Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tolerance regeneration by T regulatory cells in autologous haematopoietic stem cell transplantation for autoimmune diseases

Abstract

Autologous haematopoietic stem cell transplantation shows increasing promise as a therapeutic option for patients with treatment-refractory autoimmune disease, particularly systemic sclerosis and multiple sclerosis. However, this intensive chemotherapy-based procedure is not always possible due to potential treatment toxicities and comorbidities. The biological mechanisms of how this procedure induces long-term remission in autoimmune disease are increasingly understood. The focus of this review is on recent research findings on the role of CD4+ T regulatory cells (Tregs) in resetting the immune system leading to the eradication of the autoimmune disease after transplantation. Discovery of the precise mechanisms of this process will allow development of novel Treg-based therapies and thus avoid the need for intensive chemotherapy-based treatment for these autoimmune diseases in the future.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Alexander T, Arnold R, Hiepe F, Radbruch A. Resetting the immune system with immunoablation and autologous haematopoietic stem cell transplantation in autoimmune diseases. Clin Exp Rheumatol. 2016;34:53–7.

    PubMed  Google Scholar 

  2. Consortium TAaNZMSG. Genome-wide association study identifies new multiple sclerosis susceptibility loci on chromosomes 12 and 20. Nat Genet. 2009;41:824–8. http://www.nature.com/ng/journal/v41/n7/suppinfo/ng.396_S1.html.

  3. Tschochner M, Leary S, Cooper D, Strautins K, Chopra A, Clark H, et al. Identifying patient-specific epstein-barr nuclear antigen-1 genetic variation and potential autoreactive targets relevant to multiple sclerosis pathogenesis. PLoS ONE. 2016;11:e0147567. https://doi.org/10.1371/journal.pone.0147567.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Pattanaik D, Brown M, Postlethwaite BC, Postlethwaite AE. Pathogenesis of systemic sclerosis. Front Immunol. 2015;6:272–272. https://doi.org/10.3389/fimmu.2015.00272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Farge D, Labopin M, Tyndall A, Fassas A, Mancardi GL, Van Laar J, et al. Autologous hematopoietic stem cell transplantation for autoimmune diseases: an observational study on 12 years’ experience from the European Group for Blood and Marrow Transplantation Working Party on autoimmune diseases. Haematologica. 2010;95:284–92. https://doi.org/10.3324/haematol.2009.013458.

    Article  PubMed  Google Scholar 

  6. van Laar JM, Farge D, Sont JK, Naraghi K, Marjanovic Z, Larghero J, et al. Autologous hematopoietic stem cell transplantation vs intravenous pulse cyclophosphamide in diffuse cutaneous systemic sclerosis: a randomized clinical trial. JAMA. 2014;311:2490–8. https://doi.org/10.1001/jama.2014.6368.

    Article  PubMed  CAS  Google Scholar 

  7. Muraro PA, Martin R, Mancardi GL, Nicholas R, Sormani MP, Saccardi R. Autologous haematopoietic stem cell transplantation for treatment of multiple sclerosis. Nat Rev Neurol. 2017;13:391.

    Article  CAS  PubMed  Google Scholar 

  8. Burt RK, Balabanov R, Burman J, Sharrack B, Snowden JA, Oliveira MC, et al. Effect of nonmyeloablative hematopoietic stem cell transplantation vs continued disease-modifying therapy on disease progression in patients with relapsing-remitting multiple sclerosis: a randomized clinical trial effect of nonmyeloablative HSCT vs disease-modifying therapy on relapsing-remitting MS disease progression effect of nonmyeloablative HSCT vs disease-modifying therapy on relapsing-remitting MS disease progression. JAMA. 2019;321:165–74. https://doi.org/10.1001/jama.2018.18743.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Snowden JA, Badoglio M, Labopin M, Giebel S, McGrath E, Marjanovic Z, et al. Evolution, trends, outcomes, and economics of hematopoietic stem cell transplantation in severe autoimmune diseases. Blood Adv. 2017;1:2742–55. https://doi.org/10.1182/bloodadvances.2017010041.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Atkins HL, Bowman M, Allan D, Anstee G, Arnold DL, Bar-Or A, et al. Immunoablation and autologous haemopoietic stem-cell transplantation for aggressive multiple sclerosis: a multicentre single-group phase 2 trial. Lancet. 2016;388:576–85.

