Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Prevention of relapse after allogeneic hematopoietic cell transplantation by donor and cell source selection

Abstract

Allogeneic hematopoietic cell transplantation (HCT) is the most established form of cancer immunotherapy and has been successfully applied for the treatment and cure of otherwise lethal neoplastic blood disorders. Cancer immune surveillance is mediated to a large extent by alloreactive T and natural killer (NK) cells recognizing genetic differences between patient and donor. Profound insights into the biology of these effector cells has been obtained over recent years and used for the development of innovative strategies for intelligent donor selection, aiming for improved graft-versus-leukemia effect without unmanageable graft-versus-host disease. The cellular composition of the stem cell source plays a major role in modulating these effects. This review summarizes the current state-of the-art of donor selection according to HLA, NK alloreactivity and stem cell source.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Passweg JR, Baldomero H, Bader P, Bonini C, Duarte RF, Dufour C, et al. Use of haploidentical stem cell transplantation continues to increase: the 2015 European Society for Blood and Marrow Transplant activity survey report. Bone Marrow Transplant. 2017;52:811–7. https://doi.org/10.1038/bmt.2017.34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. D’Souza A, Lee S, Zhu X, Pasquini M. Current use and trends in hematopoietic cell transplantation in the United States. Biol Blood Marrow Transplant. 2017;23:1417–21. https://doi.org/10.1016/j.bbmt.2017.05.035

    Article  PubMed  PubMed Central  Google Scholar 

  3. Soiffer RJ, Kim HT, McGuirk J, Horwitz ME, Johnston L, Patnaik MM, et al. Prospective, randomized, double-blind, phase III clinical trial of anti-T-lymphocyte globulin to assess impact on chronic graft-versus-host disease-free survival in patients undergoing HLA-matched unrelated myeloablative hematopoietic cell transplantation. J Clin Oncol. 2017;35:4003–11. https://doi.org/10.1200/JCO.2017.75.8177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Robinson J, Halliwell JA, Hayhurst JD, Flicek P, Parham P, Marsh SG. TheIPD and IMGT/HLA database: allele variant databases. Nucleic Acids Res. 2015;43:D423–431. https://doi.org/10.1093/nar/gku1161. (Database issue)

    Article  CAS  PubMed  Google Scholar 

  5. van Rood JJ, van Leeuwen A, Persijn GG, Lansbergen Q, Goulmy E, Termijtelen A, et al. Role of the HLA system in transplantation. HLA compatibility in clinical transplantation. Transplant Proc. 1977;9:459–67.

    PubMed  Google Scholar 

  6. Petersdorf EW. In celebration of Ruggero Ceppellini: HLA in transplantation. HLA. 2017;89:71–76. https://doi.org/10.1111/tan.12955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kanakry CG, Fuchs EJ, Luznik L. Modern approaches to HLA-haploidentical blood or marrow transplantation. Nat Rev Clin Oncol. 2016;13:10–24. https://doi.org/10.1038/nrclinonc.2015.128

    Article  CAS  PubMed  Google Scholar 

  8. Apperley J, Niederwieser D, Huang XJ, Nagler A, Fuchs E, Szer J, et al. Haploidentical hematopoietic stem cell transplantation: a global overview comparing Asia, the European Union, and the United States. Biol Blood Marrow Transplant. 2016;22:23–26. https://doi.org/10.1016/j.bbmt.2015.11.001

    Article  PubMed  Google Scholar 

  9. Altaf SY, Apperley JF, Olavarria E. Matched unrelated donor transplants-State of the art in the 21st century. Semin Hematol. 2016;53:221–9. https://doi.org/10.1053/j.seminhematol.2016.07.002

    Article  PubMed  Google Scholar 

  10. Rocha V. Umbilical cord blood cells from unrelated donor as an alternative source of hematopoietic stem cells for transplantation in children and adults. Semin Hematol. 2016;53:237–45. https://doi.org/10.1053/j.seminhematol.2016.08.002

    Article  PubMed  Google Scholar 

  11. Gragert L, Eapen M, Williams E, Freeman J, Spellman S, Baitty R, et al. HLA match likelihoods for hematopoietic stem-cell grafts in the U.S. registry. N Engl J Med. 2014;371:339–48. https://doi.org/10.1056/NEJMsa1311707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Buck K, Wadsworth K, Setterholm M, Maiers M, Confer D, Hartzman R, et al. High-resolution match rate of 7/8 and 9/10 or better for the match unrelated donor registry. Biol Blood Marrow Transplant. 2016;22:759–63. https://doi.org/10.1016/j.bbmt.2015.12.012

