Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Epstein-Barr virus-related post-transplant lymphoproliferative disease (EBV-PTLD) in the setting of allogeneic stem cell transplantation: a comprehensive review from pathogenesis to forthcoming treatment modalities

Abstract

Epstein-Barr virus (EBV) is a ubiquitous herpes virus that infects the majority of the population worldwide. The virus can establish a lifelong latent infection in host B-lymphocytes. In the setting of immunocompromise as is the case post transplantation, the virus can reactivate and cause one of the deadliest complications post hematopoietic stem cell transplantation (HSCT), post-lymphoproliferative disease (PTLD), the incidence of which has been increasing. Multiple risk factors have been associated with the onset of PTLD such as age, reduced intensity conditioning, EBV serology mismatch and cytomegalovirus (CMV) reactivation. The rarity of clinical trials involving PTLD and the lack of approved treatment modalities renders the management of PTLD challenging. While the first-line treatment involves weekly administration of rituximab, there is no consensus when treating rituximab-refractory PTLD. There is a handful of clinical trials that investigate the role of EBV-specific cytotoxic T-lymphocytes (CTLs) and novel agents, such as bortezomib, lenalidomide, everolimus, panobinostat, and brentuximab. This article aims to explore the entity of EBV-PTLD in HSCT recipients, expanding on clinical presentation, risk factors, modes of monitoring and treatment, and so highlighting the gaps in knowledge that are needed in order to build a treatment paradigm suitable for all patients at risk.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

References

  1. Balfour HH Jr., Dunmire SK, Hogquist KA. Infectious mononucleosis. Clin Transl Immunology. 2015;4:e33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cohen JI. Epstein-Barr virus infection. N Engl J Med. 2000;343:481–92.

    Article  CAS  PubMed  Google Scholar 

  3. Comoli P, Basso S, Zecca M, Pagliara D, Baldanti F, Bernardo ME, et al. Preemptive therapy of EBV-related lymphoproliferative disease after pediatric haploidentical stem cell transplantation. Am J Transplant. 2007;7:1648–55.

    Article  CAS  PubMed  Google Scholar 

  4. Yates J, Warren N, Reisman D, Sugden B. A cis-acting element from the Epstein-Barr viral genome that permits stable replication of recombinant plasmids in latently infected cells. Proc Natl Acad Sci USA. 1984;81:3806–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shannon-Lowe C, Rickinson AB, Bell AI. Epstein-Barr virus-associated lymphomas. Philos Trans R Soc Lond B Biol Sci. 2017;372:1732.

    Article  CAS  Google Scholar 

  6. Kalinova L, Indrakova J, Bachleda P. Post-transplant lymphoproliferative disorder. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2009;153:251–7.

    Article  CAS  PubMed  Google Scholar 

  7. Ferreiro JF, Morscio J, Dierickx D, Vandenberghe P, Gheysens O, Verhoef G, et al. EBV-positive and EBV-negative posttransplant diffuse large B cell lymphomas have distinct genomic and transcriptomic features. Am J Transplant. 2016;16:414–25.

    Article  PubMed  Google Scholar 

  8. Quinn LL, Williams LR, White C, Forrest C, Zuo J, Rowe M. The missing link in epstein-barr virus immune evasion: the BDLF3 gene induces ubiquitination and downregulation of major histocompatibility complex class I (MHC-I) and MHC-II. J Virol. 2016;90:356–67.

    Article  CAS  PubMed  Google Scholar 

  9. Ressing ME, Keating SE, van Leeuwen D, Koppers-Lalic D, Pappworth IY, Wiertz EJ, et al. Impaired transporter associated with antigen processing-dependent peptide transport during productive EBV infection. J Immunol. 2005;174:6829–38.

    Article  CAS  PubMed  Google Scholar 

  10. Djaoud Z, Guethlein LA, Horowitz A, Azzi T, Nemat-Gorgani N, Olive D, et al. Two alternate strategies for innate immunity to Epstein-Barr virus: One using NK cells and the other NK cells and gammadelta T cells. J Exp Med. 2017;214:1827–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kanakry JA, Ambinder RF. EBV-related lymphomas: new approaches to treatment. Curr Treat Options Oncol. 2013;14:224–36.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Henderson S, Rowe M, Gregory C, Croom-Carter D, Wang F, Longnecker R, et al. Induction of bcl-2 expression by Epstein-Barr virus latent membrane protein 1 protects infected B cells from programmed cell death. Cell. 1991;65:1107–15.

    Article  CAS  PubMed  Google Scholar 

  13. Capello D, Rossi D, Gaidano G. Post-transplant lymphoproliferative disorders: molecular basis of disease histogenesis and pathogenesis. Hematol Oncol. 2005;23:61–7.

    Article  PubMed  Google Scholar 

  14. Krams SM, Martinez OM. Epstein-Barr virus, rapamycin, and host immune responses. Curr Opin Organ Transplant. 2008;13:563–8.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Vereide DT, Sugden B. Lymphomas differ in their dependence on Epstein-Barr virus. Blood. 2011;117:1977–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Burns DM, Tierney R, Shannon-Lowe C, Croudace J, Inman C, Abbotts B, et al. Memory B-cell reconstitution following allogeneic hematopoietic stem cell transplantation is an EBV-associated transformation event. Blood. 2015;126:2665–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Friedberg JW, Swinnen L. Post-transplant lymphoproliferative disease in the lymphomas. 2nd ed. Philadelphia, PA, USA: Elsevier; 2006.

  18. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H et al. WHO classification of tumors of haemotopoietic and lymphoid tissue. 4th ed. Lyon: IARC; 2008.

  19. Ruf S, Moser O, Wossmann W, Kreyenberg H, Wagner HJ. Examining the origin of posttransplant lymphoproliferative disorder in a patient after a second allogeneic hematopoeitic stem cell transplantation for relapsed BCR-ABL positive acute lymphoblastic leukemia. J Pedia Hematol Oncol. 2011;33:50–4.

