Review Article | Published:

Prevention of relapse after allogeneic hematopoietic cell transplantation by donor and cell source selection

Bone Marrow Transplantation (2018) | Download Citation

Abstract

Allogeneic hematopoietic cell transplantation (HCT) is the most established form of cancer immunotherapy and has been successfully applied for the treatment and cure of otherwise lethal neoplastic blood disorders. Cancer immune surveillance is mediated to a large extent by alloreactive T and natural killer (NK) cells recognizing genetic differences between patient and donor. Profound insights into the biology of these effector cells has been obtained over recent years and used for the development of innovative strategies for intelligent donor selection, aiming for improved graft-versus-leukemia effect without unmanageable graft-versus-host disease. The cellular composition of the stem cell source plays a major role in modulating these effects. This review summarizes the current state-of the-art of donor selection according to HLA, NK alloreactivity and stem cell source.

  • Subscribe to Bone Marrow Transplantation for full access:

    $902

    Subscribe

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

References

  1. 1.

    Passweg JR, Baldomero H, Bader P, Bonini C, Duarte RF, Dufour C, et al. Use of haploidentical stem cell transplantation continues to increase: the 2015 European Society for Blood and Marrow Transplant activity survey report. Bone Marrow Transplant. 2017;52:811–7. https://doi.org/10.1038/bmt.2017.34

  2. 2.

    D’Souza A, Lee S, Zhu X, Pasquini M. Current use and trends in hematopoietic cell transplantation in the United States. Biol Blood Marrow Transplant. 2017;23:1417–21. https://doi.org/10.1016/j.bbmt.2017.05.035

  3. 3.

    Soiffer RJ, Kim HT, McGuirk J, Horwitz ME, Johnston L, Patnaik MM, et al. Prospective, randomized, double-blind, phase III clinical trial of anti-T-lymphocyte globulin to assess impact on chronic graft-versus-host disease-free survival in patients undergoing HLA-matched unrelated myeloablative hematopoietic cell transplantation. J Clin Oncol. 2017;35:4003–11. https://doi.org/10.1200/JCO.2017.75.8177

  4. 4.

    Robinson J, Halliwell JA, Hayhurst JD, Flicek P, Parham P, Marsh SG. TheIPD and IMGT/HLA database: allele variant databases. Nucleic Acids Res. 2015;43:D423–431. https://doi.org/10.1093/nar/gku1161. (Database issue)

  5. 5.

    van Rood JJ, van Leeuwen A, Persijn GG, Lansbergen Q, Goulmy E, Termijtelen A, et al. Role of the HLA system in transplantation. HLA compatibility in clinical transplantation. Transplant Proc. 1977;9:459–67.

  6. 6.

    Petersdorf EW. In celebration of Ruggero Ceppellini: HLA in transplantation. HLA. 2017;89:71–76. https://doi.org/10.1111/tan.12955

  7. 7.

    Kanakry CG, Fuchs EJ, Luznik L. Modern approaches to HLA-haploidentical blood or marrow transplantation. Nat Rev Clin Oncol. 2016;13:10–24. https://doi.org/10.1038/nrclinonc.2015.128

  8. 8.

    Apperley J, Niederwieser D, Huang XJ, Nagler A, Fuchs E, Szer J, et al. Haploidentical hematopoietic stem cell transplantation: a global overview comparing Asia, the European Union, and the United States. Biol Blood Marrow Transplant. 2016;22:23–26. https://doi.org/10.1016/j.bbmt.2015.11.001

  9. 9.

    Altaf SY, Apperley JF, Olavarria E. Matched unrelated donor transplants-State of the art in the 21st century. Semin Hematol. 2016;53:221–9. https://doi.org/10.1053/j.seminhematol.2016.07.002

  10. 10.

    Rocha V. Umbilical cord blood cells from unrelated donor as an alternative source of hematopoietic stem cells for transplantation in children and adults. Semin Hematol. 2016;53:237–45. https://doi.org/10.1053/j.seminhematol.2016.08.002

  11. 11.

    Gragert L, Eapen M, Williams E, Freeman J, Spellman S, Baitty R, et al. HLA match likelihoods for hematopoietic stem-cell grafts in the U.S. registry. N Engl J Med. 2014;371:339–48. https://doi.org/10.1056/NEJMsa1311707

  12. 12.

    Buck K, Wadsworth K, Setterholm M, Maiers M, Confer D, Hartzman R, et al. High-resolution match rate of 7/8 and 9/10 or better for the match unrelated donor registry. Biol Blood Marrow Transplant. 2016;22:759–63. https://doi.org/10.1016/j.bbmt.2015.12.012

  13. 13.