    Article  PubMed  Google Scholar 

  13. Archbold JK, Macdonald WA, Burrows SR, Rossjohn J, McCluskey J. T-cell allorecognition: a case of mistaken identity or deja vu? Trends Immunol. 2008;29:220–6. https://doi.org/10.1016/j.it.2008.02.005

    Article  CAS  PubMed  Google Scholar 

  14. Lakkis FG, Lechler RI. Origin and biology of the allogeneic response. Cold Spring Harb Perspect Med. 2013. https://doi.org/10.1101/cshperspect.a014993

    Article  PubMed  PubMed Central  Google Scholar 

  15. Afzali B, Lechler RI, Hernandez-Fuentes MP. Allorecognition and the alloresponse: clinical implications. Tissue Antigens. 2007;69:545–56. https://doi.org/10.1111/j.1399-0039.2007.00834.x

    Article  CAS  PubMed  Google Scholar 

  16. Falkenburg JH, Jedema I. Allo-reactive T cells for the treatment of hematological malignancies. Mol Oncol. 2015;9:1894–903. https://doi.org/10.1016/j.molonc.2015.10.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Griffioen M, van Bergen CA, Falkenburg JH. Autosomal minor histocompatibility antigens: how genetic variants create diversity in immune targets. Front Immunol. 2016;7:100 https://doi.org/10.3389/fimmu.2016.00100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Spierings E. Minor histocompatibility antigens: past, present, and future. Tissue Antigens. 2014;84:374–360. https://doi.org/10.1111/tan.12445

    Article  CAS  PubMed  Google Scholar 

  19. Bleakley M, Heimfeld S, Loeb KR, Jones LA, Chaney C, Seropian S, et al. Outcomes of acute leukemia patients transplanted with naive T cell-depleted stem cell grafts. J Clin Invest. 2015;125:2677–89. https://doi.org/10.1172/JCI81229

    Article  PubMed  PubMed Central  Google Scholar 

  20. Li Pira G, Di Cecca S, Montanari M, Moretta L, Manca F. Specific removal of alloreactive T-cells to prevent GvHD in hemopoietic stem cell transplantation: rationale, strategies and perspectives. Blood Rev. 2016;30:297–307. https://doi.org/10.1016/j.blre.2016.03.001

    Article  CAS  PubMed  Google Scholar 

  21. Keever-Taylor CA, Passweg J, Kawanishi Y, Casper J, Flomenberg N, Baxter-Lowe LA. Association of donor-derived host-reactive cytolytic and helper T cells with outcome following alternative donor T cell-depleted bone marrow transplantation. Bone Marrow Transplant. 1997;19:1001–9. https://doi.org/10.1038/sj.bmt.1700779

    Article  CAS  PubMed  Google Scholar 

  22. Irschick EU, Hladik F, Niederwieser D, Nussbaumer W, Holler E, Kaminski E, et al. Studies on the mechanism of tolerance or graft-versus-host disease in allogeneic bone marrow recipients at the level of cytotoxic T-cell precursor frequencies. Blood. 1992;79:1622–8.

    CAS  PubMed  Google Scholar 

  23. Fleischhauer K, Beelen DW. HLA mismatching as a strategy to reduce relapse after alternative donor transplantation. Semin Hematol. 2016;53:57–64. https://doi.org/10.1053/j.seminhematol.2016.01.010

    Article  CAS  PubMed  Google Scholar 

  24. Lee SJ, Klein J, Haagenson M, Baxter-Lowe LA, Confer DL, Eapen M, et al. High-resolution donor-recipient HLA matching contributes to the success of unrelated donor marrow transplantation. Blood. 2007;110:4576–83. https://doi.org/10.1182/blood-2007-06-097386

    Article  CAS  PubMed  Google Scholar 

  25. Furst D, Muller C, Vucinic V, Bunjes D, Herr W, Gramatzki M, et al. High-resolution HLA matching in hematopoietic stem cell transplantation: a retrospective collaborative analysis. Blood. 2013;122:3220–9. https://doi.org/10.1182/blood-2013-02-482547

    Article  CAS  PubMed  Google Scholar 

  26. Pidala J, Lee SJ, Ahn KW, Spellman S, Wang HL, Aljurf M, et al. Nonpermissive HLA-DPB1 mismatch increases mortality after myeloablative unrelated allogeneic hematopoietic cell transplantation. Blood. 2014;124:2596–606. https://doi.org/10.1182/blood-2014-05-576041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gratwohl A, Sureda A, Cornelissen J, Apperley J, Dreger P, Duarte R, et al. Alloreactivity: the Janus-face of hematopoietic stem cell transplantation. Leukemia. 2017;31:1752-9. https://doi.org/10.1038/leu.2017.79