    Article  PubMed  Google Scholar 

  11. Grant CR, Liberal R, Mieli-Vergani G, Vergani D, Longhi MS. Regulatory T-cells in autoimmune diseases: challenges, controversies and—yet—unanswered questions. Autoimmun Rev. 2015;14:105–16. https://doi.org/10.1016/j.autrev.2014.10.012.

    Article  CAS  PubMed  Google Scholar 

  12. Sakaguchi S, Wing K, Miyara M. Regulatory T cells—a brief history and perspective. Eur J Immunol. 2007;37:S116–23. https://doi.org/10.1002/eji.200737593.

    Article  CAS  PubMed  Google Scholar 

  13. Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell. 2008;133:775–87. https://doi.org/10.1016/j.cell.2008.05.009.

    Article  CAS  PubMed  Google Scholar 

  14. Shevach EM. Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity. 2009;30:636–45. https://doi.org/10.1016/j.immuni.2009.04.010.

    Article  CAS  PubMed  Google Scholar 

  15. Koreth J, Ritz J. Tregs, HSCT, and acute GVHD: up close and personal. Blood. 2013;122:1690–1691. https://doi.org/10.1182/blood-2013-07-514125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Goodyear OC, Dennis M, Jilani NY, Loke J, Siddique S, Ryan G, et al. Azacitidine augments expansion of regulatory T cells after allogeneic stem cell transplantation in patients with acute myeloid leukemia (AML). Blood. 2012;119:3361–9. https://doi.org/10.1182/blood-2011-09-377044.

    Article  CAS  PubMed  Google Scholar 

  17. Craddock C, Jilani N, Siddique S, Yap C, Khan J, Nagra S, et al. Tolerability and clinical activity of post-transplantation azacitidine in patients allografted for acute myeloid leukemia treated on the RICAZA trial. Biol Blood Marrow Transplant. 2016;22:385–90. https://doi.org/10.1016/j.bbmt.2015.09.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Malmegrim KC, de Azevedo JT, Arruda L, Abreu JR, Couri CE, de Oliveira GL et al. Immunological balance is associated with clinical outcome after autologous hematopoietic stem cell transplantation in type 1 diabetes. Front Immunol. 2017; 8. https://doi.org/10.3389/fimmu.2017.00167.

  19. Massey JC, Sutton IJ, Ma DDF, Moore JJ. Regenerating immunotolerance in multiple sclerosis with autologous hematopoietic stem cell transplant. Front. Immunol. 2018; 9. https://doi.org/10.3389/fimmu.2018.00410.

  20. Zhang L, Bertucci AM, Ramsey-Goldman R, Burt RK, Datta SK. Regulatory T cell (Treg) subsets return in patients with refractory lupus following stem cell transplantation, and TGF-beta-producing CD8+ Treg cells are associated with immunological remission of lupus. J Immunol. 2009;183:6346–58. https://doi.org/10.4049/jimmunol.0901773.

    Article  CAS  PubMed  Google Scholar 

  21. Arruda LC, Clave E, Moins-Teisserenc H, Douay C, Farge D, Toubert A. Resetting the immune response after autologous hematopoietic stem cell transplantation for autoimmune diseases. Curr Res Transl Med. 2016;64:107–13. https://doi.org/10.1016/j.retram.2016.03.004.

    Article  CAS  PubMed  Google Scholar 

  22. Delemarre EM, van den Broek T, Mijnheer G, Meerding J, Wehrens EJ, Olek S, et al. Autologous stem cell transplantation benefits autoimmune patients through functional renewal and TCR diversification of the regulatory T cell compartment. Blood. 2015;127:91–101. https://doi.org/10.1182/blood-2015-06-649145.

    Article  CAS  PubMed  Google Scholar 

  23. Marshak-Rothstein A. Toll-like receptors in systemic autoimmune disease. Nat Rev Immunol. 2006;6:823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Baecher-Allan C, Brown JA, Freeman GJ, Hafler DA. CD4 + CD25high regulatory cells in human peripheral blood. J Immunol. 2001;167:1245–53. https://doi.org/10.4049/jimmunol.167.3.1245.

