Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Methods and role of minimal residual disease after stem cell transplantation

Abstract

Relapse is the major cause of treatment failure after stem cell transplantation. Despite the fact that relapses occurred even if transplantation was performed in complete remission, it is obvious that minimal residual disease is present though not morphologically evident. Since adaptive immunotherapy by donor lymphocyte infusion or other novel cell therapies as well as less toxic drugs, which can be used after transplantation, the detection of minimal residual disease (MRD) has become a clinical important variable for outcome. Besides the increasing options to treat MRD, the most advanced technologies currently allow to detect residual malignant cells with a sensitivity of 10−5 to 10−6.

Under the patronage of the European Society for Blood and Marrow Transplantation (EBMT) and the American Society for Blood and Marrow Transplantation (ASBMT) the 3rd workshop was held on 4/5 November 2016 in Hamburg/Germany, with the aim to present an up-to-date status of epidemiology and biology of relapse and to summarize the currently available options to prevent and treat post-transplant relapse. Here the current methods and role of minimal residual disease for myeloid and lymphoid malignancies are summarized.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bisel HF. Criteria for the evaluation of response to treatment in acute leukemia. Blood. 1956;11:676–7.

    Google Scholar 

  2. Hourigan CS, Gale RP, Gormley NJ, Ossenkoppele GJ, Walter RB. Measurable residual disease testing in acute myeloid leukaemia. Leukemia. 2017;31:1482–90. https://doi.org/10.1038/leu.2017.113

    Article  CAS  PubMed  Google Scholar 

  3. Cruz NM, Sugita M, Ewing-Crystal N, Lam L, Galetto R, Gouble A et al. Selection and characterization of antibody clones are critical for accurate flow cytometry-based monitoring of CD123 in acute myeloid leukemia. Leuk Lymphoma. 2017: 1–5. https://doi.org/10.1080/10428194.2017.1361023

    Article  Google Scholar 

  4. Schuurhuis GJ, Heuser M, Freeman S, Bene MC, Buccisano F, Cloos J, et al. Minimal/measurable residual disease in AML: a consensus document from the European LeukemiaNet MRD Working Party. Blood. 2018;131:1275–91. https://doi.org/10.1182/blood-2017-09-801498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Buccisano F, Maurillo L, Del Principe MI, Del Poeta G, Sconocchia G, Lo-Coco F, et al. Prognostic and therapeutic implications of minimal residual disease detection in acute myeloid leukemia. Blood. 2012;119:332–41. https://doi.org/10.1182/blood-2011-08-363291

    Article  CAS  PubMed  Google Scholar 

  6. Yin JA, O’Brien MA, Hills RK, Daly SB, Wheatley K, Burnett AK. Minimal residual disease monitoring by quantitative RT-PCR in core binding factor AML allows risk stratification and predicts relapse: results of the United Kingdom MRC AML-15 trial. Blood. 2012;120:2826–35. https://doi.org/10.1182/blood-2012-06-435669

    Article  CAS  PubMed  Google Scholar 

  7. Ivey A, Hills RK, Simpson MA, Jovanovic JV, Gilkes A, Grech A, et al. Assessment of minimal residual disease in standard-risk AML. N Engl J Med. 2016;374:422–33. https://doi.org/10.1056/NEJMoa1507471

    Article  CAS  PubMed  Google Scholar 

  8. Kronke J, Schlenk RF, Jensen KO, Tschurtz F, Corbacioglu A, Gaidzik VI, et al. Monitoring of minimal residual disease in NPM1-mutated acute myeloid leukemia: a study from the German–Austrian acute myeloid leukemia study group. J Clin Oncol. 2011;29:2709–16. https://doi.org/10.1200/JCO.2011.35.0371

    Article  PubMed  Google Scholar 

  9. Shayegi N, Kramer M, Bornhauser M, Schaich M, Schetelig J, Platzbecker U, et al. The level of residual disease based on mutant NPM1 is an independent prognostic factor for relapse and survival in AML. Blood. 2013;122:83–92. https://doi.org/10.1182/blood-2012-10-461749

    Article  CAS  PubMed  Google Scholar 

  10. Chen X, Xie H, Wood BL, Walter RB, Pagel JM, Becker PS, et al. Relation of clinical response and minimal residual disease and their prognostic impact on outcome in acute myeloid leukemia. J Clin Oncol. 2015;33:1258–64. https://doi.org/10.1200/JCO.2014.58.3518

    Article  PubMed  Google Scholar 

  11. Walter RB, Gooley TA, Wood BL, Milano F, Fang M, Sorror ML, et al. Impact of pretransplantation minimal residual disease, as detected by multiparametric flow cytometry, on outcome of myeloablative hematopoietic cell transplantation for acute myeloid leukemia. J Clin Oncol. 2011;29:1190–7. https://doi.org/10.1200/JCO.2010.31.8121