    Archbold JK, Macdonald WA, Burrows SR, Rossjohn J, McCluskey J. T-cell allorecognition: a case of mistaken identity or deja vu? Trends Immunol. 2008;29:220–6. https://doi.org/10.1016/j.it.2008.02.005

  14. 14.

    Lakkis FG, Lechler RI. Origin and biology of the allogeneic response. Cold Spring Harb Perspect Med. 2013. https://doi.org/10.1101/cshperspect.a014993

  15. 15.

    Afzali B, Lechler RI, Hernandez-Fuentes MP. Allorecognition and the alloresponse: clinical implications. Tissue Antigens. 2007;69:545–56. https://doi.org/10.1111/j.1399-0039.2007.00834.x

  16. 16.

    Falkenburg JH, Jedema I. Allo-reactive T cells for the treatment of hematological malignancies. Mol Oncol. 2015;9:1894–903. https://doi.org/10.1016/j.molonc.2015.10.014

  17. 17.

    Griffioen M, van Bergen CA, Falkenburg JH. Autosomal minor histocompatibility antigens: how genetic variants create diversity in immune targets. Front Immunol. 2016;7:100 https://doi.org/10.3389/fimmu.2016.00100

  18. 18.

    Spierings E. Minor histocompatibility antigens: past, present, and future. Tissue Antigens. 2014;84:374–360. https://doi.org/10.1111/tan.12445

  19. 19.

    Bleakley M, Heimfeld S, Loeb KR, Jones LA, Chaney C, Seropian S, et al. Outcomes of acute leukemia patients transplanted with naive T cell-depleted stem cell grafts. J Clin Invest. 2015;125:2677–89. https://doi.org/10.1172/JCI81229

  20. 20.

    Li Pira G, Di Cecca S, Montanari M, Moretta L, Manca F. Specific removal of alloreactive T-cells to prevent GvHD in hemopoietic stem cell transplantation: rationale, strategies and perspectives. Blood Rev. 2016;30:297–307. https://doi.org/10.1016/j.blre.2016.03.001

  21. 21.

    Keever-Taylor CA, Passweg J, Kawanishi Y, Casper J, Flomenberg N, Baxter-Lowe LA. Association of donor-derived host-reactive cytolytic and helper T cells with outcome following alternative donor T cell-depleted bone marrow transplantation. Bone Marrow Transplant. 1997;19:1001–9. https://doi.org/10.1038/sj.bmt.1700779

  22. 22.

    Irschick EU, Hladik F, Niederwieser D, Nussbaumer W, Holler E, Kaminski E, et al. Studies on the mechanism of tolerance or graft-versus-host disease in allogeneic bone marrow recipients at the level of cytotoxic T-cell precursor frequencies. Blood. 1992;79:1622–8.

  23. 23.

    Fleischhauer K, Beelen DW. HLA mismatching as a strategy to reduce relapse after alternative donor transplantation. Semin Hematol. 2016;53:57–64. https://doi.org/10.1053/j.seminhematol.2016.01.010

  24. 24.

    Lee SJ, Klein J, Haagenson M, Baxter-Lowe LA, Confer DL, Eapen M, et al. High-resolution donor-recipient HLA matching contributes to the success of unrelated donor marrow transplantation. Blood. 2007;110:4576–83. https://doi.org/10.1182/blood-2007-06-097386

  25. 25.

    Furst D, Muller C, Vucinic V, Bunjes D, Herr W, Gramatzki M, et al. High-resolution HLA matching in hematopoietic stem cell transplantation: a retrospective collaborative analysis. Blood. 2013;122:3220–9. https://doi.org/10.1182/blood-2013-02-482547

  26. 26.

    Pidala J, Lee SJ, Ahn KW, Spellman S, Wang HL, Aljurf M, et al. Nonpermissive HLA-DPB1 mismatch increases mortality after myeloablative unrelated allogeneic hematopoietic cell transplantation. Blood. 2014;124:2596–606. https://doi.org/10.1182/blood-2014-05-576041

  27. 27.

    Gratwohl A, Sureda A, Cornelissen J, Apperley J, Dreger P, Duarte R, et al. Alloreactivity: the Janus-face of hematopoietic stem cell transplantation. Leukemia. 2017;31:1752-9. https://doi.org/10.1038/leu.2017.79

  28. 28.