    Article  CAS  PubMed  Google Scholar 

  25. Liu W, Putnam AL, Xu-Yu Z, Szot GL, Lee MR, Zhu S, et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J Exp Med. 2006;203:1701–11. https://doi.org/10.1084/jem.20060772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Seddiki N, Santner-Nanan B, Martinson J, Zaunders J, Sasson S, Landay A, et al. Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. J Exp Med. 2006;203:1693–1700. https://doi.org/10.1084/jem.20060468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol. 1995;155:1151–64.

    CAS  PubMed  Google Scholar 

  28. Bacchetta R, Passerini L, Gambineri E, Dai M, Allan SE, Perroni L, et al. Defective regulatory and effector T cell functions in patients with FOXP3 mutations. J Clin Investig. 2006;116:1713–22. https://doi.org/10.1172/JCI25112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Le Bras S, Geha RS. IPEX and the role of Foxp3 in the development and function of human Tregs. J Clin Investig. 2006;116:1473–5. https://doi.org/10.1172/JCI28880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dhamne C, Chung Y, Alousi AM, Cooper LJN, Tran DQ. Peripheral and thymic foxp3(+) regulatory T cells in search of origin, distinction, and function. Front Immunol. 2013;4:253–253. https://doi.org/10.3389/fimmu.2013.00253.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ohkura N, Kitagawa Y, Sakaguchi S. Development and maintenance of regulatory T cells. Immunity; 38: 414–23. https://doi.org/10.1016/j.immuni.2013.03.002.

  32. Himmel ME, MacDonald KG, Garcia RV, Steiner TS, Levings MK. Helios+ and Helios-cells coexist within the natural FOXP3+ T regulatory cell subset in humans. J Immunol. 2013;190:2001–8.

    Article  CAS  PubMed  Google Scholar 

  33. Ito T, Hanabuchi S, Wang Y-H, Park WR, Arima K, Bover L, et al. Two functional subsets of FOXP3+ regulatory T cells in human thymus and periphery. Immunity. 2008;28:870–80. https://doi.org/10.1016/j.immuni.2008.03.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Haas J, Fritzsching B, Trübswetter P, Korporal M, Milkova L, Fritz B, et al. Prevalence of newly generated naive regulatory T cells (Treg) is critical for treg suppressive function and determines Treg dysfunction in multiple sclerosis. J Immunol. 2007;179:1322–30. https://doi.org/10.4049/jimmunol.179.2.1322.

    Article  CAS  PubMed  Google Scholar 

  35. Larbi A, Fulop T. From “truly naïve” to “exhausted senescent” T cells: when markers predict functionality. Cytom Part A. 2014;85:25–35.

    Article  CAS  Google Scholar 

  36. Sallusto F, Geginat J, Lanzavecchia A. Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu Rev Immunol. 2004;22:745–63.

    Article  CAS  PubMed  Google Scholar 

  37. Vukmanovic-Stejic M, Zhang Y, Cook JE, Fletcher JM, McQuaid A, Masters JE, et al. Human CD4+ CD25hi Foxp3+ regulatory T cells are derived by rapid turnover of memory populations in vivo. J Clin Investig. 2006;116:2423–33. https://doi.org/10.1172/JCI28941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bono MR, Fernandez D, Flores-Santibanez F, Rosemblatt M, Sauma D. CD73 and CD39 ectonucleotidases in T cell differentiation: beyond immunosuppression. FEBS Lett. 2015;589:3454–60. https://doi.org/10.1016/j.febslet.2015.07.027.

    Article  CAS  PubMed  Google Scholar 

  39. Borsellino G, Kleinewietfeld M, Di Mitri D, Sternjak A, Diamantini A, Giometto R, et al. Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood. 2007;110:1225–32. https://doi.org/10.1182/blood-2006-12-064527.

    Article  CAS  PubMed  Google Scholar 

  40. Fletcher JM, Lonergan R, Costelloe L, Kinsella K, Moran B, O’Farrelly C, et al. CD39+Foxp3+ regulatory T cells suppress pathogenic Th17 cells and are impaired in multiple sclerosis. J Immunol. 2009;183:7602–10. https://doi.org/10.4049/jimmunol.0901881.

    Article  CAS  PubMed  Google Scholar 

  41. Fuschiotti P. Current perspectives on the role of CD8+ T cells in systemic sclerosis. Immunol Lett. 2018;195:55–60. https://doi.org/10.1016/j.imlet.2017.10.002.