    Article  PubMed  PubMed Central  Google Scholar 

  12. Shah MV, Jorgensen JL, Saliba RM, Wang SA, Alousi AM, Andersson BS et al. Early post-transplant minimal residual disease assessment improves risk stratification in acute myeloid leukemia. Biol Blood Marrow Transplant. 2018. https://doi.org/10.1016/j.bbmt.2018.02.003

    Article  PubMed  Google Scholar 

  13. Oran B, Jorgensen JL, Marin D, Wang S, Ahmed S, Alousi AM, et al. Pre-transplantation minimal residual disease with cytogenetic and molecular diagnostic features improves risk stratification in acute myeloid leukemia. Haematologica. 2017;102:110–7. https://doi.org/10.3324/haematol.2016.144253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Balsat M, Renneville A, Thomas X, de Botton S, Caillot D, Marceau A, et al. Postinduction minimal residual disease predicts outcome and benefit from allogeneic stem cell transplantation in acute myeloid leukemia with NPM1 mutation: a study by the acute leukemia french association group. J Clin Oncol. 2017;35:185–93. https://doi.org/10.1200/JCO.2016.67.1875

    Article  CAS  PubMed  Google Scholar 

  15. Kayser S, Benner A, Thiede C, Martens U, Huber J, Stadtherr P, et al. Pretransplant NPM1 MRD levels predict outcome after allogeneic hematopoietic stem cell transplantation in patients with acute myeloid leukemia. Blood Cancer J. 2016;6:e449 https://doi.org/10.1038/bcj.2016.46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bacher U, Badbaran A, Fehse B, Zabelina T, Zander AR, Kroger N. Quantitative monitoring of NPM1 mutations provides a valid minimal residual disease parameter following allogeneic stem cell transplantation. Exp Hematol. 2009;37:135–42. https://doi.org/10.1016/j.exphem.2008.09.014

    Article  CAS  PubMed  Google Scholar 

  17. Abdelhamid E, Preudhomme C, Helevaut N, Nibourel O, Gardin C, Rousselot P, et al. Minimal residual disease monitoring based on FLT3 internal tandem duplication in adult acute myeloid leukemia. Leuk Res. 2012;36:316–23. https://doi.org/10.1016/j.leukres.2011.11.002

    Article  CAS  PubMed  Google Scholar 

  18. Grunwald MR, Tseng LH, Lin MT, Pratz KW, Eshleman JR, Levis MJ, et al. Improved FLT3 internal tandem duplication PCR assay predicts outcome after allogeneic transplant for acute myeloid leukemia. Biol Blood Marrow Transplant. 2014;20:1989–95. https://doi.org/10.1016/j.bbmt.2014.08.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Alonso-Dominguez JM, Tenorio M, Velasco D, Abalo L, Lozano S, Villarrubia J, et al. Correlation of WT1 expression with the burden of total and residual leukemic blasts in bone marrow samples of acute myeloid leukemia patients. Cancer Genet. 2012;205:190–1. https://doi.org/10.1016/j.cancergen.2012.02.008

    Article  CAS  PubMed  Google Scholar 

  20. Rautenberg C, Pechtel S, Hildebrandt B, Betz B, Dienst A, Nachtkamp K et al. Wilms’ tumor 1 (WT1) expression using a standardized european leukemia net-certified assay compared to other methods for detection of minimal residual disease in MDS and AML patients after allogeneic blood stem cell transplantation. Biol Blood Marrow Transplant 2018. https://doi.org/10.1016/j.bbmt.2018.05.011

    Article  CAS  PubMed  Google Scholar 

  21. Zhu HH, Zhang XH, Qin YZ, Liu DH, Jiang H, Chen H, et al. MRD-directed risk stratification treatment may improve outcomes of t(8;21) AML in the first complete remission: results from the AML05 multicenter trial. Blood. 2013;121:4056–62. https://doi.org/10.1182/blood-2012-11-468348

    Article  CAS  PubMed  Google Scholar 

  22. Wang Y, Wu DP, Liu QF, Qin YZ, Wang JB, Xu LP, et al. In adults with t(8;21)AML, posttransplant RUNX1/RUNX1T1-based MRD monitoring, rather than c-KIT mutations, allows further risk stratification. Blood. 2014;124:1880–6. https://doi.org/10.1182/blood-2014-03-563403

    Article  CAS  PubMed  Google Scholar 

  23. Hindson CM, Chevillet JR, Briggs HA, Gallichotte EN, Ruf IK, Hindson BJ, et al. Absolute quantification by droplet digital PCR versus analog real-time PCR. Nat Methods. 2013;10:1003–5. https://doi.org/10.1038/nmeth.2633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vidriales MB, San-Miguel JF, Orfao A, Coustan-Smith E, Campana D. Minimal residual disease monitoring by flow cytometry. Best Pract Res Clin Haematol. 2003;16:599–612.

