T-cell frequencies of CD8+ γδ and CD27+ γδ cells in the stem cell graft predict the outcome after allogeneic hematopoietic cell transplantation

Article metrics


The impact of intra-graft T cells on the clinical outcome after allogeneic hematopoietic cell transplantation has been investigated. Most previous studies have focused on the role of αβ cells while γδ cells have received less attention. It has been an open question whether γδ cells are beneficial or not for patient outcome, especially with regards to graft versus host disease. In this study, graft composition of γδ cell subsets was analyzed and correlated to clinical outcome in 105 recipients who underwent allogeneic hematopoietic cell transplantation between 2013 and 2016. We demonstrate for the first time that grafts containing higher T-cell proportions of CD8+γδ cells were associated with increased cumulative incidence of acute graft versus host disease grade II–III (50% vs 22.6%; P = 0.008). Additionally, graft T-cell frequency of CD27+γδ cells was inversely correlated with relapse (P = 0.006) and CMV reactivation (P = 0.05). We conclude that clinical outcome after allogeneic hematopoietic cell transplantation is influenced by the proportions of distinct γδ cell subsets in the stem cell graft. We also provide evidence that CD8+γδ cells are potentially alloreactive and may play a role in acute graft versus host disease. This study illustrates the importance of better understanding of the role of distinct subsets of γδ cells in allogeneic hematopoietic cell transplantation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Salvatore D, Labopin M, Ruggeri A, Battipaglia G, Ghavamzadeh A, Ciceri F, et al. Outcomes of hematopoietic stem cell transplantation from unmanipulated haploidentical versus matched sibling donor in patients with acute myeloid leukemia in first complete remission with intermediate or high-risk cytogenetics: a study from the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation. Haematologica. 2018;103:1317–28. https://doi.org/10.3324/haematol.2018.189258.

  2. 2.

    Kang E, Gennery A. Hematopoietic stem cell transplantation for primary immunodeficiencies. Hematol Oncol Clin North Am. 2014;28:1157–70. https://doi.org/10.1016/j.hoc.2014.08.006.

  3. 3.

    Danby RD, Zhang W, Medd P, Littlewood TJ, Peniket A, Rocha V, et al. High proportions of regulatory T cells in PBSC grafts predict improved survival after allogeneic haematopoietic SCT. Bone Marrow Transplant. 2016;51:110–8. https://doi.org/10.1038/bmt.2015.215.

  4. 4.

    Stikvoort A, Gaballa A, Solders M, Nederlof I, Onfelt B, Sundberg B, et al. Risk factors for severe acute graft-versus-host disease in donor graft composition. Biol Blood Marrow Transplant: J Am Soc Blood Marrow Transplant. 2017. https://doi.org/10.1016/j.bbmt.2017.11.026

  5. 5.

    Geerman S, Brasser G, Bhushal S, Salerno F, Kragten NA, Hoogenboezem M, et al. Memory CD8(+) T cells support the maintenance of hematopoietic stem cells in the bone marrow. Haematologica. 2018;103:e230–e233. https://doi.org/10.3324/haematol.2017.169516.

  6. 6.

    Lawand M, Dechanet-Merville J, Dieu-Nosjean MC. Key features of gamma-delta T-cell subsets in human diseases and their immunotherapeutic implications. Front Immunol. 2017;8:761 https://doi.org/10.3389/fimmu.2017.00761.

  7. 7.

    O’Brien RL, Born WK. Gammadelta T cell subsets: a link between TCR and function? Semin Immunol. 2010;22:193–8. https://doi.org/10.1016/j.smim.2010.03.006.

  8. 8.

    Airoldi I, Bertaina A, Prigione I, Zorzoli A, Pagliara D, Cocco C, et al. Gammadelta T-cell reconstitution after HLA-haploidentical hematopoietic transplantation depleted of TCR-alphabeta+/CD19+lymphocytes. Blood. 2015;125:2349–58. https://doi.org/10.1182/blood-2014-09-599423.

  9. 9.

    Lamb LS Jr., Henslee-Downey PJ, Parrish RS, Godder K, Thompson J, Lee C, et al. Increased frequency of TCR gamma delta + T cells in disease-free survivors following T cell-depleted, partially mismatched, related donor bone marrow transplantation for leukemia. J Hematother. 1996;5:503–9. https://doi.org/10.1089/scd.1.1996.5.503.

  10. 10.