    Kollman C, Spellman SR, Zhang MJ, Hassebroek A, Anasetti C, Antin JH, et al. The effect of donor characteristics on survival after unrelated donor transplantation for hematologic malignancy. Blood. 2016;127:260–7. https://doi.org/10.1182/blood-2015-08-663823

  29. 29.

    Morishima Y, Kashiwase K, Matsuo K, Azuma F, Morishima S, Onizuka M, et al. Biological significance of HLA locus matching in unrelated donor bone marrow transplantation. Blood. 2015;125:1189–97. https://doi.org/10.1182/blood-2014-10-604785

  30. 30.

    Shaw BE, Gooley TA, Malkki M, Madrigal JA, Begovich AB, Horowitz MM, et al. The importance of HLA-DPB1 in unrelated donor hematopoietic cell transplantation. Blood. 2007;110:4560–6. https://doi.org/10.1182/blood-2007-06-095265

  31. 31.

    Petersdorf EW, Gooley TA, Malkki M, Bacigalupo AP, Cesbron A, Du Toit E, et al. HLA-C expression levels define permissible mismatches in hematopoietic cell transplantation. Blood. 2014;124:3996–4003. https://doi.org/10.1182/blood-2014-09-599969

  32. 32.

    Petersdorf EW, Malkki M, O’HUigin C, Carrington M, Gooley T, Haagenson MD, et al. High HLA-DP expression and graft-versus-host disease. N Engl J Med. 2015;373:599–609. https://doi.org/10.1056/NEJMoa1500140

  33. 33.

    Edinger M, Hoffmann P, Ermann J, Drago K, Fathman CG, Strober S, et al. CD4+ CD25+ regulatory T cells preserve graft-versus-tumor activity while inhibiting graft-versus-host disease after bone marrow transplantation. Nat Med. 2003;9:1144–50. https://doi.org/10.1038/nm915

  34. 34.

    van Bergen CA, van Luxemburg-Heijs SA, de Wreede LC, Eefting M, von dem Borne PA, van Balen P, et al. Selective graft-versus-leukemia depends on magnitude and diversity of the alloreactive T cell response. J Clin Invest. 2017;127:517–29. https://doi.org/10.1172/JCI86175

  35. 35.

    Zino E, Frumento G, Marktel S, Sormani MP, Ficara F, Di Terlizzi S, et al. A T-cell epitope encoded by a subset of HLA-DPB1 alleles determines nonpermissive mismatches for hematologic stem cell transplantation. Blood. 2004;103:1417–24. https://doi.org/10.1182/blood-2003-04-1279

  36. 36.

    Crocchiolo R, Zino E, Vago L, Oneto R, Bruno B, Pollichieni S, et al. Nonpermissive HLA-DPB1 disparity is a significant independent risk factor for mortality after unrelated hematopoietic stem cell transplantation. Blood. 2009;114:1437–44. https://doi.org/10.1182/blood-2009-01-200378

  37. 37.

    Fleischhauer K, Shaw BE, Gooley T, Malkki M, Bardy P, Bignon JD, et al. Effect of T-cell-epitope matching at HLA-DPB1 in recipients of unrelated-donor haemopoietic-cell transplantation: a retrospective study. Lancet Oncol. 2012;13:366–74. https://doi.org/10.1016/S1470-2045(12)70004-9

  38. 38.

    Crivello P, Zito L, Sizzano F, Zino E, Maiers M, Mulder A, et al. The impact of amino acid variability on alloreactivity defines a functional distance predictive of permissive HLA-DPB1 mismatches in hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2015;21:233–41. https://doi.org/10.1016/j.bbmt.2014.10.017

  39. 39.

    Crivello P, Heinold A, Rebmann V, Ottinger HD, Horn PA, Beelen DW, et al. Functional distance between recipient and donor HLA-DPB1 determines nonpermissive mismatches in unrelated HCT. Blood. 2016;128:120–9. https://doi.org/10.1182/blood-2015-12-686238

  40. 40.

    McCurdy SR, Fuchs EJ. Selecting the best haploidentical donor. Semin Hematol. 2016;53:246–51. https://doi.org/10.1053/j.seminhematol.2016.08.001

  41. 41.

    Barker JN, Kurtzberg J, Ballen K, Boo M, Brunstein C, Cutler C, et al. Optimal practices in unrelated donor cord blood transplantation for hematologic malignancies. Biol Blood Marrow Transplant. 2017. https://doi.org/10.1016/j.bbmt.2017.03.006

  42. 42.

    Horowitz MM, Gale RP, Sondel PM, Goldman JM, Kersey J, Kolb HJ, et al. Graft-versus-leukemia reactions after bone marrow transplantation. Blood. 1990;75:555–62.