    Article  Google Scholar 

  20. Landgren O, Gilbert ES, Rizzo JD, Socie G, Banks PM, Sobocinski KA, et al. Risk factors for lymphoproliferative disorders after allogeneic hematopoietic cell transplantation. Blood. 2009;113:4992–5001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Luskin MR, Heil DS, Tan KS, Choi S, Stadtmauer EA, Schuster SJ, et al. The impact of EBV status on characteristics and outcomes of posttransplantation lymphoproliferative disorder. Am J Transplant. 2015;15:2665–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Johansson JE, Remberger M, Lazarevic V, Hallbook H, Wahlin A, Kimby E, et al. Allogeneic haematopoietic stem-cell transplantation with reduced intensity conditioning for advanced stage Hodgkin’s lymphoma in Sweden: high incidence of post transplant lymphoproliferative disorder. Bone Marrow Transplant. 2011;46:870–5.

    Article  CAS  PubMed  Google Scholar 

  23. Hou HA, Yao M, Tang JL, Chen YK, Ko BS, Huang SY, et al. Poor outcome in post transplant lymphoproliferative disorder with pulmonary involvement after allogeneic hematopoietic SCT: 13 years’ experience in a single institute. Bone Marrow Transplant. 2009;43:315–21.

    Article  PubMed  Google Scholar 

  24. Buyck HC, Ball S, Junagade P, Marsh J, Chakrabarti S. Prior immunosuppressive therapy with antithymocyte globulin increases the risk of EBV-related lymphoproliferative disorder following allo-SCT for acquired aplastic anemia. Bone Marrow Transplant. 2009;43:813–6.

    Article  CAS  PubMed  Google Scholar 

  25. Ocheni S, Kroeger N, Zabelina T, Sobottka I, Ayuk F, Wolschke C, et al. EBV reactivation and post transplant lymphoproliferative disorders following allogeneic SCT. Bone Marrow Transplant. 2008;42:181–6.

    Article  CAS  PubMed  Google Scholar 

  26. Dierickx D, Habermann TM. Post-transplantation lymphoproliferative disorders in adults. N Engl J Med. 2018;378:549–62.

    Article  CAS  PubMed  Google Scholar 

  27. Gu B, Chen GH, Wu DP. [Recent advances on diagnosis and therapy of lymphoproliferative disorders after allo-HSCT]. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2014;22:538–42.

    CAS  PubMed  Google Scholar 

  28. Deeg HJ, Socie G. Malignancies after hematopoietic stem cell transplantation: many questions, some answers. Blood. 1998;91:1833–44.

    Article  CAS  PubMed  Google Scholar 

  29. Tamaru JI. 2016 revision of the WHO classification of lymphoid neoplasms. Rinsho Ketsueki. 2017;58:2188–93.

    PubMed  Google Scholar 

  30. Rasche L, Kapp M, Einsele H, Mielke S. EBV-induced post transplant lymphoproliferative disorders: a persisting challenge in allogeneic hematopoetic SCT. Bone Marrow Transplant. 2014;49:163–7.

    Article  CAS  PubMed  Google Scholar 

  31. Zimmermann H, Trappe RU. Therapeutic options in post-transplant lymphoproliferative disorders. Ther Adv Hematol. 2011;2:393–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Al-Mansour Z, Nelson BP, Evens AM. Post-transplant lymphoproliferative disease (PTLD): risk factors, diagnosis, and current treatment strategies. Curr Hematol Malig Rep. 2013;8:173–83.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Uhlin M, Wikell H, Sundin M, Blennow O, Maeurer M, Ringden O, et al. Risk factors for Epstein-Barr virus-related post-transplant lymphoproliferative disease after allogeneic hematopoietic stem cell transplantation. Haematologica. 2014;99:346–52.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Curtis RE, Travis LB, Rowlings PA, Socie G, Kingma DW, Banks PM, et al. Risk of lymphoproliferative disorders after bone marrow transplantation: a multi-institutional study. Blood. 1999;94:2208–16.

    CAS  PubMed  Google Scholar 

  35. Styczynski J, Reusser P, Einsele H, de la Camara R, Cordonnier C, Ward KN, et al. Management of HSV, VZV and EBV infections in patients with hematological malignancies and after SCT: guidelines from the Second European Conference on Infections in Leukemia. Bone Marrow Transplant. 2009;43:757–70.

    Article  CAS  PubMed  Google Scholar 

  36. Styczynski J, Gil L, Tridello G, Ljungman P, Donnelly JP, van der Velden W, et al. Response to rituximab-based therapy and risk factor analysis in Epstein Barr Virus-related lymphoproliferative disorder after hematopoietic stem cell transplant in children and adults: a study from the Infectious Diseases Working Party of the European Group for Blood and Marrow Transplantation. Clin Infect Dis. 2013;57:794–802.

    Article  CAS  PubMed  Google Scholar 

  37. DeStefano CB, Desai SH, Shenoy AG, Catlett JP Management of post-transplant lymphoproliferative disorders. Br J Haematol. 2018;182:330–343.

    Article  PubMed  Google Scholar 

  38. Garcia-Cadenas I, Yanez L, Jarque I, Martino R, Perez-Simon JA, Valcarcel D, et al. Frequency, characteristics and outcome of PTLD after allo-SCT: a multicenter study from the Spanish group of blood and marrow transplantation (GETH). Eur J Haematol. 2019;00:1–7.

  39. Evens AM, David KA, Helenowski I, Nelson B, Kaufman D, Kircher SM, et al. Multicenter analysis of 80 solid organ transplantation recipients with post-transplantation lymphoproliferative disease: outcomes and prognostic factors in the modern era. J Clin Oncol. 2010;28:1038–46.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Chakrabarti S, Milligan DW, Pillay D, Mackinnon S, Holder K, Kaur N, et al. Reconstitution of the Epstein-Barr virus-specific cytotoxic T-lymphocyte response following T-cell-depleted myeloablative and nonmyeloablative allogeneic stem cell transplantation. Blood. 2003;102:839–42.