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kollman C, Spellman SR, Zhang MJ, Hassebroek A, Anasetti C, Antin JH, et al. The effect of donor characteristics on survival after unrelated donor transplantation for hematologic malignancy. Blood. 2016;127:260–7. https://doi.org/10.1182/blood-2015-08-663823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Morishima Y, Kashiwase K, Matsuo K, Azuma F, Morishima S, Onizuka M, et al. Biological significance of HLA locus matching in unrelated donor bone marrow transplantation. Blood. 2015;125:1189–97. https://doi.org/10.1182/blood-2014-10-604785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shaw BE, Gooley TA, Malkki M, Madrigal JA, Begovich AB, Horowitz MM, et al. The importance of HLA-DPB1 in unrelated donor hematopoietic cell transplantation. Blood. 2007;110:4560–6. https://doi.org/10.1182/blood-2007-06-095265

    Article  CAS  PubMed  Google Scholar 

  31. Petersdorf EW, Gooley TA, Malkki M, Bacigalupo AP, Cesbron A, Du Toit E, et al. HLA-C expression levels define permissible mismatches in hematopoietic cell transplantation. Blood. 2014;124:3996–4003. https://doi.org/10.1182/blood-2014-09-599969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Petersdorf EW, Malkki M, O’HUigin C, Carrington M, Gooley T, Haagenson MD, et al. High HLA-DP expression and graft-versus-host disease. N Engl J Med. 2015;373:599–609. https://doi.org/10.1056/NEJMoa1500140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Edinger M, Hoffmann P, Ermann J, Drago K, Fathman CG, Strober S, et al. CD4+ CD25+ regulatory T cells preserve graft-versus-tumor activity while inhibiting graft-versus-host disease after bone marrow transplantation. Nat Med. 2003;9:1144–50. https://doi.org/10.1038/nm915

    Article  CAS  PubMed  Google Scholar 

  34. van Bergen CA, van Luxemburg-Heijs SA, de Wreede LC, Eefting M, von dem Borne PA, van Balen P, et al. Selective graft-versus-leukemia depends on magnitude and diversity of the alloreactive T cell response. J Clin Invest. 2017;127:517–29. https://doi.org/10.1172/JCI86175

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zino E, Frumento G, Marktel S, Sormani MP, Ficara F, Di Terlizzi S, et al. A T-cell epitope encoded by a subset of HLA-DPB1 alleles determines nonpermissive mismatches for hematologic stem cell transplantation. Blood. 2004;103:1417–24. https://doi.org/10.1182/blood-2003-04-1279

    Article  CAS  PubMed  Google Scholar 

  36. Crocchiolo R, Zino E, Vago L, Oneto R, Bruno B, Pollichieni S, et al. Nonpermissive HLA-DPB1 disparity is a significant independent risk factor for mortality after unrelated hematopoietic stem cell transplantation. Blood. 2009;114:1437–44. https://doi.org/10.1182/blood-2009-01-200378

    Article  CAS  PubMed  Google Scholar 

  37. Fleischhauer K, Shaw BE, Gooley T, Malkki M, Bardy P, Bignon JD, et al. Effect of T-cell-epitope matching at HLA-DPB1 in recipients of unrelated-donor haemopoietic-cell transplantation: a retrospective study. Lancet Oncol. 2012;13:366–74. https://doi.org/10.1016/S1470-2045(12)70004-9

    Article  CAS  PubMed  Google Scholar 

  38. Crivello P, Zito L, Sizzano F, Zino E, Maiers M, Mulder A, et al. The impact of amino acid variability on alloreactivity defines a functional distance predictive of permissive HLA-DPB1 mismatches in hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2015;21:233–41. https://doi.org/10.1016/j.bbmt.2014.10.017

    Article  CAS  PubMed  Google Scholar 

  39. Crivello P, Heinold A, Rebmann V, Ottinger HD, Horn PA, Beelen DW, et al. Functional distance between recipient and donor HLA-DPB1 determines nonpermissive mismatches in unrelated HCT. Blood. 2016;128:120–9. https://doi.org/10.1182/blood-2015-12-686238

    Article  CAS  PubMed  Google Scholar 

  40. McCurdy SR, Fuchs EJ. Selecting the best haploidentical donor. Semin Hematol. 2016;53:246–51. https://doi.org/10.1053/j.seminhematol.2016.08.001

    Article  PubMed  Google Scholar 

  41. Barker JN, Kurtzberg J, Ballen K, Boo M, Brunstein C, Cutler C, et al. Optimal practices in unrelated donor cord blood transplantation for hematologic malignancies. Biol Blood Marrow Transplant. 2017. https://doi.org/10.1016/j.bbmt.2017.03.006

    Article  PubMed  PubMed Central  Google Scholar 

  42. Horowitz MM, Gale RP, Sondel PM, Goldman JM, Kersey J, Kolb HJ, et al. Graft-versus-leukemia reactions after bone marrow transplantation. Blood. 1990;75:555–62.