  43. 43.

    Kiessling R, Klein E, Wigzell H. “Natural” killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur J Immunol. 1975;5:112–7. https://doi.org/10.1002/eji.1830050208

  44. 44.

    Karre K, Ljunggren HG, Piontek G, Kiessling R. Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature. 1986;319:675–8. https://doi.org/10.1038/319675a0

  45. 45.

    Hsu KC, Liu XR, Selvakumar A, Mickelson E, O’Reilly RJ, Dupont B. Killer Ig-like receptor haplotype analysis by gene content: evidence for genomic diversity with a minimum of six basic framework haplotypes, each with multiple subsets. J Immunol. 2002;169:5118–29.

  46. 46.

    Uhrberg M, Valiante NM, Shum BP, Shilling HG, Lienert-Weidenbach K, Corliss B, et al. Human diversity in killer cell inhibitory receptor genes. Immunity. 1997;7:753–63.

  47. 47.

    Jiang W, Johnson C, Jayaraman J, Simecek N, Noble J, Moffatt MF, et al. Copy number variation leads to considerable diversity for B but not A haplotypes of the human KIR genes encoding NK cell receptors. Genome Res. 2012;22:1845–54. https://doi.org/10.1101/gr.137976.112

  48. 48.

    Wagtmann N, Rajagopalan S, Winter CC, Peruzzi M, Long EO. Killer cell inhibitory receptors specific for HLA-C and HLA-B identified by direct binding and by functional transfer. Immunity. 1995;3:801–9.

  49. 49.

    Anfossi N, Andre P, Guia S, Falk CS, Roetynck S, Stewart CA, et al. Human NK cell education by inhibitory receptors for MHC class I. Immunity. 2006;25:331–42. https://doi.org/10.1016/j.immuni.2006.06.013

  50. 50.

    Yu J, Heller G, Chewning J, Kim S, Yokoyama WM, Hsu KC. Hierarchy of the human natural killer cell response is determined by class and quantity of inhibitory receptors for self-HLA-B and HLA-C ligands. J Immunol. 2007;179:5977–89.

  51. 51.

    Boudreau JE, Mulrooney TJ, Le Luduec JB, Barker E, Hsu KC. KIR3DL1 and HLA-B density and binding calibrate NK education and response to HIV. J Immunol. 2016;196:3398–410. https://doi.org/10.4049/jimmunol.1502469

  52. 52.

    Boudreau JE, Liu XR, Zhao Z, Zhang A, Shultz LD, Greiner DL, et al. Cell-extrinsic MHC class I molecule engagement augments human NK cell education programmed by cell-intrinsic MHC class I. Immunity. 2016;45:280–91. https://doi.org/10.1016/j.immuni.2016.07.005

  53. 53.

    Fernandez NC, Treiner E, Vance RE, Jamieson AM, Lemieux S, Raulet DH. A subset of natural killer cells achieves self-tolerance without expressing inhibitory receptors specific for self-MHC molecules. Blood. 2005;105:4416–23. https://doi.org/10.1182/blood-2004-08-3156

  54. 54.

    Kim S, Poursine-Laurent J, Truscott SM, Lybarger L, Song YJ, Yang L, et al. Licensing of natural killer cells by host major histocompatibility complex class I molecules. Nature. 2005;436:709–13. https://doi.org/10.1038/nature03847

  55. 55.

    Garcia-Beltran WF, Holzemer A, Martrus G, Chung AW, Pacheco Y, Simoneau CR, et al. Open conformers of HLA-F are high-affinity ligands of the activating NK-cell receptor KIR3DS1. Nat Immunol. 2016;17:1067–74. https://doi.org/10.1038/ni.3513

  56. 56.

    Chewning JH, Gudme CN, Hsu KC, Selvakumar A, Dupont B. KIR2DS1-positive NK cells mediate alloresponse against the C2 HLA-KIR ligand group in vitro. J Immunol. 2007;179:854–68.

  57. 57.

    Fauriat C, Ivarsson MA, Ljunggren HG, Malmberg KJ, Michaelsson J. Education of human natural killer cells by activating killer cell immunoglobulin-like receptors. Blood. 2010;115:1166–74. https://doi.org/10.1182/blood-2009-09-245746

  58. 58.

    Dupont B, Hsu KC. Inhibitory killer Ig-like receptor genes and human leukocyte antigen class I ligands in haematopoietic stem cell transplantation. Curr Opin Immunol. 2004;16:634–43. https://doi.org/10.1016/j.coi.2004.07.013

  59. 59.