    Article  PubMed  Google Scholar 

  25. Jaso JM, Wang SA, Jorgensen JL, Lin P. Multi-color flow cytometric immunophenotyping for detection of minimal residual disease in AML: past, present and future. Bone Marrow Transplant. 2014;4:1129–38. https://doi.org/10.1038/bmt.2014.99

    Article  CAS  Google Scholar 

  26. Buccisano F, Maurillo L, Gattei V, Del Poeta G, Del Principe MI, Cox MC, et al. The kinetics of reduction of minimal residual disease impacts on duration of response and survival of patients with acute myeloid leukemia. Leukemia. 2006;20:1783–9. https://doi.org/10.1038/sj.leu.2404313

    Article  CAS  PubMed  Google Scholar 

  27. San Miguel JF, Vidriales MB, Lopez-Berges C, Diaz-Mediavilla J, Gutierrez N, Canizo C, et al. Early immunophenotypical evaluation of minimal residual disease in acute myeloid leukemia identifies different patient risk groups and may contribute to postinduction treatment stratification. Blood. 2001;98:1746–51.

    Article  CAS  PubMed  Google Scholar 

  28. Pettersson L, Leveen P, Axler O, Dvorakova D, Juliusson G, Ehinger M. Improved minimal residual disease detection by targeted quantitative polymerase chain reaction in Nucleophosmin 1 type a mutated acute myeloid leukemia. Genes Chromosomes Cancer. 2016;55:750–66. https://doi.org/10.1002/gcc.22375

    Article  CAS  PubMed  Google Scholar 

  29. Oelschlagel U, Nowak R, Schaub A, Koppel C, Herbst R, Mohr B, et al. Shift of aberrant antigen expression at relapse or at treatment failure in acute leukemia. Cytometry. 2000;42:247–53.

    Article  CAS  PubMed  Google Scholar 

  30. Thol F, Kolking B, Damm F, Reinhardt K, Klusmann JH, Reinhardt D, et al. Next-generation sequencing for minimal residual disease monitoring in acute myeloid leukemia patients with FLT3-ITD or NPM1 mutations. Genes Chromosomes Cancer. 2012;51:689–95. https://doi.org/10.1002/gcc.21955

    Article  CAS  PubMed  Google Scholar 

  31. Kohlmann A, Nadarajah N, Alpermann T, Grossmann V, Schindela S, Dicker F, et al. Monitoring of residual disease by next-generation deep-sequencing of RUNX1 mutations can identify acute myeloid leukemia patients with resistant disease. Leukemia. 2014;28:129–37. https://doi.org/10.1038/leu.2013.239

    Article  CAS  PubMed  Google Scholar 

  32. Grimwade D, Freeman SD. Defining minimal residual disease in acute myeloid leukemia: which platforms are ready for “prime time”. Blood. 2014;124:3345–55. https://doi.org/10.1182/blood-2014-05-577593

    Article  CAS  PubMed  Google Scholar 

  33. Cabanski CR, Wilkerson MD, Soloway M, Parker JS, Liu J, Prins JF, et al. BlackOPs: increasing confidence in variant detection through mappability filtering. Nucleic Acids Res. 2013;41:e178 https://doi.org/10.1093/nar/gkt692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ustun C, Courville EL, DeFor T, Dolan M, Randall N, Yohe S, et al. Myeloablative, but not reduced-intensity, conditioning overcomes the negative effect of flow-cytometric evidence of leukemia in acute myeloid leukemia. Biol Blood Marrow Transplant. 2016;22:669–75. https://doi.org/10.1016/j.bbmt.2015.10.024

    Article  PubMed  Google Scholar 

  35. Platzbecker U, Wermke M, Radke J, Oelschlaegel U, Seltmann F, Kiani A, et al. Azacitidine for treatment of imminent relapse in MDS or AML patients after allogeneic HSCT: results of the RELAZA trial. Leukemia. 2012;26:381–9. https://doi.org/10.1038/leu.2011.234

    Article  CAS  PubMed  Google Scholar 

  36. Kumar SK, Dispenzieri A, Lacy MQ, Gertz MA, Buadi FK, Pandey S, et al. Continued improvement in survival in multiple myeloma: changes in early mortality and outcomes in older patients. Leukemia. 2014;28:1122–8. https://doi.org/10.1038/leu.2013.313

    Article  CAS  PubMed  Google Scholar 

  37. Paiva B, Puig N, Garcia-Sanz R, San Miguel JF. Grupo Espanol de Mieloma /Programa para el Estudio de la Terapeutica en Hemopatias Malignas cooperative study g. Is this the time to introduce minimal residual disease in multiple myeloma clinical practice? Clin Cancer Res. 2015;21:2001–8. https://doi.org/10.1158/1078-0432.CCR-14-2841