    Article  CAS  PubMed  Google Scholar 

  41. Saito T, Kanda Y, Nakai K, Kim SW, Arima F, Kami M, et al. Immune reconstitution following reduced-intensity transplantation with cladribine, busulfan, and antithymocyte globulin: serial comparison with conventional myeloablative transplantation. Bone Marrow Transplant. 2003;32:601–8.

    Article  CAS  PubMed  Google Scholar 

  42. Reshef R, Luskin MR, Kamoun M, Vardhanabhuti S, Tomaszewski JE, Stadtmauer EA, et al. Association of HLA polymorphisms with post-transplant lymphoproliferative disorder in solid-organ transplant recipients. Am J Transplant. 2011;11:817–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pourfarziani V, Einollahi B, Taheri S, Nemati E, Nafar M, Kalantar E. Associations of Human Leukocyte Antigen (HLA) haplotypes with risk of developing lymphoproliferative disorders after renal transplantation. Ann Transplant. 2007;12:16–22.

    PubMed  Google Scholar 

  44. Subklewe M, Marquis R, Choquet S, Leblond V, Garnier JL, Hetzer R, et al. Association of human leukocyte antigen haplotypes with posttransplant lymphoproliferative disease after solid organ transplantation. Transplantation. 2006;82:1093–100.

    Article  CAS  PubMed  Google Scholar 

  45. Wheless SA, Gulley ML, Raab-Traub N, McNeillie P, Neuringer IP, Ford HJ, et al. Post-transplantation lymphoproliferative disease: Epstein-Barr virus DNA levels, HLA-A3, and survival. Am J Respir Crit Care Med. 2008;178:1060–5.

    Article  CAS  PubMed  Google Scholar 

  46. Lustberg ME, Pelletier RP, Porcu P, Martin SI, Quinion CD, Geyer SM, et al. Human leukocyte antigen type and posttransplant lymphoproliferative disorder. Transplantation. 2015;99:1220–5.

    Article  CAS  PubMed  Google Scholar 

  47. Jones K, Wockner L, Thornton A, Gottlieb D, Ritchie DS, Seymour JF, et al. HLA class I associations with EBV+post-transplant lymphoproliferative disorder. Transpl Immunol. 2015;32:126–30.

    Article  CAS  PubMed  Google Scholar 

  48. Walker RC, Marshall WF, Strickler JG, Wiesner RH, Velosa JA, Habermann TM, et al. Pretransplantation assessment of the risk of lymphoproliferative disorder. Clin Infect Dis. 1995;20:1346–53.

    Article  CAS  PubMed  Google Scholar 

  49. Sundin M, Le Blanc K, Ringden O, Barkholt L, Omazic B, Lergin C, et al. The role of HLA mismatch, splenectomy and recipient Epstein-Barr virus seronegativity as risk factors in post-transplant lymphoproliferative disorder following allogeneic hematopoietic stem cell transplantation. Haematologica. 2006;91:1059–67.

    PubMed  Google Scholar 

  50. Hoegh-Petersen M, Goodyear D, Geddes MN, Liu S, Ugarte-Torres A, Liu Y, et al. High incidence of post transplant lymphoproliferative disorder after antithymocyte globulin-based conditioning and ineffective prediction by day 28 EBV-specific T lymphocyte counts. Bone Marrow Transplant. 2011;46:1104–12.

    Article  CAS  PubMed  Google Scholar 

  51. Kelly SS, Parmar S, De Lima M, Robinson S, Shpall E. Overcoming the barriers to umbilical cord blood transplantation. Cytotherapy. 2010;12:121–30.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Barker JN, Krepski TP, DeFor TE, Davies SM, Wagner JE, Weisdorf DJ. Searching for unrelated donor hematopoietic stem cells: availability and speed of umbilical cord blood versus bone marrow. Biol Blood Marrow Transplant. 2002;8:257–60.

    Article  PubMed  Google Scholar 

  53. Grewal SS, Barker JN, Davies SM, Wagner JE. Unrelated donor hematopoietic cell transplantation: marrow or umbilical cord blood? Blood. 2003;101:4233–44.

    Article  CAS  PubMed  Google Scholar 

  54. Barker JN, Martin PL, Coad JE, DeFor T, Trigg ME, Kurtzberg J, et al. Low incidence of Epstein-Barr virus-associated posttransplantation lymphoproliferative disorders in 272 unrelated-donor umbilical cord blood transplant recipients. Biol Blood Marrow Transplant. 2001;7:395–9.

    Article  CAS  PubMed  Google Scholar 

  55. Brunstein CG, Weisdorf DJ, DeFor T, Barker JN, Tolar J, van Burik JA, et al. Marked increased risk of Epstein-Barr virus-related complications with the addition of antithymocyte globulin to a nonmyeloablative conditioning prior to unrelated umbilical cord blood transplantation. Blood. 2006;108:2874–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Peric Z, Cahu X, Chevallier P, Brissot E, Malard F, Guillaume T, et al. Features of EBV reactivation after reduced intensity conditioning unrelated umbilical cord blood transplantation. Bone Marrow Transplant. 2012;47:251–7.

    Article  CAS  PubMed  Google Scholar 

  57. Vantourout P, Hayday A. Six-of-the-best: unique contributions of gammadelta T cells to immunology. Nat Rev Immunol. 2013;13:88–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Knight A, Madrigal AJ, Grace S, Sivakumaran J, Kottaridis P, Mackinnon S, et al. The role of Vdelta2-negative gammadelta T cells during cytomegalovirus reactivation in recipients of allogeneic stem cell transplantation. Blood. 2010;116:2164–72.

    Article  CAS  PubMed  Google Scholar 

  59. Liu J, Bian Z, Wang X, Xu LP, Fu Q, Wang C, et al. Inverse correlation of Vdelta2(+) T-cell recovery with EBV reactivation after haematopoietic stem cell transplantation. Br J Haematol. 2018;180:276–85.

