodriguez A, Vigorito E, Clare S, Warren MV, Couttet P, Soond DR, et al. Requirement of bic/microRNA-155 for normal immune function. Science. 2007;316:608–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Thai TH, Calado DP, Casola S, Ansel KM, Xiao C, Xue Y, et al. Regulation of the germinal center response by microRNA-155. Science. 2007;316:604–8.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang R, Wang X, Hong M, Luo T, Zhao M, Shen H, et al. Endothelial microparticles delivering microRNA-155 into T lymphocytes are involved in the initiation of acute graft-versus-host disease following allogeneic hematopoietic stem cell transplantation. Oncotarget. 2017;8:23360–75.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Gam R, Shah P, Crossland RE, Norden J, Dickinson AM, Dressel R. Genetic association of hematopoietic stem cell transplantation outcome beyond histocompatibility genes. Front Immunol. 2017;8:380.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Kohlhaas S, Garden OA, Scudamore C, Turner M, Okkenhaug K, Vigorito E. Cutting edge: the Foxp3 target miR-155 contributes to the development of regulatory T cells. J Immunol. 2009;182:2578–82.

    Article  CAS  PubMed  Google Scholar 

  34. Baumjohann D, Ansel KM. MicroRNA-mediated regulation of T helper cell differentiation and plasticity. Nat Rev Immunol. 2013;13:666–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lu LF, Thai TH, Calado DP, Chaudhry A, Kubo M, Tanaka K, et al. Foxp3-dependent microRNA155 confers competitive fitness to regulatory T cells by targeting SOCS1 protein. Immunity. 2009;30:80–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jeker LT, Zhou X, Gershberg K, de Kouchkovsky D, Morar MM, Stadthagen G, et al. MicroRNA 10a marks regulatory T cells. PLoS One. 2012;7:e36684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hippen KL, Loschi M, Nicholls J, MacDonald KPA, Blazar BR. Effects of microRNA on regulatory T cells and implications for adoptive cellular therapy to ameliorate graft-versus-host disease. Front Immunol. 2018;9:57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Chen S, Smith BA, Iype J, Prestipino A, Pfeifer D, Grundmann S, et al. MicroRNA-155-deficient dendritic cells cause less severe GVHD through reduced migration and defective inflammasome activation. Blood. 2015;126:103–12.

    Article  CAS  PubMed  Google Scholar 

  39. Zitzer NC, Taylor PA, Ngankeu A, Efebera YA, Devine SM, Blazar BR, et al. MiR-155 impacts T cell migration in acute graft-versus-host disease (aGVHD). Blood. 2015;126:3080.

    Article  Google Scholar 

  40. Atarod S, Ahmed MM, Lendrem C, Pearce KF, Cope W, Norden J, et al. miR-146a and miR-155 expression levels in acute graft-versus-host disease incidence. Front Immunol. 2016;7:56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Stickel N, Prinz G, Pfeifer D, Hasselblatt P, Schmitt-Graeff A, Follo M, et al. MiR-146a regulates the TRAF6/TNF-axis in donor T cells during GVHD. Blood. 2014;124:2586–95.

    Article  CAS  PubMed  Google Scholar 

  42. Stickel N, Hanke K, Köhler M, Prinz G, Pfeifer D, Schmitt-Graeff A, et al. Recipient dendritic cells are regulated by MiR-146a during acute GvHD. Blood. 2015;126:146.

    Article  Google Scholar 

  43. Stickel N, Hanke K, Marschner D, Prinz G, Kohler M, Melchinger W, et al. MicroRNA-146a reduces MHC-II expression via targeting JAK/STAT signaling in dendritic cells after stem cell transplantation. Leukemia. 2017;31:2732–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zeiser R, Burchert A, Lengerke C, Verbeek M, Maas-Bauer K, Metzelder SK, et al. Ruxolitinib in corticosteroid-refractory graft-versus-host disease after allogeneic stem cell transplantation: a multicenter survey. Leukemia. 2015;29:2062–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Boldin MP, Taganov KD, Rao DS, Yang L, Zhao JL, Kalwani M, et al. miR-146a is a significant brake on autoimmunity, myeloproliferation, and cancer in mice. J Exp Med. 2011;208:1189–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen S, Zeiser R. The role of microRNAs in myeloid cells during graft-versus-host disease. Front Immunol. 2018;9:4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Park H, Huang X, Lu C, Cairo MS, Zhou X. MicroRNA-146a and microRNA-146b regulate human dendritic cell apoptosis and cytokine production by targeting TRAF6 and IRAK1 proteins. J Biol Chem. 2015;290:2831–41.

    Article  CAS  PubMed  Google Scholar 

  48. He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, et al. A microRNA polycistron as a potential human oncogene. Nature. 2005;435:828–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ventura A, Young AG, Winslow MM, Lintault L, Meissner A, Erkeland SJ, et al. Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell. 2008;132:875–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Olive V, Li Q, He L. mir-17-92: a polycistronic oncomir with pleiotropic functions. Immunol Rev. 2013;253:158–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Jiang S, Li C, Olive V, Lykken E, Feng F, Sevilla J, et al. Molecular dissection of the miR-17-92 cluster’s critical dual roles in promoting Th1 responses and preventing inducible Treg differentiation. Blood. 2011;118:5487–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wu Y, Heinrichs J, Bastian D, Fu J, Nguyen H, Schutt S, et al. MicroRNA-17-92 controls T-cell responses in graft-versus-host disease and leukemia relapse in mice. Blood. 2015;126:1314–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wu Y, Schutt S, Paz K, Zhang M, Flynn RP, Bastian D, et al. MicroRNA-17-92 is required for T-cell and B-cell pathogenicity in chronic graft-versus-host disease in mice. Blood. 2018;131:1974–86.