    Ruggeri L, Capanni M, Casucci M, Volpi I, Tosti A, Perruccio K, et al. Role of natural killer cell alloreactivity in HLA-mismatched hematopoietic stem cell transplantation. Blood. 1999;94:333–9.

  60. 60.

    Ruggeri L, Capanni M, Urbani E, Perruccio K, Shlomchik WD, Tosti A, et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science. 2002;295:2097–2100. https://doi.org/10.1126/science.1068440

  61. 61.

    Ruggeri L, Mancusi A, Capanni M, Urbani E, Carotti A, Aloisi T, et al. Donor natural killer cell allorecognition of missing self in haploidentical hematopoietic transplantation for acute myeloid leukemia: challenging its predictive value. Blood. 2007;110:433–40. https://doi.org/10.1182/blood-2006-07-038687

  62. 62.

    Giebel S, Locatelli F, Lamparelli T, Velardi A, Davies S, Frumento G, et al. Survival advantage with KIR ligand incompatibility in hematopoietic stem cell transplantation from unrelated donors. Blood. 2003;102:814–9. https://doi.org/10.1182/blood-2003-01-0091

  63. 63.

    Farag SS, Bacigalupo A, Eapen M, Hurley C, Dupont B, Caligiuri MA, et al. The effect of KIR ligand incompatibility on the outcome of unrelated donor transplantation: a report from the center for international blood and marrow transplant research, the European blood and marrow transplant registry, and the Dutch registry. Biol Blood Marrow Transplant. 2006;12:876–84. https://doi.org/10.1016/j.bbmt.2006.05.007

  64. 64.

    Hsu KC, Keever-Taylor CA, Wilton A, Pinto C, Heller G, Arkun K, et al. Improved outcome in HLA-identical sibling hematopoietic stem-cell transplantation for acute myelogenous leukemia predicted by KIR and HLA genotypes. Blood. 2005;105:4878–84. https://doi.org/10.1182/blood-2004-12-4825

  65. 65.

    Hsu KC, Gooley T, Malkki M, Pinto-Agnello C, Dupont B, Bignon JD, et al. KIR ligands and prediction of relapse after unrelated donor hematopoietic cell transplantation for hematologic malignancy. Biol Blood Marrow Transplant. 2006;12:828–36. https://doi.org/10.1016/j.bbmt.2006.04.008

  66. 66.

    Miller JS, Cooley S, Parham P, Farag SS, Verneris MR, McQueen KL, et al. Missing KIR ligands are associated with less relapse and increased graft-versus-host disease (GVHD) following unrelated donor allogeneic HCT. Blood. 2007;109:5058–61. https://doi.org/10.1182/blood-2007-01-065383

  67. 67.

    Yu J, Venstrom JM, Liu XR, Pring J, Hasan RS, O’Reilly RJ, et al. Breaking tolerance to self, circulating natural killer cells expressing inhibitory KIR for non-self HLA exhibit effector function after T cell-depleted allogeneic hematopoietic cell transplantation. Blood. 2009;113:3875–84. https://doi.org/10.1182/blood-2008-09-177055

  68. 68.

    Venstrom JM, Gooley TA, Spellman S, Pring J, Malkki M, Dupont B, et al. Donor activating KIR3DS1 is associated with decreased acute GVHD in unrelated allogeneic hematopoietic stem cell transplantation. Blood. 2010;115:3162–5. https://doi.org/10.1182/blood-2009-08-236943

  69. 69.

    Mancusi A, Ruggeri L, Urbani E, Pierini A, Massei MS, Carotti A, et al. Haploidentical hematopoietic transplantation from KIR ligand-mismatched donors with activating KIRs reduces nonrelapse mortality. Blood. 2015;125:3173–82. https://doi.org/10.1182/blood-2014-09-599993

  70. 70.

    Cooley S, Trachtenberg E, Bergemann TL, Saeteurn K, Klein J, Le CT, et al. Donors with group B KIR haplotypes improve relapse-free survival after unrelated hematopoietic cell transplantation for acute myelogenous leukemia. Blood. 2009;113:726–32. https://doi.org/10.1182/blood-2008-07-171926

  71. 71.

    Cooley S, Weisdorf DJ, Guethlein LA, Klein JP, Wang T, Le CT, et al. Donor selection for natural killer cell receptor genes leads to superior survival after unrelated transplantation for acute myelogenous leukemia. Blood. 2010;116:2411–9. https://doi.org/10.1182/blood-2010-05-283051

  72. 72.