    Article  CAS  PubMed  Google Scholar 

  60. Laberko A, Bogoyavlenskaya A, Shelikhova L, Shekhovtsova Z, Balashov D, Voronin K, et al. Risk factors for and the clinical impact of cytomegalovirus and Epstein-Barr virus infections in pediatric recipients of TCR-alpha/beta- and CD19-depleted grafts. Biol Blood Marrow Transplant. 2017;23:483–90.

    Article  PubMed  Google Scholar 

  61. Lang PJ, Schlegel PG, Roland M, Schulz AS, Greil J, Bader P, et al. Safety and efficacy of Tcralpha/beta and CD19 depleted haploidentical stem cell transplantation following reduced intensity conditioning in children: Results of a prospective multicenter phase I/II clinical trial. Blood. 2017;130(Suppl 1):214

    Google Scholar 

  62. Rooney CM, Loftin SK, Holladay MS, Brenner MK, Krance RA, Heslop HE. Early identification of Epstein-Barr virus-associated post-transplantation lymphoproliferative disease. Br J Haematol. 1995;89:98–103.

    Article  CAS  PubMed  Google Scholar 

  63. van Esser JW, van der Holt B, Meijer E, Niesters HG, Trenschel R, Thijsen SF, et al. Epstein-Barr virus (EBV) reactivation is a frequent event after allogeneic stem cell transplantation (SCT) and quantitatively predicts EBV-lymphoproliferative disease following T-cell-depleted SCT. Blood. 2001;98:972–8.

    Article  PubMed  Google Scholar 

  64. Mensen A, Na IK, Hafer R, Meerbach A, Schlecht M, Pietschmann ML, et al. Comparison of different rabbit ATG preparation effects on early lymphocyte subset recovery after allogeneic HSCT and its association with EBV-mediated PTLD. J Cancer Res Clin Oncol. 2014;140:1971–80.

    Article  CAS  PubMed  Google Scholar 

  65. Scheinberg P, Nunez O, Weinstein B, Scheinberg P, Biancotto A, Wu CO, et al. Horse versus rabbit antithymocyte globulin in acquired aplastic anemia. N Engl J Med. 2011;365:430–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Burns DM, Rana S, Martin E, Nagra S, Ward J, Osman H, et al. Greatly reduced risk of EBV reactivation in rituximab-experienced recipients of alemtuzumab-conditioned allogeneic HSCT. Bone Marrow Transplant. 2016;51:825–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sica S, Metafuni E, Bellesi S, Chiusolo P. Epstein-barr virus related lymphoproliferations after stem cell transplantation. Mediterr J Hematol Infect Dis. 2009;1:e2009019.

    PubMed  PubMed Central  Google Scholar 

  68. Scheinberg P, Fischer SH, Li L, Nunez O, Wu CO, Sloand EM, et al. Distinct EBV and CMV reactivation patterns following antibody-based immunosuppressive regimens in patients with severe aplastic anemia. Blood. 2007;109:3219–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nijland ML, Kersten MJ, Pals ST, Bemelman FJ, Ten Berge IJ. Epstein-Barr virus-positive posttransplant lymphoproliferative disease after solid organ transplantation: pathogenesis, clinical manifestations, diagnosis, and management. Transpl Direct. 2016;2:e48.

    Article  CAS  Google Scholar 

  70. Kanakry JA, Kasamon YL, Bolanos-Meade J, Borrello IM, Brodsky RA, Fuchs EJ, et al. Absence of post-transplantation lymphoproliferative disorder after allogeneic blood or marrow transplantation using post-transplantation cyclophosphamide as graft-versus-host disease prophylaxis. Biol Blood Marrow Transplant. 2013;19:1514–7.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Ciurea SO, Mulanovich V, Saliba RM, Bayraktar UD, Jiang Y, Bassett R, et al. Improved early outcomes using a T cell replete graft compared with T cell depleted haploidentical hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2012;18:1835–44.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Raiola AM, Dominietto A, Ghiso A, Di Grazia C, Lamparelli T, Gualandi F, et al. Unmanipulated haploidentical bone marrow transplantation and posttransplantation cyclophosphamide for hematologic malignancies after myeloablative conditioning. Biol Blood Marrow Transplant. 2013;19:117–22.

    Article  CAS  PubMed  Google Scholar 

  73. Solomon SR, Sizemore CA, Sanacore M, Zhang X, Brown S, Holland HK, et al. Haploidentical transplantation using T cell replete peripheral blood stem cells and myeloablative conditioning in patients with high-risk hematologic malignancies who lack conventional donors is well tolerated and produces excellent relapse-free survival: results of a prospective phase II trial. Biol Blood Marrow Transplant. 2012;18:1859–66.

    Article  PubMed  Google Scholar 

  74. Bilmon IA, Kwan J, Gottlieb D, Kerridge I, McGurgan M, Huang G, et al. Haploidentical bone marrow transplants for haematological malignancies using non-myeloablative conditioning therapy and post-transplant immunosuppression with cyclophosphamide: results from a single Australian centre. Intern Med J. 2013;43:191–6.

    Article  CAS  PubMed  Google Scholar 

  75. Bashey A, Zhang X, Sizemore CA, Manion K, Brown S, Holland HK, et al. T-cell-replete HLA-haploidentical hematopoietic transplantation for hematologic malignancies using post-transplantation cyclophosphamide results in outcomes equivalent to those of contemporaneous HLA-matched related and unrelated donor transplantation. J Clin Oncol. 2013;31:1310–6.

    Article  CAS  PubMed  Google Scholar 

  76. Retiere C, Willem C, Guillaume T, Vie H, Gautreau-Rolland L, Scotet E, et al. Impact on early outcomes and immune reconstitution of high-dose post-transplant cyclophosphamide vs anti-thymocyte globulin after reduced intensity conditioning peripheral blood stem cell allogeneic transplantation. Oncotarget. 2018;9:11451–64.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Zhang Q, Zou BH, Lou X, Liu H, Zhang B, Chen H. [An analysis of risk factors and prognosis of Epstein-Barr virus infection after allogeneic hematopoietic stem cell transplantation]. Zhonghua Nei Ke Za Zhi. 2016;55:619–23.

