Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

T cell depletion and no post transplant immune suppression allow separation of graft versus leukemia from graft versus host disease

Abstract

Allogeneic hematopoietic cell transplantation from a human leukocyte antigen (HLA) haplotype mismatched donor (haploidentical transplantation) was not feasible for the treatment of hematologic malignancies until the early 1990s, due to the high risk of rejection and graft-versus-host disease (GVHD). The first successful protocol of haploidentical transplantation was based on a highly myeloablative and immunosuppressive conditioning regimen and the infusion of a “mega-dose” of T-cell-depleted hematopoietic stem cells. More than 90% of patients engrafted and <10% developed GVHD. The protocol did not include post-transplant immunosuppression, which favored the graft-versus-tumor effect mediated by alloreactive NK cells and residual alloreactive T cells. However, donor post-transplant immune reconstitution was slow with a high risk of infection-related mortality. More recently, T-cell-depleted haploidentical transplantation has become the platform for innovative cell therapies that aim to enhance T-cell immunity while preventing adverse reactions against host tissues. One strategy is adoptive immunotherapy with conventional T cells and regulatory T cells. Preclinical studies and clinical trials have proven that regulatory T cells control GVHD caused by co-infused conventional T cells while the graft-versus-tumor effect is retained. The use of regulatory T cells in the absence of any other form of immune suppression allowed for a conventional T cell-mediated full eradication of disease in the vast majority of high-risk acute leukemia patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Appelbaum FR, Forman SJ, Negrin RS, Blume KG. Thomas’ hematopoietic cell transplantation Oxford, United Kingdom: Wiley-Blackwell; 2009.

    Book  Google Scholar 

  2. Anasetti C, Aversa F, Velardi A. Hematopoietic cell transplantation from human leukocyte antigen partially matched related donors. In: Appelbaum FR, Forman SJ, Negrin RS, Blume KG, eds. Thomas’ hematopoietic cell transplantation. Oxford, United Kingdom: Wiley-Blackwell; 2009. p. 657–74.

    Chapter  Google Scholar 

  3. Reisner Y, Hagin D, Martelli MF. Haploidentical hematopoietic transplantation: current status and future perspectives. Blood. 2011;118:6006–17.

    Article  CAS  PubMed  Google Scholar 

  4. Velardi A. Haplo-BMT: which approach? [commentary]. Blood. 2013;121:719–20.

    Article  CAS  PubMed  Google Scholar 

  5. Mancusi A, Ruggeri L, Velardi A. Haploidentical hematopoietic transplantation for the cure of leukemia: from its biology to clinical translation. Blood. 2016;128:2616–23.

    Article  CAS  PubMed  Google Scholar 

  6. Bachar–Lustig E, Rachamin N, Li HW, et al. Megadose of T-cell depleted bone marrow overcomes MHC barriers in sublethally irradiated mice. Nat Med. 1995;1:1268–73.

    Article  PubMed  Google Scholar 

  7. Aversa F, Tabilio A, Terenzi A, et al. Successful engraftment of T-cell-depleted haploidentical” three-loci” incompatible transplants in leukemia patients by addition of recombinant human granulocyte colony-stimulating factor-mobilized peripheral blood progenitor cells to bone marrow inoculum. Blood. 1994;84:3948–55.

    Article  CAS  PubMed  Google Scholar 

  8. Aversa F, Tabilio A, Velardi A, et al. Treatment of high-risk acute leukemia with T-cell-depleted stem cells from related donors with one fully mismatched HLA haplotype. N Engl J Med. 1998;339:1186–93.

    Article  CAS  PubMed  Google Scholar 

  9. Aversa F, Terenzi A, Tabilio A, et al. Full haplotype-mismatched hematopoietic stem-cell transplantation: a phase II study in patients with acute leukemia at high risk of relapse. J Clin Oncol. 2005;23:3447–54.

    Article  PubMed  Google Scholar 

  10. Martelli MF, Di Ianni M, Ruggeri L, et al. “Designed” grafts for HLA-haploidentical stem cell transplantation. Blood. 2014;123:967–73.

    Article  CAS  PubMed  Google Scholar 

  11. Ciceri F, Labopin M, Aversa F, et al. A survey of fully haploidentical hematopoietic stem cell transplantation in adults with high-risk acute leukemia: a risk factor analysis of outcomes for patients in remission at transplantation. Blood. 2008;112:3574–81.