    CAS  PubMed  Google Scholar 

  43. Kiessling R, Klein E, Wigzell H. “Natural” killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur J Immunol. 1975;5:112–7. https://doi.org/10.1002/eji.1830050208

    Article  CAS  PubMed  Google Scholar 

  44. Karre K, Ljunggren HG, Piontek G, Kiessling R. Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature. 1986;319:675–8. https://doi.org/10.1038/319675a0

    Article  CAS  PubMed  Google Scholar 

  45. Hsu KC, Liu XR, Selvakumar A, Mickelson E, O’Reilly RJ, Dupont B. Killer Ig-like receptor haplotype analysis by gene content: evidence for genomic diversity with a minimum of six basic framework haplotypes, each with multiple subsets. J Immunol. 2002;169:5118–29.

    Article  PubMed  Google Scholar 

  46. Uhrberg M, Valiante NM, Shum BP, Shilling HG, Lienert-Weidenbach K, Corliss B, et al. Human diversity in killer cell inhibitory receptor genes. Immunity. 1997;7:753–63.

    Article  CAS  PubMed  Google Scholar 

  47. Jiang W, Johnson C, Jayaraman J, Simecek N, Noble J, Moffatt MF, et al. Copy number variation leads to considerable diversity for B but not A haplotypes of the human KIR genes encoding NK cell receptors. Genome Res. 2012;22:1845–54. https://doi.org/10.1101/gr.137976.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wagtmann N, Rajagopalan S, Winter CC, Peruzzi M, Long EO. Killer cell inhibitory receptors specific for HLA-C and HLA-B identified by direct binding and by functional transfer. Immunity. 1995;3:801–9.

    Article  CAS  PubMed  Google Scholar 

  49. Anfossi N, Andre P, Guia S, Falk CS, Roetynck S, Stewart CA, et al. Human NK cell education by inhibitory receptors for MHC class I. Immunity. 2006;25:331–42. https://doi.org/10.1016/j.immuni.2006.06.013

    Article  CAS  PubMed  Google Scholar 

  50. Yu J, Heller G, Chewning J, Kim S, Yokoyama WM, Hsu KC. Hierarchy of the human natural killer cell response is determined by class and quantity of inhibitory receptors for self-HLA-B and HLA-C ligands. J Immunol. 2007;179:5977–89.

    Article  CAS  PubMed  Google Scholar 

  51. Boudreau JE, Mulrooney TJ, Le Luduec JB, Barker E, Hsu KC. KIR3DL1 and HLA-B density and binding calibrate NK education and response to HIV. J Immunol. 2016;196:3398–410. https://doi.org/10.4049/jimmunol.1502469

    Article  CAS  PubMed  Google Scholar 

  52. Boudreau JE, Liu XR, Zhao Z, Zhang A, Shultz LD, Greiner DL, et al. Cell-extrinsic MHC class I molecule engagement augments human NK cell education programmed by cell-intrinsic MHC class I. Immunity. 2016;45:280–91. https://doi.org/10.1016/j.immuni.2016.07.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fernandez NC, Treiner E, Vance RE, Jamieson AM, Lemieux S, Raulet DH. A subset of natural killer cells achieves self-tolerance without expressing inhibitory receptors specific for self-MHC molecules. Blood. 2005;105:4416–23. https://doi.org/10.1182/blood-2004-08-3156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kim S, Poursine-Laurent J, Truscott SM, Lybarger L, Song YJ, Yang L, et al. Licensing of natural killer cells by host major histocompatibility complex class I molecules. Nature. 2005;436:709–13. https://doi.org/10.1038/nature03847

    Article  CAS  PubMed  Google Scholar 

  55. Garcia-Beltran WF, Holzemer A, Martrus G, Chung AW, Pacheco Y, Simoneau CR, et al. Open conformers of HLA-F are high-affinity ligands of the activating NK-cell receptor KIR3DS1. Nat Immunol. 2016;17:1067–74. https://doi.org/10.1038/ni.3513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chewning JH, Gudme CN, Hsu KC, Selvakumar A, Dupont B. KIR2DS1-positive NK cells mediate alloresponse against the C2 HLA-KIR ligand group in vitro. J Immunol. 2007;179:854–68.