    Article  CAS  PubMed  Google Scholar 

  38. Rawstron AC, Child JA, de Tute RM, Davies FE, Gregory WM, Bell SE, et al. Minimal residual disease assessed by multiparameter flow cytometry in multiple myeloma: impact on outcome in the Medical Research Council Myeloma IX Study. J Clin Oncol. 2013;31:2540–7. https://doi.org/10.1200/JCO.2012.46.2119

    Article  PubMed  Google Scholar 

  39. Paiva B, Martinez-Lopez J, Vidriales MB, Mateos MV, Montalban MA, Fernandez-Redondo E, et al. Comparison of immunofixation, serum free light chain, and immunophenotyping for response evaluation and prognostication in multiple myeloma. J Clin Oncol. 2011;29:1627–33. https://doi.org/10.1200/JCO.2010.33.1967

    Article  CAS  PubMed  Google Scholar 

  40. Paiva B, Vidriales MB, Cervero J, Mateo G, Perez JJ, Montalban MA, et al. Multiparameter flow cytometric remission is the most relevant prognostic factor for multiple myeloma patients who undergo autologous stem cell transplantation. Blood. 2008;112:4017–23. https://doi.org/10.1182/blood-2008-05-159624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. van Dongen JJ, Orfao A, EuroFlow C. EuroFlow: resetting leukemia and lymphoma immunophenotyping. Basis for companion diagnostics and personalized medicine. Leukemia. 2012;26:1899–907. https://doi.org/10.1038/leu.2012.121

    Article  PubMed  PubMed Central  Google Scholar 

  42. Flores-Montero J, Sanoja-Flores L, Paiva B, Puig N, Garcia-Sanchez O, Bottcher S, et al. Next generation flow for highly sensitive and standardized detection of minimal residual disease in multiple myeloma. Leukemia. 2017;31:2094–103. https://doi.org/10.1038/leu.2017.29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ladetto M, Donovan JW, Harig S, Trojan A, Poor C, Schlossnan R, et al. Real-Time polymerase chain reaction of immunoglobulin rearrangements for quantitative evaluation of minimal residual disease in multiple myeloma. Biol Blood Marrow Transplant. 2000;6:241–53.

    Article  CAS  PubMed  Google Scholar 

  44. Drandi D, Kubiczkova-Besse L, Ferrero S, Dani N, Passera R, Mantoan B, et al. Minimal residual disease detection by droplet digital PCR in multiple myeloma, mantle cell lymphoma, and follicular lymphoma: a comparison with real-time PCR. J Mol Diagn. 2015;17:652–60. https://doi.org/10.1016/j.jmoldx.2015.05.007

    Article  CAS  PubMed  Google Scholar 

  45. Ladetto M, Bruggemann M, Monitillo L, Ferrero S, Pepin F, Drandi D, et al. Next-generation sequencing and real-time quantitative PCR for minimal residual disease detection in B-cell disorders. Leukemia. 2014;28:1299–307. https://doi.org/10.1038/leu.2013.375

    Article  CAS  PubMed  Google Scholar 

  46. Martinez-Lopez J, Lahuerta JJ, Pepin F, Gonzalez M, Barrio S, Ayala R, et al. Prognostic value of deep sequencing method for minimal residual disease detection in multiple myeloma. Blood. 2014;123:3073–9. https://doi.org/10.1182/blood-2014-01-550020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ferrero S, Ladetto M, Drandi D, Cavallo F, Genuardi E, Urbano M, et al. Long-term results of the GIMEMA VEL-03-096 trial in MM patients receiving VTD consolidation after ASCT: MRD kinetics’ impact on survival. Leukemia. 2015;29:689–95. https://doi.org/10.1038/leu.2014.219

    Article  CAS  PubMed  Google Scholar 

  48. Martinez-Sanchez P, Montejano L, Sarasquete ME, Garcia-Sanz R, Fernandez-Redondo E, Ayala R, et al. Evaluation of minimal residual disease in multiple myeloma patients by fluorescent-polymerase chain reaction: the prognostic impact of achieving molecular response. Br J Haematol. 2008;142:766–74. https://doi.org/10.1111/j.1365-2141.2008.07263.x

    Article  CAS  PubMed  Google Scholar 

  49. Corradini P, Voena C, Tarella C, Astolfi M, Ladetto M, Palumbo A, et al. Molecular and clinical remissions in multiple myeloma: role of autologous and allogeneic transplantation of hematopoietic cells. J Clin Oncol. 1999;17:208–15. https://doi.org/10.1200/JCO.1999.17.1.208

    Article  CAS  PubMed  Google Scholar 

  50. Ladetto M, Pagliano G, Ferrero S, Cavallo F, Drandi D, Santo L, et al. Major tumor shrinking and persistent molecular remissions after consolidation with bortezomib, thalidomide, and dexamethasone in patients with autografted myeloma. J Clin Oncol. 2010;28:2077–84. https://doi.org/10.1200/JCO.2009.23.7172

