Article | Published:

Anti-thymocyte globulin’s activity against acute myeloid leukemia stem cells

Bone Marrow Transplantation (2018) | Download Citation


Rabbit anti-thymocyte globulin (ATG (Thymoglobulin)) kills T cells in vitro and probably also in vivo as it prevents graft-vs-host disease (GvHD) in patients. Recently we demonstrated that ATG at a clinically relevant concentration (10–50 mg/L) kills in vitro not only T cells but also leukemic blasts. In the present study, we investigated whether ATG kills not only leukemic blasts but also leukemic stem cells (LSCs). We used a flow cytometric assay of complement-mediated cytotoxicity (CDC). ATG-induced death of acute myeloid leukemia (AML) cells from patients newly diagnosed with AML was measured among blasts as well as LSCs. At 10 mg/L ATG, blasts but not LSCs were killed. At 50 mg/L ATG, both blasts and LSCs were killed. We also measured ATG-mediated killing of healthy individuals’ hematopoietic stem cells (HSCs). Median 2% HSCs from blood and 15% HSCs from filgrastim-mobilized grafts were killed with 50 mg/L ATG, compared to 30% LSCs from the blood of AML patients (p = 0.001 and 0.022, respectively). In conclusion, LSCs are sensitive to ATG, however, only at a relatively high ATG concentration. At that concentration, LSCs are killed to a higher degree than HSCs.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1.

    Mohty M, Apperley JF. Long-term physiological side effects after allogeneic bone marrow transplantation. Hematology Am Soc Hematol Educ Program. 2010;2010:229–36.

  2. 2.

    Bacigalupo A, Van Lint MT, Occhini D, Gualandi F, Lamparelli T, Sogno G, et al. Increased risk of leukemia relapse with high-dose cyclosporine A after allogeneic marrow transplantation for acute leukemia. Blood. 1991;77:1423–8.

  3. 3.

    Storb R, Deeg J, Pepe M, Appelbaum F, Anasetti C, Beatty P, et al. Methotrexate and cyclosporine versus cyclosporine alone for prophylaxis of graft-versus-host disease in patients given HLA-identical marrow grafts for leukemia: Long-term follow-up of a controlled trial. Blood. 1989;73:1729–34.

  4. 4.

    Walker I, Panzarella T, Couban S, Couture F, Devins G, Elemary M, et al. Pretreatment with anti-thymocyte globulin versus no anti-thymocyte globulin in patients with haematological malignancies undergoing haemopoietic cell transplantation from unrelated donors: a randomised, controlled, open-label, phase 3, multicentre trial. Lancet Oncol. 2016;17:164–73.

  5. 5.

    Chang YJ, Wang Y, Mo XD, Zhang XH, Xu LP, Yan CH, et al. Optimal dose of rabbit thymoglobulin in conditioning regimens for unmanipulated, haploidentical, hematopoietic stem cell transplantation: Long-term outcomes of a prospective randomized trial. Cancer. 2017;123:2881–92.

  6. 6.

    Bacigalupo A, Lamparelli T, Barisione G, Bruzzi P, Guidi S, Alessandrino PE, et al. Thymoglobulin prevents chronic graft-versus-host disease, chronic lung dysfunction, and late transplant-related mortality: long-term follow-up of a randomized trial in patients undergoing unrelated donor transplantation. Biol Blood Marrow Transplant. 2006;12:560–5.

  7. 7.

    Dabas R, Lee R, Servito MT, Dharmani-Khan P, Modi M, van Slyke T, et al. Antithymocyte globulin at clinically relevant concentrations kills leukemic blasts. Biol Blood Marrow Transplant. 2016;22:815–24.

  8. 8.

    Liu H, Qin Y, Wang X, Xie K, Yang Y, Zhu J, et al. Polyclonal rabbit antithymocyte globulin induces apoptosis and has cytotoxic effects on human leukemic cells. Clin Lymphoma Myeloma Leuk. 2012;12:345–54.

  9. 9.

    Mohty M. Mechanisms of action of antithymocyte globulin: T-cell depletion and beyond. Leukemia. 2007;21:1387–94.