    Article  CAS  PubMed  Google Scholar 

  42. Negrini S, Fenoglio D, Parodi A, Kalli F, Battaglia F, Nasi G et al. Phenotypic alterations involved in CD8+ treg impairment in systemic sclerosis. Front Immunol. 2017; 8. https://doi.org/10.3389/fimmu.2017.00018.

  43. Friedman DJ, Kunzli BM, AR YI, Sevigny J, Berberat PO, Enjyoji K, et al. CD39 deletion exacerbates experimental murine colitis and human polymorphisms increase susceptibility to inflammatory bowel disease. Proc Natl Acad Sci. 2009;106:16788–93. https://doi.org/10.1073/pnas.0902869106.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Rissiek A, Baumann I, Cuapio A, Mautner A, Kolster M, Arck PC, et al. The expression of CD39 on regulatory T cells is genetically driven and further upregulated at sites of inflammation. J Autoimmun. 2015;58:12–20. https://doi.org/10.1016/j.jaut.2014.12.007.

    Article  CAS  PubMed  Google Scholar 

  45. Huehn J, Hamann A. Homing to suppress: address codes for Treg migration. Trends Immunol. 2005;26:632–6. https://doi.org/10.1016/j.it.2005.10.001.

    Article  CAS  PubMed  Google Scholar 

  46. Huehn J, Siegmund K, Lehmann JC, Siewert C, Haubold U, Feuerer M, et al. Developmental stage, phenotype, and migration distinguish naive- and effector/memory-like CD4+ regulatory T cells. J Exp Med. 2004;199:303–13. https://doi.org/10.1084/jem.20031562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cao D, Malmstrom V, Baecher-Allan C, Hafler D, Klareskog L, Trollmo C. Isolation and functional characterization of regulatory CD25brightCD4+ T cells from the target organ of patients with rheumatoid arthritis. Eur J Immunol. 2003;33:215–23. https://doi.org/10.1002/immu.200390024.

    Article  CAS  PubMed  Google Scholar 

  48. van Amelsfort JM, Jacobs KM, Bijlsma JW, Lafeber FP, Taams LS. CD4(+)CD25(+) regulatory T cells in rheumatoid arthritis: differences in the presence, phenotype, and function between peripheral blood and synovial fluid. Arthritis Rheumatol. 2004;50:2775–85. https://doi.org/10.1002/art.20499.

    Article  Google Scholar 

  49. Baranzini SE, Oksenberg JR. The genetics of multiple sclerosis: from 0 to 200 in 50 years. Trends Genet. 2017;33:960–70. https://doi.org/10.1016/j.tig.2017.09.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Astier AL, Hafler DA. Abnormal Tr1 differentiation in multiple sclerosis. J Neuroimmunol. 2007;191:70–8. https://doi.org/10.1016/j.jneuroim.2007.09.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Viglietta V, Baecher-Allan C, Weiner HL, Hafler DA. Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J Exp Med. 2004;199:971–9. https://doi.org/10.1084/jem.20031579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Huan J, Culbertson N, Spencer L, Bartholomew R, Burrows GG, Chou YK, et al. Decreased FOXP3 levels in multiple sclerosis patients. J Neurosci Res. 2005;81:45–52. https://doi.org/10.1002/jnr.20522.

    Article  CAS  PubMed  Google Scholar 

  53. Venken K, Hellings N, Thewissen M, Somers V, Hensen K, Rummens J-L, et al. Compromised CD4(+) CD25(high) regulatory T-cell function in patients with relapsing-remitting multiple sclerosis is correlated with a reduced frequency of FOXP3-positive cells and reduced FOXP3 expression at the single-cell level. Immunology. 2008;123:79–89. https://doi.org/10.1111/j.1365-2567.2007.02690.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Arruda LC, de Azevedo JT, de Oliveira GL, Scortegagna GT, Rodrigues ES, Palma PV, et al. Immunological correlates of favorable long-term clinical outcome in multiple sclerosis patients after autologous hematopoietic stem cell transplantation. Clin Immunol. 2016;169:47–57. https://doi.org/10.1016/j.clim.2016.06.005.

    Article  CAS  PubMed  Google Scholar 

  55. Dalla Libera D, Di Mitri D, Bergami A, Centonze D, Gasperini C, Grasso MG, et al. T regulatory cells are markers of disease activity in multiple sclerosis patients. PLoS ONE. 2011;6:e21386 https://doi.org/10.1371/journal.pone.0021386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Peelen E, Damoiseaux J, Smolders J, Knippenberg S, Menheere P, Tervaert JW, et al. Th17 expansion in MS patients is counterbalanced by an expanded CD39+ regulatory T cell population during remission but not during relapse. J Neuroimmunol. 2011;240-241:97–103. https://doi.org/10.1016/j.jneuroim.2011.09.013.