    Venstrom JM, Pittari G, Gooley TA, Chewning JH, Spellman S, Haagenson M, et al. HLA-C-dependent prevention of leukemia relapse by donor activating KIR2DS1. N Engl J Med. 2012;367:805–16. https://doi.org/10.1056/NEJMoa1200503

  73. 73.

    Cooley S, Weisdorf DJ, Guethlein LA, Klein JP, Wang T, Marsh SG, et al. Donor killer cell Ig-like receptor B haplotypes, recipient HLA-C1, and HLA-C mismatch enhance the clinical benefit of unrelated transplantation for acute myelogenous leukemia. J Immunol. 2014;192:4592–4600. https://doi.org/10.4049/jimmunol.1302517

  74. 74.

    Parham P, Norman PJ, Abi-Rached L, Guethlein LA. Variable NK cell receptors exemplified by human KIR3DL1/S1. J Immunol. 2011;187:11–19. https://doi.org/10.4049/jimmunol.0902332

  75. 75.

    Saunders PM, Pymm P, Pietra G, Hughes VA, Hitchen C, O’Connor GM, et al. Killer cell immunoglobulin-like receptor 3DL1 polymorphism defines distinct hierarchies of HLA class I recognition. J Exp Med. 2016;213:791–807. https://doi.org/10.1084/jem.20152023

  76. 76.

    Boudreau JE, Giglio F, Gooley TA, Stevenson PA, Le Luduec JB, Shaffer BC, Rajalingam R, Hou L, Hurley CK, Noreen H, Reed EF, Yu N, Vierra-Green C, Haagenson MD, Malkki M, Petersdorf EW, Spellman S, Hsu KC. KIR3DL1/HLA-B subtypes govern AML relapse after hematopoietic cell transplantation. J Clin Oncol. 2017;35:2268–78. In Press

  77. 77.

    Ordonez D, Moraru M, Gomez-Lozano N, Cisneros E, Vilches C. KIR typing by non-sequencing methods: polymerase-chain reaction with sequence-specific primers. Methods Mol Biol. 2012;882:415–30. https://doi.org/10.1007/978-1-61779-842-9_24

  78. 78.

    Boudreau JE, Le Luduec JB, Hsu KC. Development of a novel multiplex PCR assay to detect functional subtypes of KIR3DL1 alleles. PLoS ONE. 2014;9:e99543 https://doi.org/10.1371/journal.pone.0099543

  79. 79.

    Norman PJ, Hollenbach JA, Nemat-Gorgani N, Marin WM, Norberg SJ, Ashouri E, et al. Defining KIR and HLA class I genotypes at highest resolution via high-throughput sequencing. Am J Hum Genet. 2016;99:375–91. https://doi.org/10.1016/j.ajhg.2016.06.023

  80. 80.

    Pidala J, Anasetti C, Kharfan-Dabaja MA, Cutler C, Sheldon A, Djulbegovic B. Decision analysis of peripheral blood versus bone marrow hematopoietic stem cells for allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2009;15:1415–21. https://doi.org/10.1016/j.bbmt.2009.07.009

  81. 81.

    Hassan HT, Stockschlader M, Schleimer B, Kruger W, Zander AR. Comparison of the content and subpopulations of CD3 and CD34 positive cells in bone marrow harvests and G-CSF-mobilized peripheral blood leukapheresis products from healthy adult donors. Transpl Immunol. 1996;4:319–23.

  82. 82.

    Chevallier P, Robillard N, Illiaquer M, Esbelin J, Mohty M, Bodin-Bressollette C, et al. Characterization of various blood and graft sources: a prospective series. Transfusion. 2013;53:2020–6. https://doi.org/10.1111/trf.12072

  83. 83.

    Holtick U, Albrecht M, Chemnitz JM, Theurich S, Shimabukuro-Vornhagen A, Skoetz N, et al. Comparison of bone marrow versus peripheral blood allogeneic hematopoietic stem cell transplantation for hematological malignancies in adults–a systematic review and meta-analysis. Crit Rev Oncol Hematol. 2015;94:179–88. https://doi.org/10.1016/j.critrevonc.2014.12.007

  84. 84.

    Anasetti C, Logan BR, Lee SJ, Waller EK, Weisdorf DJ, Wingard JR, et al. Peripheral-blood stem cells versus bone marrow from unrelated donors. N Engl J Med. 2012;367:1487–96. https://doi.org/10.1056/NEJMoa1203517

  85. 85.