    Article  CAS  PubMed  Google Scholar 

  57. Fauriat C, Ivarsson MA, Ljunggren HG, Malmberg KJ, Michaelsson J. Education of human natural killer cells by activating killer cell immunoglobulin-like receptors. Blood. 2010;115:1166–74. https://doi.org/10.1182/blood-2009-09-245746

    Article  CAS  PubMed  Google Scholar 

  58. Dupont B, Hsu KC. Inhibitory killer Ig-like receptor genes and human leukocyte antigen class I ligands in haematopoietic stem cell transplantation. Curr Opin Immunol. 2004;16:634–43. https://doi.org/10.1016/j.coi.2004.07.013

    Article  CAS  PubMed  Google Scholar 

  59. Ruggeri L, Capanni M, Casucci M, Volpi I, Tosti A, Perruccio K, et al. Role of natural killer cell alloreactivity in HLA-mismatched hematopoietic stem cell transplantation. Blood. 1999;94:333–9.

    CAS  PubMed  Google Scholar 

  60. Ruggeri L, Capanni M, Urbani E, Perruccio K, Shlomchik WD, Tosti A, et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science. 2002;295:2097–2100. https://doi.org/10.1126/science.1068440

    Article  CAS  PubMed  Google Scholar 

  61. Ruggeri L, Mancusi A, Capanni M, Urbani E, Carotti A, Aloisi T, et al. Donor natural killer cell allorecognition of missing self in haploidentical hematopoietic transplantation for acute myeloid leukemia: challenging its predictive value. Blood. 2007;110:433–40. https://doi.org/10.1182/blood-2006-07-038687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Giebel S, Locatelli F, Lamparelli T, Velardi A, Davies S, Frumento G, et al. Survival advantage with KIR ligand incompatibility in hematopoietic stem cell transplantation from unrelated donors. Blood. 2003;102:814–9. https://doi.org/10.1182/blood-2003-01-0091

    Article  CAS  PubMed  Google Scholar 

  63. Farag SS, Bacigalupo A, Eapen M, Hurley C, Dupont B, Caligiuri MA, et al. The effect of KIR ligand incompatibility on the outcome of unrelated donor transplantation: a report from the center for international blood and marrow transplant research, the European blood and marrow transplant registry, and the Dutch registry. Biol Blood Marrow Transplant. 2006;12:876–84. https://doi.org/10.1016/j.bbmt.2006.05.007

    Article  CAS  PubMed  Google Scholar 

  64. Hsu KC, Keever-Taylor CA, Wilton A, Pinto C, Heller G, Arkun K, et al. Improved outcome in HLA-identical sibling hematopoietic stem-cell transplantation for acute myelogenous leukemia predicted by KIR and HLA genotypes. Blood. 2005;105:4878–84. https://doi.org/10.1182/blood-2004-12-4825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hsu KC, Gooley T, Malkki M, Pinto-Agnello C, Dupont B, Bignon JD, et al. KIR ligands and prediction of relapse after unrelated donor hematopoietic cell transplantation for hematologic malignancy. Biol Blood Marrow Transplant. 2006;12:828–36. https://doi.org/10.1016/j.bbmt.2006.04.008

    Article  CAS  PubMed  Google Scholar 

  66. Miller JS, Cooley S, Parham P, Farag SS, Verneris MR, McQueen KL, et al. Missing KIR ligands are associated with less relapse and increased graft-versus-host disease (GVHD) following unrelated donor allogeneic HCT. Blood. 2007;109:5058–61. https://doi.org/10.1182/blood-2007-01-065383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yu J, Venstrom JM, Liu XR, Pring J, Hasan RS, O’Reilly RJ, et al. Breaking tolerance to self, circulating natural killer cells expressing inhibitory KIR for non-self HLA exhibit effector function after T cell-depleted allogeneic hematopoietic cell transplantation. Blood. 2009;113:3875–84. https://doi.org/10.1182/blood-2008-09-177055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Venstrom JM, Gooley TA, Spellman S, Pring J, Malkki M, Dupont B, et al. Donor activating KIR3DS1 is associated with decreased acute GVHD in unrelated allogeneic hematopoietic stem cell transplantation. Blood. 2010;115:3162–5. https://doi.org/10.1182/blood-2009-08-236943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mancusi A, Ruggeri L, Urbani E, Pierini A, Massei MS, Carotti A, et al. Haploidentical hematopoietic transplantation from KIR ligand-mismatched donors with activating KIRs reduces nonrelapse mortality. Blood. 2015;125:3173–82. https://doi.org/10.1182/blood-2014-09-599993