    CAS  PubMed  Google Scholar 

  78. Zallio F, Primon V, Tamiazzo S, Pini M, Baraldi A, Corsetti MT, et al. Epstein-Barr virus reactivation in allogeneic stem cell transplantation is highly related to cytomegalovirus reactivation. Clin Transplant. 2013;27:E491–7.

    Article  PubMed  Google Scholar 

  79. Bao X, Zhu Q, Qiu H, Chen F, Xue S, Ma X, et al. [Clinical risks analysis of EBV infection in patients with allogeneic hematopoietic stem cell transplantation]. Zhonghua Xue Ye Xue Za Zhi. 2016;37:138–43.

    PubMed  Google Scholar 

  80. Abedi MR, Linde A, Christensson B, Mackett M, Hammarstrom L, Smith CI. Preventive effect of IgG from EBV-seropositive donors on the development of human lympho-proliferative disease in SCID mice. Int J Cancer. 1997;71:624–9.

    Article  CAS  PubMed  Google Scholar 

  81. Gary-Gouy H, Harriague J, Bismuth G, Platzer C, Schmitt C, Dalloul AH. Human CD5 promotes B-cell survival through stimulation of autocrine IL-10 production. Blood . 2002;100:4537–43.

    Article  CAS  PubMed  Google Scholar 

  82. Tomblyn M, Chiller T, Einsele H, Gress R, Sepkowitz K, Storek J, et al. Guidelines for preventing infectious complications among hematopoietic cell transplantation recipients: a global perspective. Biol Blood Marrow Transplant. 2009;15:1143–238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Styczynski J, van der Velden W, Fox CP, Engelhard D, de la Camara R, Cordonnier C, et al. Management of Epstein-Barr Virus infections and post-transplant lymphoproliferative disorders in patients after allogeneic hematopoietic stem cell transplantation: Sixth European Conference on Infections in Leukemia (ECIL-6) guidelines. Haematologica. 2016;101:803–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Jones K, Nourse JP, Keane C, Crooks P, Gottlieb D, Ritchie DS, et al. Tumor-specific but not nonspecific cell-free circulating DNA can be used to monitor disease response in lymphoma. Am J Hematol. 2012;87:258–65.

    Article  CAS  PubMed  Google Scholar 

  85. Wang ZY, Liu QF, Wang H, Jin J, Wang WH, Wang SL, et al. Clinical implications of plasma Epstein-Barr virus DNA in early-stage extranodal nasal-type NK/T-cell lymphoma patients receiving primary radiotherapy. Blood. 2012;120:2003–10.

    Article  CAS  PubMed  Google Scholar 

  86. Gandhi MK, Lambley E, Burrows J, Dua U, Elliott S, Shaw PJ, et al. Plasma Epstein-Barr virus (EBV) DNA is a biomarker for EBV-positive Hodgkin’s lymphoma. Clin Cancer Res. 2006;12:460–4.

    Article  CAS  PubMed  Google Scholar 

  87. Hohaus S, Santangelo R, Giachelia M, Vannata B, Massini G, Cuccaro A, et al. The viral load of Epstein-Barr virus (EBV) DNA in peripheral blood predicts for biological and clinical characteristics in Hodgkin lymphoma. Clin Cancer Res. 2011;17:2885–92.

    Article  CAS  PubMed  Google Scholar 

  88. Hakim H, Gibson C, Pan J, Srivastava K, Gu Z, Bankowski MJ, et al. Comparison of various blood compartments and reporting units for the detection and quantification of Epstein-Barr virus in peripheral blood. J Clin Microbiol. 2007;45:2151–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ruf S, Behnke-Hall K, Gruhn B, Bauer J, Horn M, Beck J, et al. Comparison of six different specimen types for Epstein-Barr viral load quantification in peripheral blood of pediatric patients after heart transplantation or after allogeneic hematopoietic stem cell transplantation. J Clin Virol. 2012;53:186–94.

    Article  CAS  PubMed  Google Scholar 

  90. Ito Y, Kimura H, Maeda Y, Hashimoto C, Ishida F, Izutsu K, et al. Pretreatment EBV-DNA copy number is predictive of response and toxicities to SMILE chemotherapy for extranodal NK/T-cell lymphoma, nasal type. Clin Cancer Res. 2012;18:4183–90.

    Article  CAS  PubMed  Google Scholar 

  91. Kanakry JA, Li H, Gellert LL, Lemas MV, Hsieh WS, Hong F, et al. Plasma Epstein-Barr virus DNA predicts outcome in advanced Hodgkin lymphoma: correlative analysis from a large North American cooperative group trial. Blood. 2013;121:3547–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Elstrom RL, Andreadis C, Aqui NA, Ahya VN, Bloom RD, Brozena SC, et al. Treatment of PTLD with rituximab or chemotherapy. Am J Transplant. 2006;6:569–76.

    Article  CAS  PubMed  Google Scholar 

  93. Ghobrial IM, Habermann TM, Maurer MJ, Geyer SM, Ristow KM, Larson TS, et al. Prognostic analysis for survival in adult solid organ transplant recipients with post-transplantation lymphoproliferative disorders. J Clin Oncol. 2005;23:7574–82.

    Article  PubMed  Google Scholar 

  94. Ghobrial IM, Habermann TM, Ristow KM, Ansell SM, Macon W, Geyer SM, et al. Prognostic factors in patients with post-transplant lymphoproliferative disorders (PTLD) in the rituximab era. Leuk Lymphoma. 2005;46:191–6.

    Article  CAS  PubMed  Google Scholar 

  95. Swinnen LJ, Mullen GM, Carr TJ, Costanzo MR, Fisher RI. Aggressive treatment for postcardiac transplant lymphoproliferation. Blood. 1995;86:3333–40.