  10. 10.

    Remberger M, Persson M, Mattsson J, Gustafsson B, Uhlin M. Effects of different serum-levels of ATG after unrelated donor umbilical cord blood transplantation. Transpl Immunol. 2012;27:59–62.

  11. 11.

    Socié G, Schmoor C, Bethge WA, Ottinger HD, Stelljes M, Zander AR et al. Chronic graft-versus-host disease: long-term results from a randomized trial on GvHD prophylaxis with or without anti–T-cell globulin ATG-fresenius. Blood. 2011.

  12. 12.

    Locatelli F, Bernardo ME, Bertaina A, Rognoni C, Comoli P, Rovelli A, et al. Efficacy of two different doses of rabbit anti-T-lymphocyte globulin to prevent graft-versus-host disease in children with haematological malignancies transplanted from an unrelated donor: a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2017;18:1126–36.

  13. 13.

    Kröger N, Solano C, Wolschke C, Bandini G, Patriarca F, Pini M, et al. Antilymphocyte globulin for prevention of chronic graft-versus-host disease. New Engl J Med. 2016;374:43–53.

  14. 14.

    Soiffer RJ, Kim HT, McGuirk J, Horwitz ME, Johnston L, Patnaik MM et al. Prospective, randomized, double-blind, Phase III Clinical Trial of anti-T-lymphocyte globulin to assess impact on chronic graft-versus-host disease-free survival in patients undergoing HLA-matched unrelated myeloablative hematopoietic cell transplantation. J Clin Oncol. 2017;35:4003–11.

  15. 15.

    Sander A, Zimmermann M, Dworzak M, Fleischhack G, Von Neuhoff C, Reinhardt D, et al. Consequent and intensified relapse therapy improved survival in pediatric AML: results of relapse treatment in 379 patients of three consecutive AML-BFM trials. Leukemia. 2010;24:1422–8.

  16. 16.

    Craddock C, Tauro S, Moss P, Grimwade D. Biology and management of relapsed acute myeloid leukaemia. Br J Haematol. 2005;129:18–34.

  17. 17.

    Bejanyan N, Weisdorf DJ, Logan BR, Wang H-L, Devine SM, de Lima M, et al. Survival of patients with acute myeloid leukemia relapsing after allogeneic hematopoietic cell transplantation: A Center for International Blood and Marrow Transplant Research Study. Biol Blood Marrow Transplant. 2015;21:454–9.

  18. 18.

    Lowenberg B, Griffin JD, Tallman MS Acute myeloid leukemia and acute promyelocytic leukemia. Hematology Am Soc Hematol Edu Program. 2003;2003:82–101.

  19. 19.

    van Rhenen A, Feller N, Kelder A, Westra AH, Rombouts E, Zweegman S, et al. High stem cell frequency in acute myeloid leukemia at diagnosis predicts high minimal residual disease and poor survival. Clin Cancer Res. 2005;11:6520–7.

  20. 20.

    Costello RT, Mallet F, Gaugler B, Sainty D, Arnoulet C, Gastaut J-A, et al. Human acute myeloid leukemia CD34 progenitor cells have decreased sensitivity to chemotherapy and fas-induced apoptosis, reduced immunogenicity, and impaired dendritic cell transformation capacities. Cancer Res. 2000;60:4403–11.

  21. 21.

    Ishikawa F, Yoshida S, Saito Y, Hijikata A, Kitamura H, Tanaka S, et al. Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region. Nat Biotechnol. 2007;25:1315.

  22. 22.

    Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367:645–8.

  23. 23.

    Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3:730–7.

  24. 24.

    Bhatia M, Wang JCY, Kapp U, Bonnet D, Dick JE. Purification of primitive human hematopoietic cells capable of repopulating immune-deficient mice. Proc Natl Acad Sci USA. 1997;94:5320–5.

  25. 25.

    Terwijn M, Zeijlemaker W, Kelder A, Rutten AP, Snel AN, Scholten WJ, et al. Leukemic stem cell frequency: a strong biomarker for clinical outcome in acute myeloid leukemia. PLoS ONE. 2014;9:e107587

  26. 26.

