Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Epidemiology and biology of relapse after stem cell transplantation

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Gratwohl A, Pasquini MC, Aljurf M, Atsuta Y, Baldomero H, Foeken L, et al. One million haemopoietic stem-cell transplants: a retrospective observational study. Lancet Haematol. 2015;2:e91–e100. https://doi.org/10.1016/S2352-3026(15)00028-9.

    Article  PubMed  Google Scholar 

  2. Passweg JR, Baldomero H, Bader P, Bonini C, Duarte RF, Dufour C, et al. Use of haploidentical stem cell transplantation continues to increase: the 2015 European Societa for Blood and Marrow Transplant activity survey report. Bone Marrow Transplant. 2017;52:811–7.

    Article  CAS  Google Scholar 

  3. D’Souza A, Lee S, Zhu X, Pasquini M. Current use and trends in hematopoietic cell transplantation in the United States. Biol Blood Marrow Transplant. 2017;23:1417–21.

    Article  Google Scholar 

  4. Rafii H, Ruggeri A, Volt F, Brunstein CG, Carreras J, Eapen M, et al. Changing trends of unrelated umbilical cord blood transplantation for hematologic diseases in patients older than fifty years: A Eurocord-Center for International Blood and Marrow Transplant research survey. Biol Blood Marrow Transplant. 2016;22:1717–20.

    Article  Google Scholar 

  5. Costa LJ, Zhang M-J, Zhong X, Dispenzieri A, Lonial S, Krishnan A, et al. Trends in utilization and outcomes of autologous transplantation as early therapy for multiple myeloma. Biol Blood Marrow Transplant. 2013;19:1615–24.

    Article  Google Scholar 

  6. McCarthy PL Jr., Hahn T, Hassebroek A, Bredeson C, Gajewski J, Hale G, et al. Trends in use of and survival after autologous hematopoietic cell transplantation in North America, 1995-2005: significant improvement in survival for lymphoma and myeloma during a period of increasing recipient age. Biol Blood Marrow Transplant. 2013;19:1116–23.

    Article  Google Scholar 

  7. Gooley TA, Chien JW, Pergam SA, Hingorani S, Sorror ML, Boeckh M, et al. Reduced mortality after allogeneic hematopoietic-cell transplantation. N Engl J Med. 2010;363:2091–101.

    Article  CAS  Google Scholar 

  8. Horowitz MM, Gale RP, Sondel PM, Goldman JM, Kersey JH, Kolb HJ, et al. Graft-versus-leukemia reactions after bone marrow transplantation. Blood. 1990;75:555–62.

    CAS  PubMed  Google Scholar 

  9. Weisdorf D, Zhang M-J, Arora M, Horowitz MM, Rizzo JD, Eapen M. Graft-versus-host disease induced graft-versus-leukemia effect: greater impact on relapse and disease-free survival after reduced intensity conditioning. Biol Blood Marrow Transplant. 2012;18:1727–33.

    Article  Google Scholar 

  10. Boyiadzis M, Arora M, Klein JP, Hassebroek A, Hemmer M, Urbano-Ispizua A, et al. Impact of chronic graft-versus-host disease on late relapse and survival on 7,489 patients after myeloablative allogeneic hematopoietic cell transplantation for leukemia. Clin Cancer Res. 2015;21:2020–8.

    Article  Google Scholar 

  11. Urbano-Ispizua A, Pavletic SZ, Flowers ME, Klein JP, Zhang M-J, Carreras J, et al. The impact of graft-versus-host disease on the relapse rate in patients with lymphoma depends on the histological subtype and the intensity of the conditioning regimen. Biol Blood Marrow Transplant. 2015;21:1746–53.

    Article  Google Scholar 

  12. Armand P, Kim HAT, Logan BR, Wang Z, Aleya EP, Kalaycio ME, et al. Validation and refinement oft he disease risk index for allogeneic stem cell transplantation. Blood. 2014;123:3664–71.

    Article  CAS  Google Scholar 

  13. Tran E, Robbins PF, Rosenberg SA. ‘Final common pathway’ of human cancer immunotherapy: targeting random somatic mutations. Nat Immunol. 2017;18:255–62. https://doi.org/10.1038/ni.3682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fracchiolla NS, Fattizzo B, Cortelezzi A. Mesenchymal stem cells in myeloid malignancies: a focus on immune escaping and therapeutic implications. Stem Cells Int. 2017;2017:6720594 https://doi.org/10.1155/2017/6720594.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kolb HJ. Hematopoietic stem cell transplantation and cellular therapy. HLA. 2017;89:267–77. https://doi.org/10.1111/tan.13005.