    Article  CAS  PubMed  Google Scholar 

  12. Vivier E, Raulet DH, Moretta A, et al. Innate or adaptive immunity? The example of natural killer cells. Science. 2011;331:44–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ruggeri L, Capanni M, Casucci M, et al. Role of natural killer cell alloreactivity in HLA-mismatched hematopoietic stem cell transplantation. Blood. 1999;94:333–9.

    Article  CAS  PubMed  Google Scholar 

  14. Ruggeri L, Capanni M, Urbani E, et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science. 2002;295:2097–2100.

    Article  CAS  PubMed  Google Scholar 

  15. Ruggeri L, Mancusi A, Capanni M, et al. Donor natural killer cell allorecognition of missing self in haploidentical hematopoietic transplantation for acute myeloid leukemia: challenging its predictive value. Blood. 2007;110:433–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shlomchik WD, Couzens MS, Tang CB, et al. Prevention of graft versus host disease by inactivation of host antigen-presenting cells. Science. 1999;285:412–5.

    Article  CAS  PubMed  Google Scholar 

  17. Leung W, Iyengar R, Turner V, et al. Determinants of antileukemia effects of allogeneic NK cells. J Immunol. 2004;172:644–50.

    Article  CAS  PubMed  Google Scholar 

  18. Pende D, Marcenaro S, Falco M, et al. Anti-leukemia activity of alloreactive NK cells in KIR ligand-mismatched haploidentical HSCT for pediatric patients: evaluation of the functional role of activating KIR and redefinition of inhibitory KIR specificity. Blood. 2009;113:3119–29.

    Article  CAS  PubMed  Google Scholar 

  19. Miller JS, Soignier Y, Panoskaltsis-Mortari A, et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood. 2005;105:3051–7.

    Article  CAS  PubMed  Google Scholar 

  20. Rubnitz JE, Inaba H, Ribeiro RC, et al. NKAML: a pilot study to determine the safety and feasibility of haploidentical natural killer cell transplantation in childhood acute myeloid leukemia. J Clin Oncol. 2010;28:955–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Curti A, Ruggeri L, D’Addio A, et al. Successful transfer of alloreactive haploidentical KIR ligand-mismatched natural killer cells after infusion in elderly high risk acute myeloid leukemia patients. Blood. 2011;118:3273–9.

    Article  CAS  PubMed  Google Scholar 

  22. Curti A, Ruggeri L, Parisi S, et al. Larger size of donor alloreactive NK cell repertoire correlates with better response to NK cell immunotherapy in elderly acute myeloid leukemia patients. Clin Cancer Res. 2016;22:1914–21.

    Article  CAS  PubMed  Google Scholar 

  23. Stern M, Ruggeri L, Mancusi A, et al. Survival after T cell-depleted haploidentical stem cell transplantation is improved using the mother as donor. Blood. 2008;112:2990–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Velardi A, Ziagkos D, van Biezen A, et al. Mother donors improve outcomes after HLA haploidentical T cell-depleted hematopoietic transplantation: a Retrospective Study by the Cell Therapy and Immunobiology Working Party of the EBMT. Bone Marrow Transplant. 2016;51(S1):S150. Abstract P076

    Google Scholar 

  25. Maloney S, Smith A, Furst DE, et al. Microchimerism of maternal origin persists into adult life. J Clin Invest. 1999;104:41–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. van Kampen CA. Versteeg-van der Voort Maarschalk MF, Langerak-Langerak J, van Beelen E, Roelen DL, Claas FH. Pregnancy can induce long-persisting primed CTLs specific for inherited paternal HLA antigens. Hum Immunol. 2001;62:201–7.

    Article  PubMed  Google Scholar 

  27. Verdijk RM, Kloosterman A, Pool J, et al. Pregnancy induces minor histocompatibility antigen-specific cytotoxic T cells: implications for stem cell transplantation and immunotherapy. Blood. 2004;103:1961–4.

    Article  CAS  PubMed  Google Scholar 

  28. Edinger M, Hoffmann P, Ermann J, et al. CD4 + CD25 + regulatory T cells preserve graft-versus-tumor activity while inhibiting graft-versus-host disease after bone marrow transplantation. Nat Med. 2003;9:1144–50.

    Article  CAS  PubMed  Google Scholar 

  29. Nguyen VH, Zeiser R, Dasilva DL, et al. In vivo dynamics of regulatory T-cell trafficking and survival predict effective strategies to control graft-versus-host disease following allogeneic transplantation. Blood. 2007;109:2649–56.