    Eapen M. Unrelated donor transplantation: peripheral blood or bone marrow--does it matter? Best Pract Res Clin Haematol. 2014;27:278–82. https://doi.org/10.1016/j.beha.2014.10.010

  86. 86.

    Nagler A, Labopin M, Shimoni A, Niederwieser D, Mufti GJ, Zander AR, et al. Mobilized peripheral blood stem cells compared with bone marrow as the stem cell source for unrelated donor allogeneic transplantation with reduced-intensity conditioning in patients with acute myeloid leukemia in complete remission: an analysis from the Acute Leukemia Working Party of the European Group for Blood and Marrow Transplantation. Biol Blood Marrow Transplant. 2012;18:1422–9. https://doi.org/10.1016/j.bbmt.2012.02.013

  87. 87.

    Nagler A, Labopin M, Shimoni A, Mufti GJ, Cornelissen JJ, Blaise D, et al. Mobilized peripheral blood stem cells compared with bone marrow from HLA-identical siblings for reduced-intensity conditioning transplantation in acute myeloid leukemia in complete remission: a retrospective analysis from the Acute Leukemia Working Party of EBMT. Eur J Haematol. 2012;89:206–13. https://doi.org/10.1111/j.1600-0609.2012.01811.x

  88. 88.

    Bradstock K, Bilmon I, Kwan J, Blyth E, Micklethwaite K, Huang G, et al. Influence of stem cell source on outcomes of allogeneic reduced-intensity conditioning therapy transplants using haploidentical related donors. Biol Blood Marrow Transplant. 2015;21:1641–5. https://doi.org/10.1016/j.bbmt.2015.06.006

  89. 89.

    Castagna L, Crocchiolo R, Furst S, Bramanti S, El Cheikh J, Sarina B, et al. Bone marrow compared with peripheral blood stem cells for haploidentical transplantation with a nonmyeloablative conditioning regimen and post-transplantation cyclophosphamide. Biol Blood Marrow Transplant. 2014;20:724–9. https://doi.org/10.1016/j.bbmt.2014.02.001

  90. 90.

    Armand P, Kim HT, Logan BR, Wang Z, Alyea EP, Kalaycio ME, et al. Validation and refinement of the disease risk index for allogeneic stem cell transplantation. Blood. 2014;123:3664–71. https://doi.org/10.1182/blood-2014-01-552984

  91. 91.

    Wagner JE Jr., Eapen M, Carter S, Wang Y, Schultz KR, Wall DA, et al. One-unit versus two-unit cord-blood transplantation for hematologic cancers. N Engl J Med. 2014;371:1685–94. https://doi.org/10.1056/NEJMoa1405584

  92. 92.

    Shi-Xia X, Xian-Hua T, Xiang-Feng T. Unrelated umbilical cord blood transplantation and unrelated bone marrow transplantation in children with hematological disease: a meta-analysis. Pediatr Transplant. 2009;13:278–84. https://doi.org/10.1111/j.1399-3046.2008.01089.x

  93. 93.

    Eapen M, Rocha V, Sanz G, Scaradavou A, Zhang MJ, Arcese W, et al. Effect of graft source on unrelated donor haemopoietic stem-cell transplantation in adults with acute leukaemia: a retrospective analysis. Lancet Oncol. 2010;11:653–60. https://doi.org/10.1016/S1470-2045(10)70127-3

  94. 94.

    Marks DI, Woo KA, Zhong X, Appelbaum FR, Bachanova V, Barker JN, et al. Unrelated umbilical cord blood transplant for adult acute lymphoblastic leukemia in first and second complete remission: a comparison with allografts from adult unrelated donors. Haematologica. 2014;99:322–8. https://doi.org/10.3324/haematol.2013.094193

  95. 95.

    Brunstein CG, Eapen M, Ahn KW, Appelbaum FR, Ballen KK, Champlin RE, et al. Reduced-intensity conditioning transplantation in acute leukemia: the effect of source of unrelated donor stem cells on outcomes. Blood. 2012;119:5591–8. https://doi.org/10.1182/blood-2011-12-400630

  96. 96.

    Rodrigues CA, Rocha V, Dreger P, Brunstein C, Sengeloev H, Finke J, et al. Alternative donor hematopoietic stem cell transplantation for mature lymphoid malignancies after reduced-intensity conditioning regimen: similar outcomes with umbilical cord blood and unrelated donor peripheral blood. Haematologica. 2014;99:370–7. https://doi.org/10.3324/haematol.2013.088997

  97. 97.