  54. Hennion-Tscheltzoff O, Leboeuf D, Gauthier SD, Dupuis M, Assouline B, Gregoire A, et al. TCR triggering modulates the responsiveness and homeostatic proliferation of CD4+ thymic emigrants to IL-7 therapy. Blood. 2013;121:4684–93.

    Article  CAS  PubMed  Google Scholar 

  55. Kroesen BJ, Teteloshvili N, Smigielska-Czepiel K, Brouwer E, Boots AM, van den Berg A, et al. Immuno-miRs: critical regulators of T-cell development, function and ageing. Immunology. 2015;144:1–10.

    Article  CAS  PubMed  Google Scholar 

  56. Li QJ, Chau J, Ebert PJ, Sylvester G, Min H, Liu G, et al. miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell. 2007;129:147–61.

    Article  CAS  PubMed  Google Scholar 

  57. Sang W, Zhang C, Zhang D, Wang Y, Sun C, Niu M, et al. MicroRNA-181a, a potential diagnosis marker, alleviates acute graft versus host disease by regulating IFN-gamma production. Am J Hematol. 2015;90:998–1007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Strimbu K, Tavel JA. What are biomarkers? Curr Opin HIV AIDS. 2010;5:463–6.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Paczesny S. Acute graft-versus-host disease prognosis: are biomarkers ready for preemptive clinical trials? Clin Chem 2017;63:1561–3.

    Article  CAS  PubMed  Google Scholar 

  60. Hartwell MJ, Ozbek U, Holler E, Renteria AS, Major-Monfried H, Reddy P, et al. An early-biomarker algorithm predicts lethal graft-versus-host disease and survival. JCI Insight. 2017;2:e89798.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Presland RB. Biology of chronic graft-vs-host disease: immune mechanisms and progress in biomarker discovery. World J Transplant. 2016;6:608–19.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Xie LN, Zhou F, Liu XM, Fang Y, Yu Z, Song NX, et al. Serum microRNA155 is increased in patients with acute graft-versus-host disease. Clin Transplant. 2014;28:314–23.

    Article  CAS  PubMed  Google Scholar 

  63. Jalapothu D, Boieri M, Crossland RE, Shah P, Butt IA, Norden J, et al. Tissue-specific expression patterns of microRNA during acute graft-versus-host disease in the rat. Front Immunol. 2016;7:361.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Crossland RE, Norden J, Kralj Juric M, Pearce KF, Lendrem C, Bibby LA, et al. Serum and extracellular vesicle microRNAs miR-423, miR-199, and miR-93* as biomarkers for acute graft-versus-host disease. Front Immunol. 2017;8:1446.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Crossland RNJ, Collin M, Dickinson AM. Urinary micrornas miR-377, miR-423, miR-93 and miR-199 as biomarkers for graft versus host disease. Blood. 2014;124:1088.

  66. Crossland RE, Norden J, Juric MK, Green K, Pearce KF, Lendrem C, et al. Expression of serum microRNAs is altered during acute graft-versus-host disease. Front Immunol. 2017;8:308.

    PubMed  PubMed Central  Google Scholar 

  67. Gimondi S, Dugo M, Vendramin A, Bermema A, Biancon G, Cavane A, et al. Circulating miRNA panel for prediction of acute graft-versus-host disease in lymphoma patients undergoing matched unrelated hematopoietic stem cell transplantation. Exp Hematol. 2016;44:624–34 e1.

    Article  CAS  PubMed  Google Scholar 

  68. Zhao XS, Wang YN, Lv M, Kong Y, Luo HX, Ye XY, et al. miR-153-3p, a new bio-target, is involved in the pathogenesis of acute graft-versus-host disease via inhibition of indoleamine- 2,3-dioxygenase. Oncotarget. 2016;7:48321–34.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Cheng HH, Yi HS, Kim Y, Kroh EM, Chien JW, Eaton KD, et al. Plasma processing conditions substantially influence circulating microRNA biomarker levels. PLoS ONE. 2013;8:e64795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ranganathan P, Ngankeu A, Zitzer NC, Leoncini P, Yu X, Casadei L, et al. Serum miR-29a Is upregulated in acute graft-versus-host disease and activates dendritic cells through TLR binding. J Immunol. 2017;198:2500–12.

    Article  CAS  PubMed  Google Scholar 

  71. Wang Y, Zhao X, Ye X, Luo H, Zhao T, Diao Y, et al. Plasma microRNA-586 is a new biomarker for acute graft-versus-host disease. Ann Hematol. 2015;94:1505–14.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported in part by grants from the Cancer Research Society of Canada (grants no. 22669 to MG), and the Fonds de recherche du Québec-Santé (FRQS).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. De Guire or I. Ahmad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Newmarch, M., Kostantin, E., Tsongalis, G.J. et al. MicroRNAs in graft-versus-host disease: a review of the latest data. Bone Marrow Transplant 55, 1014–1020 (2020). https://doi.org/10.1038/s41409-019-0764-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41409-019-0764-1

Search

Quick links