    Article  CAS  PubMed  Google Scholar 

  30. Nguyen VH, Shashidhar S, Chang DS, et al. The impact of regulatory T cells on T-cell immunity following hematopoietic cell transplantation. Blood. 2008;111:945–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pierini A, Colonna L, Alvarez M, et al. Donor requirements for regulatory T cell suppression of murine graft-versus-host disease. J Immunol. 2015;195:347–55.

    Article  CAS  PubMed  Google Scholar 

  32. Fujisaki J, Wu J, Carlson AL, et al. In vivo imaging of Treg cells providing immune privilege to the haematopoietic stem-cell niche. Nature. 2011;474:216–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pierini A, Nishikii H, Baker J, et al. Foxp3+ regulatory T cells maintain the bone marrow microenvironment for B cell lymphopoiesis. Nat Commun. 2017;8:15068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Di Ianni M, Falzetti F, Carotti A, et al. Tregs prevent GVHD and promote immune reconstitution in HLA-haploidentical transplantation. Blood. 2011;117:3921–8.

    Article  PubMed  CAS  Google Scholar 

  35. Martelli MF, Di Ianni M, Ruggeri L, et al. HLA-haploidentical transplantation with regulatory and conventional T cell adoptive immunotherapy prevents acute leukemia relapse. Blood. 2014;124:638–44.

    Article  CAS  PubMed  Google Scholar 

  36. Mancusi A, Ruggeri L, Velardi A. Haploidentical hematopoietic transplantation for the cure of leukemia: from its biology to clinical translation. Blood. 2016;128:2616–23.

    Article  CAS  PubMed  Google Scholar 

  37. Del Papa B, Ruggeri L, Urbani E, et al. linical-grade-expanded regulatory T cells prevent graft-versus-host disease while allowing a powerful T cell-dependent graft-versus-leukemia effect in murine models. Biol Blood Marrow Transplant. 2017;23:1847–51.

    Article  PubMed  CAS  Google Scholar 

  38. Hippen KL1, Merkel SC, Schirm DK, et al. Massive ex vivo expansion of human natural regulatory T cells (T(regs)) with minimal loss of in vivo functional activity. Sci Transl Med. 2011;3:83ra41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Brunstein CG, Miller JS, Cao Q, et al. Infusion of ex vivo expanded T regulatory cells in adults transplanted with umbilical cord blood: safety profile and detection kinetics. Blood. 2011;117:1061–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Brunstein CG, Miller JS, McKenna DH, et al. Umbilical cord blood-derived T regulatory cells to prevent GVHD: kinetics, toxicity profile, and clinical effect. Blood. 2016;127:1044–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Koreth J, Matsuoka K, Kim HT, et al. Interleukin-2 and regulatory T cells in graft-versus-host disease. N Engl J Med. 2011;365:2055–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Trotta E, Bessette PH, Silveria SL, et al. A human anti-IL-2 antibody that potentiates regulatory T cells by a structure-based mechanism. Nat Med. 2018;24:1005–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pierini A, Strober W, Moffett C, et al. TNF-α priming enhances CD4 + FoxP3 + regulatory T-cell suppressive function in murine GVHD prevention and treatment. Blood. 2016;128:866–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mancusi A, Piccinelli S, Velardi A, Pierini A. The effect of TNF-α on regulatory T cell function in graft-versus-host disease. Front Immunol. 2018;9:356.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. MacDonald KG, Hoeppli RE, Huang Q, et al. Alloantigen-specific regulatory T cells generated with a chimeric antigen receptor. J Clin Invest. 2016;126:1413–24.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Pierini A, Iliopoulou BP, Peiris H, et al. T cells expressing chimeric antigen receptor promote immune tolerance. JCI Insight. 2017;2:92865.

    Article  PubMed  Google Scholar 

Download references

Funding

Publication of this supplement was sponsored by Gilead Sciences Europe Ltd, Cell Source, Inc., The Chorafas Institute for Scientific Exchange of the Weizmann Institute of Science, Kiadis Pharma, Miltenyi Biotec, Celgene, Centro Servizi Congressuali, Almog Diagnostic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Pierini.

Ethics declarations

Conflict of interest

AP and AV received start-up grants from the Italian Association for Cancer Research (AIRC). The remaining authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pierini, A., Ruggeri, L., Mancusi, A. et al. T cell depletion and no post transplant immune suppression allow separation of graft versus leukemia from graft versus host disease . Bone Marrow Transplant 54 (Suppl 2), 775–779 (2019). https://doi.org/10.1038/s41409-019-0597-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41409-019-0597-y

This article is cited by

Search

Quick links