    Article  CAS  PubMed  Google Scholar 

  51. Ladetto M, Ferrero S, Drandi D, Festuccia M, Patriarca F, Mordini N, et al. Prospective molecular monitoring of minimal residual disease after non-myeloablative allografting in newly diagnosed multiple myeloma. Leukemia. 2016;30:1211–4. https://doi.org/10.1038/leu.2015.269

    Article  CAS  PubMed  Google Scholar 

  52. Galimberti S, Benedetti E, Morabito F, Papineschi F, Callea V, Fazzi R, et al. Prognostic role of minimal residual disease in multiple myeloma patients after non-myeloablative allogeneic transplantation. Leuk Res. 2005;29:961–6. https://doi.org/10.1016/j.leukres.2005.01.017

    Article  CAS  PubMed  Google Scholar 

  53. Raab MS, Cremer FW, Breitkreutz IN, Gerull S, Luft T, Benner A, et al. Molecular monitoring of tumour load kinetics predicts disease progression after non-myeloablative allogeneic stem cell transplantation in multiple myeloma. Ann Oncol. 2005;16:611–7. https://doi.org/10.1093/annonc/mdi123

    Article  CAS  PubMed  Google Scholar 

  54. Kroger N, Badbaran A, Lioznov M, Schwarz S, Zeschke S, Hildebrand Y, et al. Post-transplant immunotherapy with donor-lymphocyte infusion and novel agents to upgrade partial into complete and molecular remission in allografted patients with multiple myeloma. Exp Hematol. 2009;37:791–8. https://doi.org/10.1016/j.exphem.2009.03.008

    Article  CAS  PubMed  Google Scholar 

  55. Kumar S, Paiva B, Anderson KC, Durie B, Landgren O, Moreau P, et al. International myeloma working group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncol. 2016;17:e328–e346. https://doi.org/10.1016/S1470-2045(16)30206-6

    Article  PubMed  Google Scholar 

  56. van der Velden VH, Cazzaniga G, Schrauder A, Hancock J, Bader P, Panzer-Grumayer ER, et al. Analysis of minimal residual disease by Ig/TCR gene rearrangements: guidelines for interpretation of real-time quantitative PCR data. Leukemia. 2007;21:604–11.

    Article  PubMed  Google Scholar 

  57. Rawstron AC, Fazi C, Agathangelidis A, Villamor N, Letestu R, Nomdedeu J, et al. A complementary role of multiparameter flow cytometry and high-throughput sequencing for minimal residual disease detection in chronic lymphocytic leukemia: a European Research Initiative on CLL study. Leukemia. 2016;30:929–36. https://doi.org/10.1038/leu.2015.313. E-pub ahead of print 2015/12/08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rawstron AC, Villamor N, Ritgen M, Bottcher S, Ghia P, Zehnder JL, et al. International standardized approach for flow cytometric residual disease monitoring in chronic lymphocytic leukaemia. Leukemia. 2007;21:956–64. https://doi.org/10.1038/sj.leu.2404584. E-pub ahead of print 2007/03/16

    Article  CAS  PubMed  Google Scholar 

  59. Kalina T, Flores J, van der Velden VH, Martin-Ayuso M, Bottcher S, Ritgen M et al. EuroFlow standardization of flow cytometer instrument settings and immunophenotyping protocols. Leukemia. 2012;26:1986–2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bottcher S, Stilgenbauer S, Busch R, Bruggemann M, Raff T, Pott C, et al. Standardized MRD flow and ASO IGH RQ-PCR for MRD quantification in CLL patients after rituximab-containing immunochemotherapy: a comparative analysis. Leukemia. 2009;23:2007–17.

    Article  CAS  PubMed  Google Scholar 

  61. Hallek M, Cheson BD, Catovsky D, Caligaris-Cappio F, Dighiero G, Dohner H, et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood. 2008;111:5446–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Logan AC, Zhang B, Narasimhan B, Carlton V, Zheng J, Moorhead M, et al. Minimal residual disease quantification using consensus primers and high-throughput IGH sequencing predicts post-transplant relapse in chronic lymphocytic leukemia. Leukemia. 2013;27:1659–65. https://doi.org/10.1038/leu.2013.52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dreger P, Dohner H, Ritgen M, Bottcher S, Busch R, Dietrich S, et al. Allogeneic stem cell transplantation provides durable disease control in poor-risk chronic lymphocytic leukemia: long-term clinical and MRD results of the German CLL Study Group CLL3X trial. Blood. 2010;116:2438–47.