    Article  CAS  PubMed  Google Scholar 

  96. Knight JS, Tsodikov A, Cibrik DM, Ross CW, Kaminski MS, Blayney DW. Lymphoma after solid organ transplantation: risk, response to therapy, and survival at a transplantation center. J Clin Oncol. 2009;27:3354–62.

    Article  PubMed  Google Scholar 

  97. Jagadeesh D, Woda BA, Draper J, Evens AM. Post transplant lymphoproliferative disorders: risk, classification, and therapeutic recommendations. Curr Treat Options Oncol. 2012;13:122–36.

    Article  PubMed  Google Scholar 

  98. Oton AB, Wang H, Leleu X, Melhem MF, George D, Lacasce A, et al. Clinical and pathological prognostic markers for survival in adult patients with post-transplant lymphoproliferative disorders in solid transplant. Leuk Lymphoma. 2008;49:1738–44.

    Article  CAS  PubMed  Google Scholar 

  99. Caillard S, Dharnidharka V, Agodoa L, Bohen E, Abbott K. Posttransplant lymphoproliferative disorders after renal transplantation in the United States in era of modern immunosuppression. Transplantation. 2005;80:1233–43.

    Article  CAS  PubMed  Google Scholar 

  100. Maecker B, Jack T, Zimmermann M, Abdul-Khaliq H, Burdelski M, Fuchs A, et al. CNS or bone marrow involvement as risk factors for poor survival in post-transplantation lymphoproliferative disorders in children after solid organ transplantation. J Clin Oncol. 2007;25:4902–8.

    Article  PubMed  Google Scholar 

  101. Franke AJ, Bishnoi R, Bajwa R, Skelton WP, Patel N, Slayton WB, et al. Association of allograft rejection with reduction of immunosuppression for post-transplant lymphoproliferative disorder: Analysis of a 20-year single-institutional experience. J Clin Oncol. 2017;35(15suppl):19047. Abstract

    Article  Google Scholar 

  102. Swinnen LJ, LeBlanc M, Grogan TM, Gordon LI, Stiff PJ, Miller AM, et al. Prospective study of sequential reduction in immunosuppression, interferon alpha-2B, and chemotherapy for posttransplantation lymphoproliferative disorder. Transplantation. 2008;86:215–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Nelson BP, Wolniak KL, Evens A, Chenn A, Maddalozzo J, Proytcheva M. Early posttransplant lymphoproliferative disease: clinicopathologic features and correlation with mTOR signaling pathway activation. Am J Clin Pathol. 2012;138:568–78.

    Article  PubMed  Google Scholar 

  104. El-Salem M, Raghunath PN, Marzec M, Wlodarski P, Tsai D, Hsi E, et al. Constitutive activation of mTOR signaling pathway in post-transplant lymphoproliferative disorders. Lab Invest. 2007;87:29–39.

    Article  CAS  PubMed  Google Scholar 

  105. Garcia VD, Bonamigo Filho JL, Neumann J, Fogliatto L, Geiger AM, Garcia CD, et al. Rituximab in association with rapamycin for post-transplant lymphoproliferative disease treatment. Transpl Int. 2003;16:202–6.

    Article  CAS  PubMed  Google Scholar 

  106. Gibelli NE, Tannuri U, Pinho-Apezzato ML, Tannuri AC, Maksoud-Filho JG, Andrade WC, et al. Sirolimus in pediatric liver transplantation: a single-center experience. Transpl Proc. 2009;41:901–3.

    Article  CAS  Google Scholar 

  107. Styczynski J, Einsele H, Gil L, Ljungman P. Outcome of treatment of Epstein-Barr virus-related post-transplant lymphoproliferative disorder in hematopoietic stem cell recipients: a comprehensive review of reported cases. Transpl Infect Dis. 2009;11:383–92.

    Article  CAS  PubMed  Google Scholar 

  108. Xu LP, Zhang CL, Mo XD, Zhang XH, Chen H, Han W, et al. Epstein-Barr virus-related post-transplantation lymphoproliferative disorder after unmanipulated human leukocyte antigen haploidentical hematopoietic stem cell transplantation: Incidence, risk factors, treatment, and clinical outcomes. Biol Blood Marrow Transplant. 2015;21:2185–91.

    Article  PubMed  Google Scholar 

  109. Gonzalez-Barca E, Domingo-Domenech E, Capote FJ, Gomez-Codina J, Salar A, Bailen A, et al. Prospective phase II trial of extended treatment with rituximab in patients with B-cell post-transplant lymphoproliferative disease. Haematologica. 2007;92:1489–94.

    Article  CAS  PubMed  Google Scholar 

  110. Trappe RU, Dierickx D, Zimmermann H, Morschhauser F, Mollee P, Zaucha JM, et al. Response to rituximab induction is a predictive marker in B-cell post-transplant lymphoproliferative disorder and allows successful stratification into rituximab or R-CHOP consolidation in an international, prospective, multicenter phase II trial. J Clin Oncol. 2017;35:536–43.

    Article  CAS  PubMed  Google Scholar 

  111. Oertel SH, Verschuuren E, Reinke P, Zeidler K, Papp-Vary M, Babel N, et al. Effect of anti-CD 20 antibody rituximab in patients with post-transplant lymphoproliferative disorder (PTLD). Am J Transplant. 2005;5:2901–6.

    Article  CAS  PubMed  Google Scholar 

  112. Blaes AH, Peterson BA, Bartlett N, Dunn DL, Morrison VA. Rituximab therapy is effective for posttransplant lymphoproliferative disorders after solid organ transplantation: results of a phase II trial. Cancer. 2005;104:1661–7.

    Article  CAS  PubMed  Google Scholar 

  113. Choquet S, Leblond V, Herbrecht R, Socie G, Stoppa AM, Vandenberghe P, et al. Efficacy and safety of rituximab in B-cell post-transplantation lymphoproliferative disorders: results of a prospective multicenter phase 2 study. Blood. 2006;107:3053–7.