    Guan Y, Gerhard B, Hogge DE. Detection, isolation, and stimulation of quiescent primitive leukemic progenitor cells from patients with acute myeloid leukemia (AML). Blood. 2003;101:3142–9.

  27. 27.

    Guzman ML, Neering SJ, Upchurch D, Grimes B, Howard DS, Rizzieri DA, et al. Nuclear factor-kappaB is constitutively activated in primitive human acute myelogenous leukemia cells. Blood. 2001;98:2301–7.

  28. 28.

    Thomas D, Majeti R. Biology and relevance of human acute myeloid leukemia stem cells. Blood. 2017.

  29. 29.

    Popow I, Leitner J, Majdic O, Kovarik JJ, Saemann MD, Zlabinger GJ, et al. Assessment of Batch to Batch Variation in Polyclonal Antithymocyte Globulin Preparations. Transplantation. 2012;93:32–40.

  30. 30.

    Ayuk FA, Atassi N, Schuch G, Mina S, Fang L, Bokemeyer C, et al. Complement-dependent and complement-independent cytotoxicity of polyclonal antithymocyte globulins in chronic lymphocytic leukemia. Leuk Res. 2008;32:1200–6.

  31. 31.

    Grullich C, Ziegler C, Finke J. Rabbit anti T-lymphocyte globulin induces apoptosis in peripheral blood mononuclear cell compartments and leukemia cells, while hematopoetic stem cells are apoptosis resistant. Biol Blood Marrow Transplant. 2009;15:173–82.

  32. 32.

    Schattenberg A, van der Meer A, Preijers F, Schaap N, Rinkes M, van der Maazen R, et al. Addition of ATG to the conditioning regimen is a major determinant for outcome after transplantation with partially lymphocyte-depleted grafts from voluntary unrelated donors. Bone Marrow Transplant. 2004;33:1115–21.

  33. 33.

    Bacigalupo A, Lamparelli T, Bruzzi P, Guidi S, Alessandrino PE, di Bartolomeo P, et al. Antithymocyte globulin for graft-versus-host disease prophylaxis in transplants from unrelated donors: 2 randomized studies from Gruppo Italiano Trapianti Midollo Osseo (GITMO). Blood. 2001;98:2942–7.

  34. 34.

    Seidel MG, Fritsch G, Matthes-Martin S, Lawitschka A, Lion T, Potschger U, et al. Antithymocyte globulin pharmacokinetics in pediatric patients after hematopoietic stem cell transplantation. J Pediatr Hematol Oncol. 2005;27:532–6.

  35. 35.

    Kantarjian HM, Estey EH, Keating MA. New chemotherapeutic agents in acute myeloid leukemia. Leukemia. 1996;10(Suppl 1):S4–6

  36. 36.

    Maugeri-Saccà M, Vigneri P G, De Maria R. Cancer stem cells and chemosensitivity. Clin Cancer Res. 2011;17:4942–7.

  37. 37.

    Li TK, Houghton PJ, Desai SD, Daroui P, Liu AA, Hars ES, et al. Characterization of ARC-111 as a novel topoisomerase I-targeting anticancer drug. Cancer Res. 2003;63:8400–7.

  38. 38.

    Jin L, Lee EM, Ramshaw HS, Busfield SJ, Peoppl AG, Wilkinson L, et al. Monoclonal antibody-mediated targeting of CD123, IL-3 receptor α chain, eliminates human acute myeloid leukemic stem cells. Cell Stem Cell. 2009;5:31–42.

  39. 39.

    Al-Mawali A, Gillis D, Lewis I. Characteristics and prognosis of adult acute myeloid leukemia with internal tandem duplication in the FLT3gene. Oman Med J. 2013;28:432.

  40. 40.

    De Jonge HJ, Woolthuis CM, Vos AZ, Mulder A, Van Den Berg E, Kluin P, et al. Gene expression profiling in the leukemic stem cell-enriched CD34 + fraction identifies target genes that predict prognosis in normal karyotype AML. Leukemia. 2011;25:1825.