    Article  CAS  PubMed  Google Scholar 

  64. Hahn M, Bottcher S, Dietrich S, Hegenbart U, Rieger M, Stadtherr P, et al. Allogeneic hematopoietic stem cell transplantation for poor-risk CLL: dissecting immune-modulating strategies for disease eradication and treatment of relapse. Bone Marrow Transplant. 2015;50:1279–85. https://doi.org/10.1038/bmt.2015.150. E-pub ahead of print 2015/07/07

    Article  CAS  PubMed  Google Scholar 

  65. Richardson SE, Khan I, Rawstron A, Sudak J, Edwards N, Verfuerth S, et al. Risk-stratified adoptive cellular therapy following allogeneic hematopoietic stem cell transplantation for advanced chronic lymphocytic leukaemia. Br J Haematol. 2013;160:640–8. https://doi.org/10.1111/bjh.12197. E-pub ahead of print 2013/01/09

    Article  CAS  PubMed  Google Scholar 

  66. Kramer I, Stilgenbauer S, Dietrich S, Bottcher S, Zeis M, Stadler M, et al. Allogeneic hematopoietic cell transplantation for high-risk CLL: 10-year follow-up of the GCLLSG CLL3X trial. Blood. 2017;130:1477–80. https://doi.org/10.1182/blood-2017-04-775841

    Article  CAS  PubMed  Google Scholar 

  67. Howard DR, Munir T, McParland L, Rawstron AC, Milligan D, Schuh A et al. Results of the randomized phase IIB ARCTIC trial of low dose Rituximab in previously untreated CLL. Leukemia 2017. E-pub ahead of print 2017/03/25; https://doi.org/10.1038/leu.2017.96

    Article  CAS  PubMed  Google Scholar 

  68. Pettitt AR, Jackson R, Carruthers S, Dodd J, Dodd S, Oates M, et al. Alemtuzumab in combination with methylprednisolone is a highly effective induction regimen for patients with chronic lymphocytic leukemia and deletion of TP53: final results of the national cancer research institute CLL206 trial. J Clin Oncol. 2012;30:1647–55.

    Article  CAS  PubMed  Google Scholar 

  69. Bottcher S, Ritgen M, Fischer K, Stilgenbauer S, Busch R, Fingerle-Rowson G, et al. Minimal residual disease quantification is an independent predictor of progression free and overall survival in chronic lymphocytic leukemia. A multivariate analysis from the randomized GCLLSG CLL8 trial. J Clin Oncol. 2012;30:980–8. https://doi.org/10.1200/JCO.2011.36.9348

    Article  PubMed  Google Scholar 

  70. Goede V, Fischer K, Busch R, Engelke A, Eichhorst B, Wendtner CM et al. Obinutuzumab plus chlorambucil in patients with CLL and coexisting conditions. N Engl J Med 2014. https://doi.org/10.1056/NEJMoa1313984

    Article  CAS  PubMed  Google Scholar 

  71. Kovacs G, Robrecht S, Fink AM, Bahlo J, Cramer P, von Tresckow J, et al. Minimal residual disease assessment improves prediction of outcome in patients with chronic lymphocytic leukemia (CLL) who achieve partial response: comprehensive analysis of two phase III studies of the German CLL study group. J Clin Oncol. 2016;34:3758–65. https://doi.org/10.1200/JCO.2016.67.1305

    Article  CAS  PubMed  Google Scholar 

  72. Greil R, Obrtlikova P, Smolej L, Kozak T, Steurer M, Andel J, et al. Rituximab maintenance versus observation alone in patients with chronic lymphocytic leukaemia who respond to first-line or second-line rituximab-containing chemoimmunotherapy: final results of the AGMT CLL-8a mabtenance randomised trial. Lancet Haematol. 2016;3:e317–329. https://doi.org/10.1016/s2352-3026(16)30045-x. E-pub ahead of print 2016/07/05

    Article  PubMed  Google Scholar 

  73. Ladetto M, Lobetti-Bodoni C, Mantoan B, Ceccarelli M, Boccomini C, Genuardi E, et al. Persistence of minimal residual disease in bone marrow predicts outcome in follicular lymphomas treated with a rituximab-intensive program. Blood. 2013;122:3759–66. https://doi.org/10.1182/blood-2013-06-507319. E-pub ahead of print 2013/10/03

    Article  CAS  PubMed  Google Scholar 

  74. Pott C, Hoster E, Delfau-Larue MH, Beldjord K, Bottcher S, Asnafi V, et al. Molecular remission is an independent predictor of clinical outcome in patients with mantle cell lymphoma after combined immunochemotherapy: a European MCL intergroup study. Blood. 2010;115:3215–23. https://doi.org/10.1182/blood-2009-06-230250. E-pub ahead of print 2009/12/25

    Article  CAS  PubMed  Google Scholar 

  75. Hermine O, Hoster E, Walewski J, Bosly A, Stilgenbauer S, Thieblemont C, et al. Addition of high-dose cytarabine to immunochemotherapy before autologous stem-cell transplantation in patients aged 65 years or younger with mantle cell lymphoma (MCL Younger): a randomised, open-label, phase 3 trial of the European mantle cell lymphoma network. Lancet. 2016;388:565–75. https://doi.org/10.1016/s0140-6736(16)00739-x. E-pub ahead of print 2016/06/18