    Perko R, Kang G, Sunkara A, Leung W, Thomas PG, Dallas MH. Gamma delta T cell reconstitution is associated with fewer infections and improved event-free survival after hematopoietic stem cell transplantation for pediatric leukemia. Biol Blood Marrow Transplant: J Am Soc Blood Marrow Transplant. 2015;21:130–6. https://doi.org/10.1016/j.bbmt.2014.09.027.

  11. 11.

    Park M, Im HJ, Lee YJ, Park N, Jang S, Kwon SW, et al. Reconstitution of T and NK cells after haploidentical hematopoietic cell transplantation using alphabeta T cell-depleted grafts and the clinical implication of gammadelta T cells. Clin Transplant. 2018; 32. https://doi.org/10.1111/ctr.13147

  12. 12.

    Ellison CA, MacDonald GC, Rector ES, Gartner JG. Gamma delta T cells in the pathobiology of murine acute graft-versus-host disease. Evidence that gamma delta T cells mediate natural killer-like cytotoxicity in the host and that elimination of these cells from donors significantly reduces mortality. J Immunol. 1995;155:4189–98.

  13. 13.

    Lamb LS Jr., Musk P, Ye Z, van Rhee F, Geier SS, Tong JJ, et al. Human gammadelta( + ) T lymphocytes have in vitro graft vs leukemia activity in the absence of an allogeneic response. Bone Marrow Transplant. 2001;27:601–6. https://doi.org/10.1038/sj.bmt.1702830.

  14. 14.

    Lamb LS Jr., Lopez RD. Gammadelta T cells: a new frontier for immunotherapy? Biol Blood Marrow Transplant: J Am Soc Blood Marrow Transplant. 2005;11:161–8. https://doi.org/10.1016/j.bbmt.2004.11.015.

  15. 15.

    Blazar BR, Taylor PA, Panoskaltsis-Mortari A, Barrett TA, Bluestone JA, Vallera DA. Lethal murine graft-versus-host disease induced by donor gamma/delta expressing T cells with specificity for host nonclassical major histocompatibility complex class Ib antigens. Blood. 1996;87:827–37.

  16. 16.

    Huang Y, Cramer DE, Ray MB, Chilton PM, Que X, Ildstad ST. The role of alphabeta- and gammadelta-T cells in allogenic donor marrow on engraftment, chimerism, and graft-versus-host disease. Transplantation. 2001;72:1907–14.

  17. 17.

    Maeda Y, Reddy P, Lowler KP, Liu C, Bishop DK, Ferrara JL. Critical role of host gammadelta T cells in experimental acute graft-versus-host disease. Blood. 2005;106:749–55. https://doi.org/10.1182/blood-2004-10-4087.

  18. 18.

    Locatelli F, Bauquet A, Palumbo G, Moretta F, Bertaina A. Negative depletion of alpha/beta + T cells and of CD19 + B lymphocytes: a novel frontier to optimize the effect of innate immunity in HLA-mismatched hematopoietic stem cell transplantation. Immunol Lett. 2013;155:21–23. https://doi.org/10.1016/j.imlet.2013.09.027.

  19. 19.

    Radestad E, Wikell H, Engstrom M, Watz E, Sundberg B, Thunberg S, et al. Alpha/beta T-cell depleted grafts as an immunological booster to treat graft failure after hematopoietic stem cell transplantation with HLA-matched related and unrelated donors. J Immunol Res. 2014;2014:578741 https://doi.org/10.1155/2014/578741.

  20. 20.

    Pabst C, Schirutschke H, Ehninger G, Bornhauser M, Platzbecker U. The graft content of donor T cells expressing gamma delta TCR + and CD4 + foxp3 + predicts the risk of acute graft versus host disease after transplantation of allogeneic peripheral blood stem cells from unrelated donors. Clin Cancer Res. 2007;13:2916–22. https://doi.org/10.1158/1078-0432.CCR-06-2602

  21. 21.

    Kabelitz D, Kalyan S, Oberg HH, Wesch D. Human Vdelta2 versus non-Vdelta2 gammadelta T cells in antitumor immunity. Oncoimmunology. 2013;2:e23304 https://doi.org/10.4161/onci.23304.

  22. 22.

    Xiang Z, Tu W. Dual face of Vgamma9Vdelta2-T cells in tumor immunology: anti-versus pro-tumoral activities. Front Immunol. 2017;8:1041 https://doi.org/10.3389/fimmu.2017.01041.

  23. 23.