    Article  CAS  PubMed  Google Scholar 

  114. Choquet S, Oertel S, LeBlond V, Riess H, Varoqueaux N, Dorken B, et al. Rituximab in the management of post-transplantation lymphoproliferative disorder after solid organ transplantation: proceed with caution. Ann Hematol. 2007;86:599–607.

    Article  CAS  PubMed  Google Scholar 

  115. Trappe R, Oertel S, Leblond V, Mollee P, Sender M, Reinke P, et al. Sequential treatment with rituximab followed by CHOP chemotherapy in adult B-cell post-transplant lymphoproliferative disorder (PTLD): the prospective international multicentre phase 2 PTLD-1 trial. Lancet Oncol. 2012;13:196–206.

    Article  CAS  PubMed  Google Scholar 

  116. van Esser JW, Niesters HG, van der Holt B, Meijer E, Osterhaus AD, Gratama JW, et al. Prevention of Epstein-Barr virus-lymphoproliferative disease by molecular monitoring and preemptive rituximab in high-risk patients after allogeneic stem cell transplantation. Blood . 2002;99:4364–9.

    Article  PubMed  Google Scholar 

  117. Delapierre B, Reman O, Dina J, Breuil C, Bellal M, Johnson-Ansah H, et al. Low dose rituximab for pre-emptive treatment of Epstein Barr virus reactivation after allogenic hematopoietic stem cell transplantation. Curr Res Transl Med. 2019. https://doi.org/10.1016/j.retram.2019.03.001.

    Article  CAS  PubMed  Google Scholar 

  118. Van Besien K, Bachier-Rodriguez L, Satlin M, Brown MA, Gergis U, Guarneri D, et al. Prophylactic rituximab prevents EBV PTLD in haplo-cord transplant recipients at high risk. Leuk Lymphoma. 2019. https://doi.org/10.1080/10428194.2018.1543877.

    Article  CAS  Google Scholar 

  119. Hiraga J, Tomita A, Sugimoto T, Shimada K, Ito M, Nakamura S, et al. Down-regulation of CD20 expression in B-cell lymphoma cells after treatment with rituximab-containing combination chemotherapies: its prevalence and clinical significance. Blood. 2009;113:4885–93.

    Article  CAS  PubMed  Google Scholar 

  120. Tsai PC, Hernandez-Ilizaliturri FJ, Bangia N, Olejniczak SH, Czuczman MS. Regulation of CD20 in rituximab-resistant cell lines and B-cell non-Hodgkin lymphoma. Clin Cancer Res. 2012;18:1039–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. McIver Z, Stephens N, Grim A, Barrett AJ. Rituximab administration within 6 months of T cell-depleted allogeneic SCT is associated with prolonged life-threatening cytopenias. Biol Blood Marrow Transplant. 2010;16:1549–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Petropoulou AD, Porcher R, Peffault de Latour R, Xhaard A, Weisdorf D, Ribaud P, et al. Increased infection rate after preemptive rituximab treatment for Epstein-Barr virus reactivation after allogeneic hematopoietic stem-cell transplantation. Transplantation. 2012;94:879–83.

    Article  CAS  PubMed  Google Scholar 

  123. Teeling JL, Mackus WJ, Wiegman LJ, van den Brakel JH, Beers SA, French RR, et al. The biological activity of human CD20 monoclonal antibodies is linked to unique epitopes on CD20. J Immunol. 2006;177:362–71.

    Article  CAS  PubMed  Google Scholar 

  124. Herter S, Herting F, Mundigl O, Waldhauer I, Weinzierl T, Fauti T, et al. Preclinical activity of the type II CD20 antibody GA101 (obinutuzumab) compared with rituximab and ofatumumab in vitro and in xenograft models. Mol Cancer Ther. 2013;12:2031–42.

    Article  CAS  PubMed  Google Scholar 

  125. Vitolo U, Trneny M, Belada D, Burke JM, Carella AM, Chua N, et al. Obinutuzumab or rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone in previously untreated diffuse large B-cell lymphoma. J Clin Oncol. 2017;35:3529–37.

    Article  CAS  PubMed  Google Scholar 

  126. Marcus R, Davies A, Ando K, Klapper W, Opat S, Owen C, et al. Obinutuzumab for the first-line treatment of follicular lymphoma. N Engl J Med. 2017;377:1331–44.

    Article  CAS  PubMed  Google Scholar 

  127. Sehn LH, Chua N, Mayer J, Dueck G, Trneny M, Bouabdallah K, et al. Obinutuzumab plus bendamustine versus bendamustine monotherapy in patients with rituximab-refractory indolent non-Hodgkin lymphoma (GADOLIN): a randomised, controlled, open-label, multicentre, phase 3 trial. Lancet Oncol. 2016;17:1081–93.

    Article  CAS  PubMed  Google Scholar 

  128. Sehn LH, Goy A, Offner FC, Martinelli G, Caballero MD, Gadeberg O, et al. Randomized phase II trial comparing obinutuzumab (GA101) with rituximab in patients with relapsed CD20+indolent B-cell non-Hodgkin lymphoma: Final analysis of the GAUSS study. J Clin Oncol. 2015;33:3467–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Tang T, Lim C, Tao M, Quek R, Farid M, Kim WS, et al . A multi-center, non-randomized phase 2 study of ofatumumab in combination with ICE-chemotherapy (O-ICE) in patients with relapsed/refractory diffuse large B-cell lymphoma (DLBCL) [abstract]. Blood. 2014;124:5645.

    Article  Google Scholar 

  130. van Imhoff GW, McMillan A, Matasar MJ, Radford J, Ardeshna KM, Kuliczkowski K, et al. Ofatumumab versus rituximab salvage chemoimmunotherapy in relapsed or refractory diffuse large B-cell lymphoma: The ORCHARRD Study. J Clin Oncol. 2017;35:544–51.