    Article  CAS  PubMed  Google Scholar 

  57. Muls NG, Dang HA, Sindic CJ, van Pesch V. Regulation of Treg-associated CD39 in multiple sclerosis and effects of corticotherapy during relapse. Mult Scler J. 2015;21:1533–45. https://doi.org/10.1177/1352458514567215.

    Article  CAS  Google Scholar 

  58. Antiga E, Quaglino P, Bellandi S, Volpi W, Del Bianco E, Comessatti A, et al. Regulatory T cells in the skin lesions and blood of patients with systemic sclerosis and morphoea. Br J Dermatol. 2010;162:1056–63.

    Article  CAS  PubMed  Google Scholar 

  59. Radstake TR, Van Bon L, Broen J, Wenink M, Santegoets K, Deng Y, et al. Increased frequency and compromised function of T regulatory cells in systemic sclerosis (SSc) is related to a diminished CD69 and TGFβ expression. PloS ONE. 2009;4:e5981.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Mathian A, Parizot C, Dorgham K, Trad S, Arnaud L, Larsen M, et al. Activated and resting regulatory T cell exhaustion concurs with high levels of interleukin-22 expression in systemic sclerosis lesions. Ann Rheum Dis. 2012;71:1227–34.

    Article  CAS  PubMed  Google Scholar 

  61. Muraro PA, Douek DC, Packer A, Chung K, Guenaga FJ, Cassiani-Ingoni R, et al. Thymic output generates a new and diverse TCR repertoire after autologous stem cell transplantation in multiple sclerosis patients. J Exp Med. 2005;201:805–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Muraro PA, Robins H, Malhotra S, Howell M, Phippard D, Desmarais C, et al. T cell repertoire following autologous stem cell transplantation for multiple sclerosis. J Clin Investig. 2014;124:1168–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Arruda LC, Malmegrim KC, Lima-Júnior JR, Clave E, Dias JB, Moraes DA, et al. Immune rebound associates with a favorable clinical response to autologous HSCT in systemic sclerosis patients. Blood Adv. 2018;2:126–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rebeiro P, Moore J. The role of autologous haemopoietic stem cell transplantation in the treatment of autoimmune disorders. Intern Med J. 2016;46:17–28. https://doi.org/10.1111/imj.12944.

    Article  CAS  PubMed  Google Scholar 

  65. Alexander T, Thiel A, Rosen O, Massenkeil G, Sattler A, Kohler S, et al. Depletion of autoreactive immunologic memory followed by autologous hematopoietic stem cell transplantation in patients with refractory SLE induces long-term remission through de novo generation of a juvenile and tolerant immune system. Blood. 2009;113:214–23.

    Article  CAS  PubMed  Google Scholar 

  66. Abrahamsson SV, Angelini DF, Dubinsky AN, Morel E, Oh U, Jones JL, et al. Non-myeloablative autologous haematopoietic stem cell transplantation expands regulatory cells and depletes IL-17 producing mucosal-associated invariant T cells in multiple sclerosis. Brain. 2013;136:2888–903.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Baraut J, Grigore EI, Jean-Louis F, Khelifa SH, Durand C, Verrecchia F, et al. Peripheral blood regulatory T cells in patients with diffuse systemic sclerosis (SSc) before and after autologous hematopoietic SCT: a pilot study. Bone Marrow Transpl. 2014;49:349–54. https://doi.org/10.1038/bmt.2013.202.

    Article  CAS  Google Scholar 

  68. Clerici M, Cassinotti A, Onida F, Trabattoni D, Annaloro C, Della Volpe A, et al. Immunomodulatory effects of unselected haematopoietic stem cells autotransplantation in refractory Crohn’s disease. Digestive Liver Dis. 2011;43:946–52. https://doi.org/10.1016/j.dld.2011.07.021.

    Article  Google Scholar 

  69. Pockley AG, Lindsay JO, Foulds GA, Rutella S, Gribben JG, Alexander T et al. Immune reconstitution after autologous hematopoietic stem cell transplantation in crohn’s disease: current status and future directions. a review on behalf of the EBMT autoimmune diseases working party and the autologous stem cell transplantation in refractory CD—low intensity therapy evaluation study investigators. Front Immunol. 2018; 9. https://doi.org/10.3389/fimmu.2018.00646.