    Article  CAS  PubMed  Google Scholar 

  70. Cooley S, Trachtenberg E, Bergemann TL, Saeteurn K, Klein J, Le CT, et al. Donors with group B KIR haplotypes improve relapse-free survival after unrelated hematopoietic cell transplantation for acute myelogenous leukemia. Blood. 2009;113:726–32. https://doi.org/10.1182/blood-2008-07-171926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cooley S, Weisdorf DJ, Guethlein LA, Klein JP, Wang T, Le CT, et al. Donor selection for natural killer cell receptor genes leads to superior survival after unrelated transplantation for acute myelogenous leukemia. Blood. 2010;116:2411–9. https://doi.org/10.1182/blood-2010-05-283051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Venstrom JM, Pittari G, Gooley TA, Chewning JH, Spellman S, Haagenson M, et al. HLA-C-dependent prevention of leukemia relapse by donor activating KIR2DS1. N Engl J Med. 2012;367:805–16. https://doi.org/10.1056/NEJMoa1200503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Cooley S, Weisdorf DJ, Guethlein LA, Klein JP, Wang T, Marsh SG, et al. Donor killer cell Ig-like receptor B haplotypes, recipient HLA-C1, and HLA-C mismatch enhance the clinical benefit of unrelated transplantation for acute myelogenous leukemia. J Immunol. 2014;192:4592–4600. https://doi.org/10.4049/jimmunol.1302517

    Article  CAS  PubMed  Google Scholar 

  74. Parham P, Norman PJ, Abi-Rached L, Guethlein LA. Variable NK cell receptors exemplified by human KIR3DL1/S1. J Immunol. 2011;187:11–19. https://doi.org/10.4049/jimmunol.0902332

    Article  CAS  PubMed  Google Scholar 

  75. Saunders PM, Pymm P, Pietra G, Hughes VA, Hitchen C, O’Connor GM, et al. Killer cell immunoglobulin-like receptor 3DL1 polymorphism defines distinct hierarchies of HLA class I recognition. J Exp Med. 2016;213:791–807. https://doi.org/10.1084/jem.20152023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Boudreau JE, Giglio F, Gooley TA, Stevenson PA, Le Luduec JB, Shaffer BC, Rajalingam R, Hou L, Hurley CK, Noreen H, Reed EF, Yu N, Vierra-Green C, Haagenson MD, Malkki M, Petersdorf EW, Spellman S, Hsu KC. KIR3DL1/HLA-B subtypes govern AML relapse after hematopoietic cell transplantation. J Clin Oncol. 2017;35:2268–78. In Press

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ordonez D, Moraru M, Gomez-Lozano N, Cisneros E, Vilches C. KIR typing by non-sequencing methods: polymerase-chain reaction with sequence-specific primers. Methods Mol Biol. 2012;882:415–30. https://doi.org/10.1007/978-1-61779-842-9_24

    Article  CAS  PubMed  Google Scholar 

  78. Boudreau JE, Le Luduec JB, Hsu KC. Development of a novel multiplex PCR assay to detect functional subtypes of KIR3DL1 alleles. PLoS ONE. 2014;9:e99543 https://doi.org/10.1371/journal.pone.0099543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Norman PJ, Hollenbach JA, Nemat-Gorgani N, Marin WM, Norberg SJ, Ashouri E, et al. Defining KIR and HLA class I genotypes at highest resolution via high-throughput sequencing. Am J Hum Genet. 2016;99:375–91. https://doi.org/10.1016/j.ajhg.2016.06.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Pidala J, Anasetti C, Kharfan-Dabaja MA, Cutler C, Sheldon A, Djulbegovic B. Decision analysis of peripheral blood versus bone marrow hematopoietic stem cells for allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2009;15:1415–21. https://doi.org/10.1016/j.bbmt.2009.07.009

    Article  PubMed  Google Scholar 

  81. Hassan HT, Stockschlader M, Schleimer B, Kruger W, Zander AR. Comparison of the content and subpopulations of CD3 and CD34 positive cells in bone marrow harvests and G-CSF-mobilized peripheral blood leukapheresis products from healthy adult donors. Transpl Immunol. 1996;4:319–23.