    Article  PubMed  Google Scholar 

  131. Heslop HE, Slobod KS, Pule MA, Hale GA, Rousseau A, Smith CA, et al. Long-term outcome of EBV-specific T-cell infusions to prevent or treat EBV-related lymphoproliferative disease in transplant recipients. Blood. 2010;115:925–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Rooney CM, Smith CA, Ng CY, Loftin S, Li C, Krance RA, et al. Use of gene-modified virus-specific T lymphocytes to control Epstein-Barr-virus-related lymphoproliferation. Lancet. 1995;345:9–13.

    Article  CAS  PubMed  Google Scholar 

  133. Vickers MA, Wilkie GM, Robinson N, Rivera N, Haque T, Crawford DH, et al. Establishment and operation of a Good Manufacturing Practice-compliant allogeneic Epstein-Barr virus (EBV)-specific cytotoxic cell bank for the treatment of EBV-associated lymphoproliferative disease. Br J Haematol. 2014;167:402–10.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Prockop SE, Doubrovina E, Baroudy K, Boulad F, Khalaf R, Papadopoulose EB, et al. Epstein-Barr virus (EBV)-specific cytotoxic T lymphocytes (EBV-CTLs) for treatment of rituximab-refractory EBV-associated lymphoproliferative disorder (EBV-LPD). Presented at: 2015 AACR Annual Meeting; April 18–22, Philadelphia, PA: 2015. Abstract 8841.

  135. Doubrovina E, Oflaz-Sozmen B, Prockop SE, Kernan NA, Abramson S, Teruya-Feldstein J, et al. Adoptive immunotherapy with unselected or EBV-specific T cells for biopsy-proven EBV+lymphomas after allogeneic hematopoietic cell transplantation. Blood. 2012;119:2644–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Quintarelli C, Savoldo B, Dotti G. Gene therapy to improve function of T cells for adoptive immunotherapy. Methods Mol Biol. 2010;651:119–30.

    Article  CAS  PubMed  Google Scholar 

  137. Marin V, Cribioli E, Philip B, Tettamanti S, Pizzitola I, Biondi A, et al. Comparison of different suicide-gene strategies for the safety improvement of genetically manipulated T cells. Hum Gene Ther Methods. 2012;23:376–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Kochenderfer JN, Dudley ME, Kassim SH, Somerville RP, Carpenter RO, Stetler-Stevenson M, et al. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J Clin Oncol. 2015;33:540–9.

    Article  CAS  PubMed  Google Scholar 

  139. Fox CP, Burns D, Parker AN, Peggs KS, Harvey CM, Natarajan S, et al. EBV-associated post-transplant lymphoproliferative disorder following in vivo T-cell-depleted allogeneic transplantation: clinical features, viral load correlates and prognostic factors in the rituximab era. Bone Marrow Transplant. 2014;49:280–6.

    Article  CAS  PubMed  Google Scholar 

  140. Dotti G, Fiocchi R, Motta T, Mammana C, Gotti E, Riva S, et al. Lymphomas occurring late after solid-organ transplantation: influence of treatment on the clinical outcome. Transplantation. 2002;74:1095–102.

    Article  PubMed  Google Scholar 

  141. Gershburg E, Marschall M, Hong K, Pagano JS. Expression and localization of the Epstein-Barr virus-encoded protein kinase. J Virol. 2004;78:12140–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. AlDabbagh MA, Gitman MR, Kumar D, Humar A, Rotstein C, Husain S. The role of antiviral prophylaxis for the prevention of Epstein-Barr virus-associated posttransplant lymphoproliferative disease in solid organ transplant recipients: A systematic review. Am J Transplant. 2017;17:770–81.

    Article  CAS  PubMed  Google Scholar 

  143. Portell C, Nand S. Single agent lenalidomide induces a response in refractory T-cell posttransplantation lymphoproliferative disorder. Blood. 2008;111:4416–7.

    Article  CAS  PubMed  Google Scholar 

  144. Laubli H, Tzankov A, Juskevicius D, Degen L, Rochlitz C, Stenner-Liewen F. Lenalidomide monotherapy leads to a complete remission in refractory B-cell post-transplant lymphoproliferative disorder. Leuk Lymphoma. 2016;57:945–8.

    Article  PubMed  Google Scholar 

  145. Haque T, Chaggar T, Schafers J, Atkinson C, McAulay KA, Crawford DH. Soluble CD30: a serum marker for Epstein-Barr virus-associated lymphoproliferative diseases. J Med Virol. 2011;83:311–6.

    Article  PubMed  Google Scholar 

  146. Gandhi M, Ma S, Smith SM, Nabhan C, Evens AM, Winter JN et al. Brentuximab vedotin (BV) plus rituximab (R) as frontline therapy for patients (Pts) with Epstein Barr Virus (EBV)+and/or CD30+lymphoma: phase I results of an ongoing phase I-II study. Blood. 2014;124:3096.

    Article  Google Scholar 

  147. Massachusetts General Hospital, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Beth Israel Deaconess Medical Center, Millennium Pharmaceuticals, Inc. Bortezomib plus rituximab for EBV+PTLD. https://ClinicalTrials.gov/show/NCT01058239; 2011.

  148. Noy A, de Vos S, Thieblemont C, Martin P, Flowers CR, Morschhauser F, et al. Targeting Bruton tyrosine kinase with ibrutinib in relapsed/refractory marginal zone lymphoma. Blood. 2017;129:2224–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Advani RH, Buggy JJ, Sharman JP, Smith SM, Boyd TE, Grant B, et al. Bruton tyrosine kinase inhibitor ibrutinib (PCI-32765) has significant activity in patients with relapsed/refractory B-cell malignancies. J Clin Oncol. 2013;31:88–94.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamad Mohty.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al Hamed, R., Bazarbachi, A. & Mohty, M. Epstein-Barr virus-related post-transplant lymphoproliferative disease (EBV-PTLD) in the setting of allogeneic stem cell transplantation: a comprehensive review from pathogenesis to forthcoming treatment modalities. Bone Marrow Transplant 55, 25–39 (2020). https://doi.org/10.1038/s41409-019-0548-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41409-019-0548-7

This article is cited by

Search

Quick links