    Article  CAS  PubMed  Google Scholar 

  76. Kruger WH, Hirt C, Basara N, Sayer HG, Behre G, Fischer T, et al. Allogeneic stem cell transplantation for mantle cell lymphoma—final report from the prospective trials of the East German study group haematology/oncology (OSHO). Ann Hematol. 2014;93:1587–97. https://doi.org/10.1007/s00277-014-2087-z. E-pub ahead of print 2014/05/02

    Article  PubMed  Google Scholar 

  77. Herrera AF, Kim HT, Kong KA, Faham M, Sun H, Sohani AR, et al. Next-generation sequencing-based detection of circulating tumour DNA After allogeneic stem cell transplantation for lymphoma. Br J Haematol. 2016;175:841–50. https://doi.org/10.1111/bjh.14311. E-pub ahead of print 2016/10/07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Farina L, Carniti C, Dodero A, Vendramin A, Raganato A, Spina F, et al. Qualitative and quantitative polymerase chain reaction monitoring of minimal residual disease in relapsed chronic lymphocytic leukemia: early assessment can predict long-term outcome after reduced intensity allogeneic transplantation. Haematologica. 2009;94:654–62. https://doi.org/10.3324/haematol.2008.000273

    Article  PubMed  PubMed Central  Google Scholar 

  79. Algrin C, Golmard JL, Michallet M, Reman O, Huynh A, Perrot A, et al. Flow cytometry minimal residual disease after allogeneic transplant for chronic lymphocytic leukemia. Eur J Haematol. 2017;98:363–70. https://doi.org/10.1111/ejh.12836

    Article  PubMed  Google Scholar 

  80. Flohr T, Schrauder A, Cazzaniga G, Panzer-Grumayer R, van der Velden V, Fischer S, et al. Minimal residual disease-directed risk stratification using real-time quantitative PCR analysis of immunoglobulin and T-cell receptor gene rearrangements in the international multicenter trial AIEOP-BFM ALL 2000 for childhood acute lymphoblastic leukemia. Leukemia. 2008;22:771–82.

    Article  CAS  PubMed  Google Scholar 

  81. Larimore K, McCormick MW, Robins HS, Greenberg PD. Shaping of human germline IgH repertoires revealed by deep sequencing. J Immunol. 2012;189:3221–30. https://doi.org/10.4049/jimmunol.1201303

    Article  CAS  PubMed  Google Scholar 

  82. Faham M, Zheng J, Moorhead M, Carlton VE, Stow P, Coustan-Smith E, et al. Deep-sequencing approach for minimal residual disease detection in acute lymphoblastic leukemia. Blood. 2012;120:5173–80. https://doi.org/10.1182/blood-2012-07-444042. E-pub ahead of print 2012/10/18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Borowitz MJ, Devidas M, Hunger SP, Bowman WP, Carroll AJ, Carroll WL, et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia and its relationship to other prognostic factors: a Children’s Oncology Group Study. Blood. 2008;111:5477–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Cassaday RD, Alan Potts D Jr, Stevenson PA, Bar M, Georges GE, Shustov AR, et al. Evaluation of allogeneic transplantation in first or later minimal residual disease—negative remission following adult-inspired therapy for acute lymphoblastic leukemia. Leuk Lymphoma. 2016;57:2109–18. https://doi.org/10.3109/10428194.2016.1160080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lussana F, Intermesoli T, Gianni F, Boschini C, Masciulli A, Spinelli O, et al. Achieving molecular remission before allogeneic stem cell transplantation in adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia: impact on relapse and long-term outcome. Biol Blood Marrow Transplant. 2016;22:1983–7. https://doi.org/10.1016/j.bbmt.2016.07.021

    Article  PubMed  Google Scholar 

  86. Bader P, Kreyenberg H, Henze GH, Eckert C, Reising M, Willasch A, et al. Prognostic value of minimal residual disease quantification before allogeneic stem-cell transplantation in relapsed childhood acute lymphoblastic leukemia: the ALL-REZ BFM Study Group. J Clin Oncol. 2009;27:377–84.

    Article  PubMed  Google Scholar 

  87. Goulden N, Bader P, Van Der Velden V, Moppett J, Schilham M, Masden HO, et al. Minimal residual disease prior to stem cell transplant for childhood acute lymphoblastic leukaemia. Br J Haematol. 2003;122:24–29.