    Article  CAS  PubMed  Google Scholar 

  82. Chevallier P, Robillard N, Illiaquer M, Esbelin J, Mohty M, Bodin-Bressollette C, et al. Characterization of various blood and graft sources: a prospective series. Transfusion. 2013;53:2020–6. https://doi.org/10.1111/trf.12072

    Article  PubMed  Google Scholar 

  83. Holtick U, Albrecht M, Chemnitz JM, Theurich S, Shimabukuro-Vornhagen A, Skoetz N, et al. Comparison of bone marrow versus peripheral blood allogeneic hematopoietic stem cell transplantation for hematological malignancies in adults–a systematic review and meta-analysis. Crit Rev Oncol Hematol. 2015;94:179–88. https://doi.org/10.1016/j.critrevonc.2014.12.007

    Article  PubMed  Google Scholar 

  84. Anasetti C, Logan BR, Lee SJ, Waller EK, Weisdorf DJ, Wingard JR, et al. Peripheral-blood stem cells versus bone marrow from unrelated donors. N Engl J Med. 2012;367:1487–96. https://doi.org/10.1056/NEJMoa1203517

    Article  CAS  PubMed  Google Scholar 

  85. Eapen M. Unrelated donor transplantation: peripheral blood or bone marrow--does it matter? Best Pract Res Clin Haematol. 2014;27:278–82. https://doi.org/10.1016/j.beha.2014.10.010

    Article  PubMed  Google Scholar 

  86. Nagler A, Labopin M, Shimoni A, Niederwieser D, Mufti GJ, Zander AR, et al. Mobilized peripheral blood stem cells compared with bone marrow as the stem cell source for unrelated donor allogeneic transplantation with reduced-intensity conditioning in patients with acute myeloid leukemia in complete remission: an analysis from the Acute Leukemia Working Party of the European Group for Blood and Marrow Transplantation. Biol Blood Marrow Transplant. 2012;18:1422–9. https://doi.org/10.1016/j.bbmt.2012.02.013

    Article  PubMed  Google Scholar 

  87. Nagler A, Labopin M, Shimoni A, Mufti GJ, Cornelissen JJ, Blaise D, et al. Mobilized peripheral blood stem cells compared with bone marrow from HLA-identical siblings for reduced-intensity conditioning transplantation in acute myeloid leukemia in complete remission: a retrospective analysis from the Acute Leukemia Working Party of EBMT. Eur J Haematol. 2012;89:206–13. https://doi.org/10.1111/j.1600-0609.2012.01811.x

    Article  PubMed  Google Scholar 

  88. Bradstock K, Bilmon I, Kwan J, Blyth E, Micklethwaite K, Huang G, et al. Influence of stem cell source on outcomes of allogeneic reduced-intensity conditioning therapy transplants using haploidentical related donors. Biol Blood Marrow Transplant. 2015;21:1641–5. https://doi.org/10.1016/j.bbmt.2015.06.006

    Article  PubMed  Google Scholar 

  89. Castagna L, Crocchiolo R, Furst S, Bramanti S, El Cheikh J, Sarina B, et al. Bone marrow compared with peripheral blood stem cells for haploidentical transplantation with a nonmyeloablative conditioning regimen and post-transplantation cyclophosphamide. Biol Blood Marrow Transplant. 2014;20:724–9. https://doi.org/10.1016/j.bbmt.2014.02.001

    Article  PubMed  Google Scholar 

  90. Armand P, Kim HT, Logan BR, Wang Z, Alyea EP, Kalaycio ME, et al. Validation and refinement of the disease risk index for allogeneic stem cell transplantation. Blood. 2014;123:3664–71. https://doi.org/10.1182/blood-2014-01-552984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wagner JE Jr., Eapen M, Carter S, Wang Y, Schultz KR, Wall DA, et al. One-unit versus two-unit cord-blood transplantation for hematologic cancers. N Engl J Med. 2014;371:1685–94. https://doi.org/10.1056/NEJMoa1405584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Shi-Xia X, Xian-Hua T, Xiang-Feng T. Unrelated umbilical cord blood transplantation and unrelated bone marrow transplantation in children with hematological disease: a meta-analysis. Pediatr Transplant. 2009;13:278–84. https://doi.org/10.1111/j.1399-3046.2008.01089.x

    Article  PubMed  Google Scholar 

  93. Eapen M, Rocha V, Sanz G, Scaradavou A, Zhang MJ, Arcese W, et al. Effect of graft source on unrelated donor haemopoietic stem-cell transplantation in adults with acute leukaemia: a retrospective analysis. Lancet Oncol. 2010;11:653–60. https://doi.org/10.1016/S1470-2045(10)70127-3

    Article  PubMed  PubMed Central  Google Scholar 

  94. Marks DI, Woo KA, Zhong X, Appelbaum FR, Bachanova V, Barker JN, et al. Unrelated umbilical cord blood transplant for adult acute lymphoblastic leukemia in first and second complete remission: a comparison with allografts from adult unrelated donors. Haematologica. 2014;99:322–8. https://doi.org/10.3324/haematol.2013.094193