  41. 41.

    Finke J, Bethge WA, Schmoor C, Ottinger HD, Stelljes M, Zander AR, et al. Standard graft-versus-host disease prophylaxis with or without anti-T-cell globulin in haematopoietic cell transplantation from matched unrelated donors: a randomised, open-label, multicentre phase 3 trial. Lancet Oncol. 2009;10:855–64.

  42. 42.

    Jin L, Hope KJ, Zhai Q, Smadja-Joffe F, Dick JE. Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med. 2006;12:1167–74.

  43. 43.

    Hertweck MK, Erdfelder F, Kreuzer KA. CD44 in hematological neoplasias. Ann Hematol. 2011;90:493–508.

  44. 44.

    Majeti R, Chao MP, Alizadeh AA, Pang WW, Jaiswal S, Gibbs KD Jr., et al. CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell. 2009;138:286–99.

  45. 45.

    Admiraal R, Nierkens S, de Witte MA, Petersen EJ, Fleurke G-j, Verrest L, et al. Association between anti-thymocyte globulin exposure and survival outcomes in adult unrelated haemopoietic cell transplantation: a retrospective, pharmacodynamic cohort analysis. Lancet Haematol. 2017;4:e183–91.

  46. 46.

    Kreso A, Dick JE. Evolution of the cancer stem cell model. Cell Stem Cell. 2014;14:275–91.

  47. 47.

    Taussig DC, Vargaftig J, Miraki-Moud F, Griessinger E, Sharrock K, Luke T, et al. Leukemia-initiating cells from some acute myeloid leukemia patients with mutated nucleophosmin reside in the CD34(-) fraction. Blood. 2010;115:1976–84.

  48. 48.

    Clevers H. The cancer stem cell: premises, promises and challenges. Nat Med. 2011;17:313–9.

  49. 49.

    Saito Y, Uchida N, Tanaka S, Suzuki N, Tomizawa-Murasawa M, Sone A, et al. Induction of cell cycle entry eliminates human leukemia stem cells in a mouse model of AML. Nat Biotechnol. 2010;28:275–80.

  50. 50.

    Jordan CT, Upchurch D, Szilvassy SJ, Guzman ML, Howard DS, Pettigrew AL, et al. The interleukin-3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stem cells. Leukemia. 2000;14:1777–84.

  51. 51.

    Saito Y, Kitamura H, Hijikata A, Tomizawa-Murasawa M, Tanaka S, Takagi S, et al. Identification of therapeutic targets for quiescent, chemotherapy-resistant human leukemia stem cells. Sci Transl Med. 2010;2:17ra19

  52. 52.

    Taussig DC, Pearce DJ, Simpson C, Rohatiner AZ, Lister TA, Kelly G, et al. Hematopoietic stem cells express multiple myeloid markers: implications for the origin and targeted therapy of acute myeloid leukemia. Blood. 2005;106:4086–92.

  53. 53.

    Goardon N, Marchi E, Atzberger A, Quek L, Schuh A, Soneji S, et al. Coexistence of LMPP-like and GMP-like leukemia stem cells in acute myeloid leukemia. Cancer Cell. 2011;19:138–52.

  54. 54.

    Hosen N, Park CY, Tatsumi N, Oji Y, Sugiyama H, Gramatzki M, et al. CD96 is a leukemic stem cell-specific marker in human acute myeloid leukemia. Proc Natl Acad Sci USA. 2007;104:11008–13.

  55. 55.

    Tavakkoli M, Devlin SM, Park CY. CD99 is a therapeutic target on disease stem cells in acute myeloid leukemia and the myelodysplastic syndromes. Blood. 2013;122:2891.

  56. 56.

    Barreyro L, Will B, Bartholdy B, Zhou L, Todorova TI, Stanley RF, et al. Overexpression of IL-1 receptor accessory protein in stem and progenitor cells and outcome correlation in AML and MDS. Blood. 2012;120:1290–8.

  57. 57.