  70. de Kleer I, Vastert B, Klein M, Teklenburg G, Arkesteijn G, Yung GP, et al. Autologous stem cell transplantation for autoimmunity induces immunologic self-tolerance by reprogramming autoreactive T cells and restoring the CD4+CD25+ immune regulatory network. Blood. 2006;107:1696–702. https://doi.org/10.1182/blood-2005-07-2800.

    Article  PubMed  CAS  Google Scholar 

  71. Moore JJ, Massey JC, Ford CD, Khoo ML, Zaunders JJ, Hendrawan K, et al. Prospective phase II clinical trial of autologous haematopoietic stem cell transplant for treatment refractory multiple sclerosis. J Neurol Neurosurg Psychiatry. 2019;90:514–21.

    Article  PubMed  Google Scholar 

  72. Luznik L, Fuchs EJ. High-dose, post-transplantation cyclophosphamide to promote graft-host tolerance after allogeneic hematopoietic stem cell transplantation. Immunol Res. 2010;47:65–77. https://doi.org/10.1007/s12026-009-8139-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kanakry CG, Ganguly S, Zahurak M, Bolaños-Meade J, Thoburn C, Perkins B, et al. Aldehyde dehydrogenase expression drives human regulatory T cell resistance to posttransplantation cyclophosphamide. Sci Transl Med. 2013;5:211ra157–211ra157.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Lopez M, Clarkson MR, Albin M, Sayegh MH, Najafian N. A novel mechanism of action for anti-thymocyte globulin: induction of CD4+ CD25+ Foxp3+ regulatory T cells. J Am Soc Nephrol. 2006;17:2844–53.

    Article  CAS  PubMed  Google Scholar 

  75. Arruda LCM, Lima-Júnior JR, Clave E, Moraes DA, Douay C, Fournier I, et al. Homeostatic proliferation leads to telomere attrition and increased PD-1 expression after autologous hematopoietic SCT for systemic sclerosis. Bone Marrow Transplant. 2018;53:1319–27. https://doi.org/10.1038/s41409-018-0162-0.

    Article  CAS  PubMed  Google Scholar 

  76. Asano T, Meguri Y, Yoshioka T, Kishi Y, Iwamoto M, Nakamura M, et al. PD-1 modulates regulatory T-cell homeostasis during low-dose interleukin-2 therapy. Blood. 2017;129:2186–97. e-pub ahead of print 2017/02/06; https://doi.org/10.1182/blood-2016-09-741629.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Amarnath S, Mangus CW, Wang JCM, Wei F, He A, Kapoor V. et al. The PDL1-PD1 axis converts human Th1 cells into regulatory Tcells. Sci Transl Med. 2011;3:111ra120–111ra120. https://doi.org/10.1126/scitranslmed.3003130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Karnell FG, Lin D, Motley S, Duhen T, Lim N, Campbell DJ, et al. Reconstitution of immune cell populations in multiple sclerosis patients after autologous stem cell transplantation. Clin Exp Immunol. 2017;189:268–78. https://doi.org/10.1111/cei.12985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Arruda L, Lorenzi J, Sousa A, Zanette D, Palma P, Panepucci R, et al. Autologous hematopoietic SCT normalizes miR-16,-155 and-142-3p expression in multiple sclerosis patients. Bone marrow Transplant. 2015;50:380–9.

    Article  CAS  PubMed  Google Scholar 

  80. Basdeo SA, Moran B, Cluxton D, Canavan M, McCormick J, Connolly M, et al. Polyfunctional, pathogenic CD161+ Th17 lineage cells are resistant to regulatory T cell-mediated suppression in the context of autoimmunity. J Immunol. 2015;195:528–40. https://doi.org/10.4049/jimmunol.1402990.

    Article  CAS  PubMed  Google Scholar 

  81. Radstake TRDJ, van Bon L, Broen J, Hussiani A, Hesselstrand R, Wuttge DM, et al. The pronounced Th17 profile in systemic sclerosis (SSc) together with intracellular expression of TGFβ and IFNγ distinguishes SSc phenotypes. Plos ONE. 2009;4:e5903 https://doi.org/10.1371/journal.pone.0005903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Murata M, Fujimoto M, Matsushita T, Hamaguchi Y, Hasegawa M, Takehara K, et al. Clinical association of serum interleukin-17 levels in systemic sclerosis: Is systemic sclerosis a Th17 disease? J Dermatological Sci. 2008;50:240–2. https://doi.org/10.1016/j.jdermsci.2008.01.001.