    Remberger M, Torlen J, Ringden O, Engstrom M, Watz E, Uhlin M, et al. Effect of total nucleated and CD34( + ) cell dose on outcome after allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant: J Am Soc Blood Marrow Transplant. 2015;21:889–93. https://doi.org/10.1016/j.bbmt.2015.01.025.

  24. 24.

    Stikvoort A, Chen Y, Radestad E, Torlen J, Lakshmikanth T, Bjorklund A, et al. Combining flow and mass cytometry in the search for biomarkers in chronic graft-versus-host disease. Front Immunol. 2017;8:717 https://doi.org/10.3389/fimmu.2017.00717.

  25. 25.

    Berglund S, Gaballa A, Sawaisorn P, Sundberg B, Uhlin M. Expansion of gammadelta T cells from cord blood: a therapeutical possibility. Stem Cells Int. 2018. https://doi.org/10.1155/2018/8529104

  26. 26.

    van Dongen JJ, Langerak AW, Bruggemann M, Evans PA, Hummel M, Lavender FL, et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4CT98-3936. Leukemia. 2003;17:2257–317. https://doi.org/10.1038/sj.leu.2403202.

  27. 27.

    Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 2013;48:452–8. https://doi.org/10.1038/bmt.2012.244.

  28. 28.

    Torlen J, Ringden O, Garming-Legert K, Ljungman P, Winiarski J, Remes K, et al. A prospective randomized trial comparing cyclosporine/methotrexate and tacrolimus/sirolimus as graft-versus-host disease prophylaxis after allogeneic hematopoietic stem cell transplantation. Haematologica. 2016;101:1417–25. https://doi.org/10.3324/haematol.2016.149294.

  29. 29.

    Sairafi D, Stikvoort A, Gertow J, Mattsson J.Uhlin M, Donor cell composition and reactivity predict risk of acute graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. J Immunol Res. 2016;2016: https://doi.org/10.1155/2016/5601204.

  30. 30.

    Fisher SA, Lamikanra A, Doree C, Gration B, Tsang P, Danby RD, et al. Increased regulatory T cell graft content is associated with improved outcome in haematopoietic stem cell transplantation: a systematic review. Br J Haematol. 2017;176:448–63. https://doi.org/10.1111/bjh.14433.

  31. 31.

    Wikell H, Ponandai-Srinivasan S, Mattsson J, Gertow J, Uhlin M. Cord blood graft composition impacts the clinical outcome of allogeneic stem cell transplantation. Transplant Infect Dis. 2014;16:203–12. https://doi.org/10.1111/tid.12182.

  32. 32.

    Drobyski WR, Majewski D, Hanson G. Graft-facilitating doses of ex vivo activated gammadelta T cells do not cause lethal murine graft-vs.-host disease. Biol Blood Marrow Transplant: J Am Soc Blood Marrow Transplant. 1999;5:222–30. https://doi.org/10.1053/bbmt.1999.v5.pm10465102.

  33. 33.

    Hu Y, Cui Q, Luo C, Luo Y, Shi J, Huang H. A promising sword of tomorrow: human gammadelta T cell strategies reconcile allo-HSCT complications. Blood Rev. 2016;30:179–88. https://doi.org/10.1016/j.blre.2015.11.002.

  34. 34.

    Kawanishi Y, Passweg J, Drobyski WR, Rowlings P, Cook-Craig A, Casper J, et al. Effect of T cell subset dose on outcome of T cell-depleted bone marrow transplantation. Bone Marrow Transplant. 1997;19:1069–77. https://doi.org/10.1038/sj.bmt.1700807.

  35. 35.

    Handgretinger R, Schilbach K. The potential role of gammadelta T cells after allogeneic HCT for leukemia. Blood. 2018;131:1063–72. https://doi.org/10.1182/blood-2017-08-752162.

  36. 36.

    Uehara S, Grinberg A, Farber JM, Love PE. A role for CCR9 in T lymphocyte development and migration. J Immunol. 2002;168:2811–9.

  37. 37.

    Deusch K, Luling F, Reich K, Classen M, Wagner H, Pfeffer K. A major fraction of human intraepithelial lymphocytes simultaneously expresses the gamma/delta T cell receptor, the CD8 accessory molecule and preferentially uses the V delta 1 gene segment. Eur J Immunol. 1991;21:1053–9. https://doi.org/10.1002/eji.1830210429.

  38. 38.