    Kikushige Y, Shima T, Takayanagi S, Urata S, Miyamoto T, Iwasaki H, et al. TIM-3 is a promising target to selectively kill acute myeloid leukemia stem cells. Cell Stem Cell. 2010;7:708–17.

  58. 58.

    Taussig DC, Miraki-Moud F, Anjos-Afonso F, Pearce DJ, Allen K, Ridler C, et al. Anti-CD38 antibody–mediated clearance of human repopulating cells masks the heterogeneity of leukemia-initiating cells. Blood. 2008;112:568–75.

  59. 59.

    Sarry JE, Murphy K, Perry R, Sanchez PV, Secreto A, Keefer C, et al. Human acute myelogenous leukemia stem cells are rare and heterogeneous when assayed in NOD/SCID/IL2Rgammac-deficient mice. J Clin Invest. 2011;121:384–95.

  60. 60.

    Eppert K, Takenaka K, Lechman ER, Waldron L, Nilsson B, van Galen P, et al. Stem cell gene expression programs influence clinical outcome in human leukemia. Nat Med. 2011;17:1086–93.

  61. 61.

    Körbling M, Anderlini P. Peripheral blood stem cell versus bone marrow allotransplantation: does the source of hematopoietic stem cells matter? Blood. 2001;98:2900–8.

  62. 62.

    Admiraal R, van Kesteren C, Jol-van der Zijde CM, Lankester AC, Bierings MB, Egberts TC, et al. Association between anti-thymocyte globulin exposure and CD4 + immune reconstitution in paediatric haemopoietic cell transplantation: a multicentre, retrospective pharmacodynamic cohort analysis. Lancet Haematol. 2015;2:e194–203.

Download references


We thank the patients for participating in research that could not benefit them but only future patients. We thank the healthy volunteers involved in the study. This study could not happen without the dedication of Mamta Kantharia, Jennifer LeBlanc, Lori Rackel, Laura Spilchen, many inpatients nurses, pharmacists, particularly Michelle Dowhan, and physicians, notably Dr. Michelle Geddes, Dr. Mona Shafey, Dr. Peter Duggan, and Dr. Lynne Savoie. We also thank the staff of Calgary Laboratory Services, including Glenis Doiron. Finally, we thank Douglas Mahoney for invaluable feedback during this study.

Author contributions

R.D. developed the cytotoxicity assays, ran the assays, performed statistical analysis, and analyzed the results. P.D.K. and J.L. provided input into assay development and interpretation. M.M., T.v.S., and J.B. collected or arranged for the collection of specimens. A.D., D.M., F.M.K., and J.S. provided critical feedback. R.D. and J.S. designed the study, and J.S. supervised its conduct. R.D. wrote the manuscript.

Author information


  1. University of Calgary, Calgary, AB, Canada

    • Rosy Dabas
    • , Poonam Dharmani-Khan
    • , Monica Modi
    • , Don Morris
    • , Andrew Daly
    • , Faisal M. Khan
    •  & Jan Storek
  2. Alberta Health Services, Calgary, AB, Canada

    • Poonam Dharmani-Khan
    • , Monica Modi
    • , Tiffany Van Slyke
    • , Joanne Luider
    • , Don Morris
    • , Joseph Brandwein
    • , Andrew Daly
    • , Faisal M. Khan
    •  & Jan Storek
  3. University of Alberta, Edmonton, AB, Canada

    • Tiffany Van Slyke
    •  & Joseph Brandwein


  1. Search for Rosy Dabas in:

  2. Search for Poonam Dharmani-Khan in:

  3. Search for Monica Modi in:

  4. Search for Tiffany Van Slyke in:

  5. Search for Joanne Luider in:

  6. Search for Don Morris in:

  7. Search for Joseph Brandwein in:

  8. Search for Andrew Daly in:

  9. Search for Faisal M. Khan in:

  10. Search for Jan Storek in:

Conflict of interest

The authors declare that they have no conflict of interest.

Corresponding author

Correspondence to Rosy Dabas.

Electronic supplementary material

About this article

Publication history