    Article  PubMed  Google Scholar 

  88. Leung W, Pui CH, Coustan-Smith E, Yang J, Pei D, Gan K, et al. Detectable minimal residual disease before hematopoietic cell transplantation is prognostic but does not preclude cure for children with very-high-risk leukemia. Blood. 2012;120:468–72. https://doi.org/10.1182/blood-2012-02-409813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ruggeri A, Michel G, Dalle JH, Caniglia M, Locatelli F, Campos A et al. Impact of pretransplant minimal residual disease after cord blood transplantation for childhood acute lymphoblastic leukemia in remission: an Eurocord, PDWP-EBMT analysis. Leukemia 2012. E-pub ahead of print 2012/05/05; https://doi.org/10.1038/leu.2012.123

    Article  CAS  PubMed  Google Scholar 

  90. Bachanova V, Burke MJ, Yohe S, Cao Q, Sandhu K, Singleton TP, et al. Unrelated cord blood transplantation in adult and pediatric acute lymphoblastic leukemia: effect of minimal residual disease on relapse and survival. Biol Blood Marrow Transplant. 2012;18:963–8. https://doi.org/10.1016/j.bbmt.2012.02.012

    Article  PubMed  PubMed Central  Google Scholar 

  91. Pulsipher MA, Langholz B, Wall DA, Schultz KR, Bunin N, Carroll WL, et al. The addition of sirolimus to tacrolimus/methotrexate GVHD prophylaxis in children with ALL: a phase 3 children’s oncology group/pediatric blood and marrow transplant consortium trial. Blood. 2014;123:2017–25. https://doi.org/10.1182/blood-2013-10-534297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Pulsipher MA, Langholz B, Wall DA, Schultz KR, Bunin N, Carroll W, et al. Risk factors and timing of relapse after allogeneic transplantation in pediatric ALL: for whom and when should interventions be tested? Bone Marrow Transplant. 2015;50:1173–9. https://doi.org/10.1038/bmt.2015.103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Balduzzi A, Di Maio L, Silvestri D, Songia S, Bonanomi S, Rovelli A. et al. Minimal residual disease before and after transplantation for childhood acute lymphoblastic leukaemia: is there any room for intervention?. Br J Haematol. 2014;164:396–408. https://doi.org/10.1111/bjh.12639. E-pub ahead of print 738 2014/01/16.

    Article  CAS  PubMed  Google Scholar 

  94. Bader P, Kreyenberg H, von Stackelberg A, Eckert C, Salzmann-Manrique E, Meisel R, et al. Monitoring of minimal residual disease after allogeneic stem-cell transplantation in relapsed childhood acute lymphoblastic leukemia allows for the identification of impending relapse: results of the ALL-BFM-SCT 2003 trial. J Clin Oncol. 2015;33:1275–84. https://doi.org/10.1200/JCO.2014.58.4631

    Article  CAS  PubMed  Google Scholar 

  95. Sutton R, Shaw PJ, Venn NC, Law T, Dissanayake A, Kilo T, et al. Persistent MRD before and after allogeneic BMT predicts relapse in children with acute lymphoblastic leukaemia. Br J Haematol. 2015;168:395–404. https://doi.org/10.1111/bjh.13142

    Article  PubMed  Google Scholar 

  96. Rettinger E, Merker M, Salzmann-Manrique E, Kreyenberg H, Krenn T, Durken M, et al. Pre-emptive immunotherapy for clearance of molecular disease in childhood acute lymphoblastic leukemia after transplantation. Biol Blood Marrow Transplant. 2017;23:87–95. https://doi.org/10.1016/j.bbmt.2016.10.006

    Article  PubMed  Google Scholar 

  97. Wu D, Sherwood A, Fromm JR, Winter SS, Dunsmore KP, Loh ML, et al. High-throughput sequencing detects minimal residual disease in acute T lymphoblastic leukemia. Sci Transl Med. 2012;4:134ra163 https://doi.org/10.1126/scitranslmed.3003656

    Article  CAS  Google Scholar 

  98. Wu D, Emerson RO, Sherwood A, Loh ML, Angiolillo A, Howie B, et al. Detection of minimal residual disease in B lymphoblastic leukemia by high-throughput sequencing of IGH. Clin Cancer Res Off J Am Assoc Cancer Res. 2014;20:4540–8. https://doi.org/10.1158/1078-0432.CCR-13-3231

    Article  CAS  Google Scholar 

  99. Pulsipher MA, Carlson C, Langholz B, Wall DA, Schultz KR, Bunin N, et al. IgH-V(D)J NGS-MRD measurement pre- and early post-allotransplant defines very low- and very high-risk ALL patients. Blood. 2015;125:3501–8. https://doi.org/10.1182/blood-2014-12-615757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Logan AC, Vashi N, Faham M, Carlton V, Kong K, Buno I et al. Immunoglobulin and T cell receptor gene high-throughput sequencing quantifies minimal residual disease in acute lymphoblastic leukemia and predicts post-transplantation relapse and survival. Biol Blood Marrow Transplant 2014. https://doi.org/10.1016/j.bbmt.2014.04.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolaus Kröger.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ladetto, M., Böttcher, S., Kröger, N. et al. Methods and role of minimal residual disease after stem cell transplantation. Bone Marrow Transplant 54, 681–690 (2019). https://doi.org/10.1038/s41409-018-0307-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41409-018-0307-1

Search

Quick links