    Kadivar M, Petersson J, Svensson L, Marsal J. CD8alphabeta + gammadelta T cells: a novel T cell subset with a potential role in inflammatory bowel disease. J Immunol. 2016;197:4584–92. https://doi.org/10.4049/jimmunol.1601146.

  39. 39.

    Peng SL, Madaio MP, Hayday AC, Craft J. Propagation and regulation of systemic autoimmunity by gammadelta T cells. J Immunol. 1996;157:5689–98.

  40. 40.

    Girardi M, Lewis J, Glusac E, Filler RB, Geng L, Hayday AC, et al. Resident skin-specific gammadelta T cells provide local, nonredundant regulation of cutaneous inflammation. J Exp Med. 2002;195:855–67.

  41. 41.

    Socie G, Ritz J. Current issues in chronic graft-versus-host disease. Blood. 2014;124:374–84. https://doi.org/10.1182/blood-2014-01-514752.

  42. 42.

    Scheper W, van Dorp S, Kersting S, Pietersma F, Lindemans C, Hol S, et al. gammadeltaT cells elicited by CMV reactivation after allo-SCT cross-recognize CMV and leukemia. Leukemia. 2013;27:1328–38. https://doi.org/10.1038/leu.2012.374.

  43. 43.

    Knight A, Madrigal AJ, Grace S, Sivakumaran J, Kottaridis P, Mackinnon S, et al. The role of Vdelta2-negative gammadelta T cells during cytomegalovirus reactivation in recipients of allogeneic stem cell transplantation. Blood. 2010;116:2164–72. https://doi.org/10.1182/blood-2010-01-255166.

  44. 44.

    Ravens S, Schultze-Florey C, Raha S, Sandrock I, Drenker M, Oberdorfer L, et al. Human gammadelta T cells are quickly reconstituted after stem-cell transplantation and show adaptive clonal expansion in response to viral infection. Nat Immunol. 2017;18:393–401. https://doi.org/10.1038/ni.3686.

  45. 45.

    Vantourout P, Hayday A. Six-of-the-best: unique contributions of gammadelta T cells to immunology. Nat Rev Immunol. 2013;13:88–100. https://doi.org/10.1038/nri3384.

  46. 46.

    Ciofani M, Zuniga-Pflucker JC. Determining gammadelta versus alphass T cell development. Nat Rev Immunol. 2010;10:657–63. https://doi.org/10.1038/nri2820.

  47. 47.

    Ribot JC, deBarros A, Pang DJ, Neves JF, Peperzak V, Roberts SJ, et al. CD27 is a thymic determinant of the balance between interferon-gamma- and interleukin 17-producing gammadelta T cell subsets. Nat Immunol. 2009;10:427–36. https://doi.org/10.1038/ni.1717.

  48. 48.

    Patil RS, Shah SU, Shrikhande SV, Goel M, Dikshit RP, Chiplunkar SV. IL17 producing gammadeltaT cells induce angiogenesis and are associated with poor survival in gallbladder cancer patients. Int J Cancer. 2016;139:869–81. https://doi.org/10.1002/ijc.30134.

  49. 49.

    Coffelt SB, Kersten K, Doornebal CW, Weiden J, Vrijland K, Hau CS, et al. IL-17-producing gammadelta T cells and neutrophils conspire to promote breast cancer metastasis. Nature. 2015;522:345–8. https://doi.org/10.1038/nature14282.

  50. 50.

    Gratwohl A, Hermans J, Goldman JM, Arcese W, Carreras E, Devergie A, et al. Risk assessment for patients with chronic myeloid leukaemia before allogeneic blood or marrow transplantation. Chronic Leukemia Working Party of the European Group for Blood and Marrow Transplantation. Lancet. 1998;352:1087–92.

Download references


This study was supported by Stockholm county Council, Swedish research Council, Children Cancer Foundation, and Radiumhemmets Forskningsfonder.

Author contributions

MU supervised the study. AG and AS performed laboratory work and data analysis. EW, MS, and JM provided graft samples and clinical data. BÖ and MU interpreted the data. AG and MU wrote the manuscript. All coauthors critically revised the manuscript.

Author information

Correspondence to Ahmed Gaballa or Michael Uhlin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gaballa, A., Stikvoort, A., Önfelt, B. et al. T-cell frequencies of CD8+ γδ and CD27+ γδ cells in the stem cell graft predict the outcome after allogeneic hematopoietic cell transplantation. Bone Marrow Transplant 54, 1562–1574 (2019) doi:10.1038/s41409-019-0462-z

Download citation

Further reading