    Robin M, Ruggeri A, Labopin M, Niederwieser D, Tabrizi R, Sanz G, et al. Comparison of unrelated cord blood and peripheral blood stem cell transplantation in adults with myelodysplastic syndrome after reduced-intensity conditioning regimen: a collaborative study from Eurocord (Cord blood Committee of Cellular Therapy & Immunobiology Working Party of EBMT) and Chronic Malignancies Working Party. Biol Blood Marrow Transplant. 2015;21:489–95. https://doi.org/10.1016/j.bbmt.2014.11.675

  98. 98.

    Milano F, Gooley T, Wood B, Woolfrey A, Flowers ME, Doney K, et al. Cord-blood transplantation in patients with minimal residual disease. N Engl J Med. 2016;375:944–53. https://doi.org/10.1056/NEJMoa1602074

  99. 99.

    Verneris MR, Brunstein CG, Barker J, MacMillan ML, DeFor T, McKenna DH, et al. Relapse risk after umbilical cord blood transplantation: enhanced graft-versus-leukemia effect in recipients of 2 units. Blood. 2009;114:4293–9. https://doi.org/10.1182/blood-2009-05-220525

  100. 100.

    Labopin M, Ruggeri A, Gorin NC, Gluckman E, Blaise D, Mannone L, et al. Cost-effectiveness and clinical outcomes of double versus single cord blood transplantation in adults with acute leukemia in France. Haematologica. 2014;99:535–40. https://doi.org/10.3324/haematol.2013.092254

  101. 101.

    Ruggeri A, Sanz G, Bittencourt H, Sanz J, Rambaldi A, Volt F, et al. Comparison of outcomes after single or double cord blood transplantation in adults with acute leukemia using different types of myeloablative conditioning regimen, a retrospective study on behalf of Eurocord and the Acute Leukemia Working Party of EBMT. Leukemia. 2014;28:779–86. https://doi.org/10.1038/leu.2013.259

  102. 102.

    Tsang KS, Leung AW, Lee V, Cheng FW, Shing MM, Pong HN, et al. Indiscernible benefit of double-unit umbilical cord blood transplantation in children: a single-center experience from Hong Kong. Cell Transplant. 2016;25:1277–86. https://doi.org/10.3727/096368915X689631

  103. 103.

    Shaffer BC, Le Luduec JB, Forlenza C, Jakubowski AA, Perales MA, Young JW, et al. Phase II study of haploidentical natural killer cell infusion for treatment of relapsed or persistent myeloid malignancies following allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2016;22:705–9. https://doi.org/10.1016/j.bbmt.2015.12.028

Download references

Acknowledgements

This work was supported by grants from the Deutsche José Carreras Leukämie Stiftung (DJCLS R 15/02 and DJCLS 01R/2017), the European Commission Transcan JTC2012 (Cancer12-045-HLALOSS), the Dr. Werner Jackstädt Stiftung, Germany and the Joseph Senker Stiftung, Germany to KF and from NIH U01 AI069197, P01 CA23766, R01 HL129472, and Leukemia & Lymphoma Society to KCH.

Author contributions

KF, KCH and BES wrote the manuscript and created the Figures and Tables relevant to the parts on HLA, NK alloreactivity and stem cell source, respectively.

Author information

Author notes

  1. These authors contributed equally: Katharina Fleischhauer, Katharine C. Hsu, Bronwen E. Shaw.

Affiliations

  1. Institute for Experimental Cellular Therapy, University Hospital Essen, Essen, Germany

    • Katharina Fleischhauer
  2. German Cancer Consortium, Heidelberg, Germany

    • Katharina Fleischhauer
  3. Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA

    • Katharine C. Hsu
  4. Immunology Program, Sloan Kettering Institute, New York, NY, USA

    • Katharine C. Hsu
  5. Department of Medicine, Weill Cornell Medical College, New York, NY, USA

    • Katharine C. Hsu
  6. Center for International Blood and Marrow Transplant Research (CIBMTR), Froedtert & the Medical College of Wisconsin, Milwaukee, WI, USA

    • Bronwen E. Shaw

Authors

  1. Search for Katharina Fleischhauer in:

  2. Search for Katharine C. Hsu in:

  3. Search for Bronwen E. Shaw in:

Conflict of interest

The authors declare that they have no conflict of interest.

Corresponding authors

Correspondence to Katharina Fleischhauer or Katharine C. Hsu or Bronwen E. Shaw.

About this article

Publication history

Received

Revised

Accepted

Published

DOI

https://doi.org/10.1038/s41409-018-0218-1

Rights and permissions

To obtain permission to re-use content from this article visit RightsLink.