    Article  CAS  Google Scholar 

  83. Kurasawa K, Hirose K, Sano H, Endo H, Shinkai H, Nawata Y, et al. Increased interleukin-17 production in patients with systemic sclerosis. Arthritis Rheumatism. 2000;43:2455–63. 10.1002/1529-0131(200011)43:11<2455::AID-ANR12>3.0.CO;2-K

    Article  CAS  PubMed  Google Scholar 

  84. Fenoglio D, Bernuzzi F, Battaglia F, Parodi A, Kalli F, Negrini S, et al. Th17 and regulatory T lymphocytes in primary biliary cirrhosis and systemic sclerosis as models of autoimmune fibrotic diseases. Autoimmun Rev. 2012;12:300–4. https://doi.org/10.1016/j.autrev.2012.05.004.

    Article  CAS  PubMed  Google Scholar 

  85. Bengsch B, Ohtani T, Khan O, Setty M, Manne S, O’Brien S, et al. Epigenomic-guided mass cytometry profiling reveals disease-specific features of exhausted CD8 T cells. Immunity. 2018;48:1029–45.e1025. https://doi.org/10.1016/j.immuni.2018.04.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ochoa-Reparaz J, Kasper LH. The influence of gut-derived CD39 regulatory T cells in CNS demyelinating disease. Transl Res. 2017;179:126–38. https://doi.org/10.1016/j.trsl.2016.07.016.

    Article  CAS  PubMed  Google Scholar 

  87. Wang C, Kang SG, Lee J, Sun Z, Kim CH. The roles of CCR6 in migration of Th17 cells and regulation of effector T-cell balance in the gut. Mucosal Immunol. 2009;2:173–83. https://doi.org/10.1038/mi.2008.84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Yamazaki T, Yang XO, Chung Y, Fukunaga A, Nurieva R, Pappu B, et al. CCR6 regulates the migration of inflammatory and regulatory T cells. J Immunol. 2008;181:8391–401. https://doi.org/10.4049/jimmunol.181.12.8391.

    Article  CAS  PubMed  Google Scholar 

  89. Koreth J, Matsuoka K-i, Kim HT, McDonough SM, Bindra B, Alyea EP, et al. Interleukin-2 and regulatory T cells in graft-versus-host disease. New Engl J Med. 2011;365:2055–66. https://doi.org/10.1056/NEJMoa1108188.

    Article  CAS  PubMed  Google Scholar 

  90. K-i Matsuoka, Koreth J, Kim HT, Bascug G, McDonough S, Kawano Y, et al. Low-dose interleukin-2 therapy restores regulatory T cell homeostasis in patients with chronic graft-versus-host disease. Sci Transl Med. 2013;5:179ra143–179ra143. https://doi.org/10.1126/scitranslmed.3005265.

    Article  CAS  Google Scholar 

  91. Theil A, Tuve S, Oelschlagel U, Maiwald A, Dohler D, Ossmann D, et al. Adoptive transfer of allogeneic regulatory T cells into patients with chronic graft-versus-host disease. Cytotherapy. 2015;17:473–86. https://doi.org/10.1016/j.jcyt.2014.11.005.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

KH is supported by a scholarship from the National Health and Medical Research Council. JM, DDFM and MV are supported by the St Vincent’s Foundation Clinic Grant, Reset Australia, SVH Haematology Research Fund, Maple-Brown Family Foundation, John Kirkpatrick Family Foundation, Medich Family Foundation and NSW Health Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. Moore.

Ethics declarations

Conflict of interest

DDFM receives a research grant from Phebra Pty Ltd outside of submitted work. The remaining authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hendrawan, K., Visweswaran, M., Ma, D.D.F. et al. Tolerance regeneration by T regulatory cells in autologous haematopoietic stem cell transplantation for autoimmune diseases. Bone Marrow Transplant 55, 857–866 (2020). https://doi.org/10.1038/s41409-019-0710-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41409-019-0710-2

This article is cited by

Search

Quick links