    Article  PubMed  PubMed Central  Google Scholar 

  95. Brunstein CG, Eapen M, Ahn KW, Appelbaum FR, Ballen KK, Champlin RE, et al. Reduced-intensity conditioning transplantation in acute leukemia: the effect of source of unrelated donor stem cells on outcomes. Blood. 2012;119:5591–8. https://doi.org/10.1182/blood-2011-12-400630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Rodrigues CA, Rocha V, Dreger P, Brunstein C, Sengeloev H, Finke J, et al. Alternative donor hematopoietic stem cell transplantation for mature lymphoid malignancies after reduced-intensity conditioning regimen: similar outcomes with umbilical cord blood and unrelated donor peripheral blood. Haematologica. 2014;99:370–7. https://doi.org/10.3324/haematol.2013.088997

    Article  PubMed  PubMed Central  Google Scholar 

  97. Robin M, Ruggeri A, Labopin M, Niederwieser D, Tabrizi R, Sanz G, et al. Comparison of unrelated cord blood and peripheral blood stem cell transplantation in adults with myelodysplastic syndrome after reduced-intensity conditioning regimen: a collaborative study from Eurocord (Cord blood Committee of Cellular Therapy & Immunobiology Working Party of EBMT) and Chronic Malignancies Working Party. Biol Blood Marrow Transplant. 2015;21:489–95. https://doi.org/10.1016/j.bbmt.2014.11.675

    Article  PubMed  Google Scholar 

  98. Milano F, Gooley T, Wood B, Woolfrey A, Flowers ME, Doney K, et al. Cord-blood transplantation in patients with minimal residual disease. N Engl J Med. 2016;375:944–53. https://doi.org/10.1056/NEJMoa1602074

    Article  PubMed  PubMed Central  Google Scholar 

  99. Verneris MR, Brunstein CG, Barker J, MacMillan ML, DeFor T, McKenna DH, et al. Relapse risk after umbilical cord blood transplantation: enhanced graft-versus-leukemia effect in recipients of 2 units. Blood. 2009;114:4293–9. https://doi.org/10.1182/blood-2009-05-220525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Labopin M, Ruggeri A, Gorin NC, Gluckman E, Blaise D, Mannone L, et al. Cost-effectiveness and clinical outcomes of double versus single cord blood transplantation in adults with acute leukemia in France. Haematologica. 2014;99:535–40. https://doi.org/10.3324/haematol.2013.092254

    Article  PubMed  PubMed Central  Google Scholar 

  101. Ruggeri A, Sanz G, Bittencourt H, Sanz J, Rambaldi A, Volt F, et al. Comparison of outcomes after single or double cord blood transplantation in adults with acute leukemia using different types of myeloablative conditioning regimen, a retrospective study on behalf of Eurocord and the Acute Leukemia Working Party of EBMT. Leukemia. 2014;28:779–86. https://doi.org/10.1038/leu.2013.259

    Article  CAS  PubMed  Google Scholar 

  102. Tsang KS, Leung AW, Lee V, Cheng FW, Shing MM, Pong HN, et al. Indiscernible benefit of double-unit umbilical cord blood transplantation in children: a single-center experience from Hong Kong. Cell Transplant. 2016;25:1277–86. https://doi.org/10.3727/096368915X689631

    Article  PubMed  Google Scholar 

  103. Shaffer BC, Le Luduec JB, Forlenza C, Jakubowski AA, Perales MA, Young JW, et al. Phase II study of haploidentical natural killer cell infusion for treatment of relapsed or persistent myeloid malignancies following allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2016;22:705–9. https://doi.org/10.1016/j.bbmt.2015.12.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Deutsche José Carreras Leukämie Stiftung (DJCLS R 15/02 and DJCLS 01R/2017), the European Commission Transcan JTC2012 (Cancer12-045-HLALOSS), the Dr. Werner Jackstädt Stiftung, Germany and the Joseph Senker Stiftung, Germany to KF and from NIH U01 AI069197, P01 CA23766, R01 HL129472, and Leukemia & Lymphoma Society to KCH.

Author contributions

KF, KCH and BES wrote the manuscript and created the Figures and Tables relevant to the parts on HLA, NK alloreactivity and stem cell source, respectively.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Katharina Fleischhauer, Katharine C. Hsu or Bronwen E. Shaw.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fleischhauer, K., Hsu, K.C. & Shaw, B.E. Prevention of relapse after allogeneic hematopoietic cell transplantation by donor and cell source selection. Bone Marrow Transplant 53, 1498–1507 (2018). https://doi.org/10.1038/s41409-018-0218-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41409-018-0218-1

This article is cited by

Search

Quick links