    Article  PubMed  Google Scholar 

  16. Spierings E. Minor histocompatibility antigens: past, present, and future. Tissue Antigens. 2014;84:374–360. https://doi.org/10.1111/tan.12445.

    Article  PubMed  Google Scholar 

  17. Stauss HJ. Immunotherapy with CTLs restricted by nonself MHC. Immunol Today. 1999;20:180–3.

    Article  CAS  Google Scholar 

  18. Schreiber H, Rowley JD, Rowley DA. Targeting mutations predictably. Blood. 2011;118:830–1. https://doi.org/10.1182/blood-2011-06-357541.

    Article  CAS  PubMed  Google Scholar 

  19. Shi Y, Du L, Lin L, Wang Y. Tumour-associated mesenchymal stem/stromal cells: emerging therapeutic targets. Nat Rev Drug Discov. 2017;16:35–52. https://doi.org/10.1038/nrd.2016.193.

    Article  CAS  PubMed  Google Scholar 

  20. Monach PA, Meredith SC, Siegel CT, Schreiber H. A unique tumor antigen produced by a single amino acid substitution. Immunity. 1995;2:45–59.

    Article  CAS  Google Scholar 

  21. Blankenstein T, Leisegang M, Uckert W, Schreiber H. Targeting cancer-specific mutations by T cell receptor gene therapy. Curr Opin Immunol. 2015;33:112–9. https://doi.org/10.1016/j.coi.2015.02.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr., Kinzler KW. Cancer genome landscapes. Science. 2013;339:1546–58. https://doi.org/10.1126/science.1235122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mullighan CG. The genomic landscape of acute lymphoblastic leukemia in children and young adults. Hematol Am Soc Hematol Educ Program. 2014;2014:174–80. https://doi.org/10.1182/asheducation-2014.1.174.

    Article  Google Scholar 

  24. Heo SG, Koh Y, Kim JK, Jung J, Kim HL, Yoon SS, et al. Identification of somatic mutations using whole-exome sequencing in Korean patients with acute myeloid leukemia. BMC Med Genet. 2017;18:23 https://doi.org/10.1186/s12881-017-0382-y.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Rutten CE, van Luxemburg-Heijs SA, Halkes CJ, van Bergen CA, Marijt EW, Oudshoorn M, et al. Patient HLA-DP-specific CD4+ T cells from HLA-DPB1-mismatched donor lymphocyte infusion can induce graft-versus-leukemia reactivity in the presence or absence of graft-versus-host disease. Biol Blood Marrow Transplant. 2013;19:40–48. https://doi.org/10.1016/j.bbmt.2012.07.020.

    Article  CAS  PubMed  Google Scholar 

  26. Stumpf AN, van der Meijden ED, van Bergen CA, Willemze R, Falkenburg JH, Griffioen M. Identification of 4 new HLA-DR-restricted minor histocompatibility antigens as hematopoietic targets in antitumor immunity. Blood. 2009;114:3684–92. https://doi.org/10.1182/blood-2009-03-208017.

    Article  CAS  PubMed  Google Scholar 

  27. Spiotto MT, Rowley DA, Schreiber H. Bystander elimination of antigen loss variants in established tumors. Nat Med. 2004;10:294–8.

    Article  CAS  Google Scholar 

  28. Zhang B, Bowerman NA, Salama JK, Schmidt H, Spiotto MT, Schietinger A, et al. Induced sensitization of tumor stroma leads to eradication of established cancer by T cells. J Exp Med. 2007;204:49–55.

    Article  CAS  Google Scholar 

  29. Zhang B, Karrison T, Rowley DA, Schreiber H. IFN-gamma- and TNF-dependent bystander eradication of antigen-loss variants in established mouse cancers. J Clin Invest. 2008;118:1398–404.

    Article  CAS  Google Scholar 

  30. Engels B, Engelhard VH, Sidney J, Sette A, Binder DC, Liu RB, et al. Relapse or eradication of cancer is predicted by peptide-major histocompatibility complex affinity. Cancer Cell. 2013;23:516–26.

    Article  CAS  Google Scholar 

  31. Schreiber H. Cancer immunology. In: Paul WE, editors. Fundamental immunology. 7th edn. Philadelphia, PA: Lippincott-Williams & Wilkins; 2013. p. 1200–34.

    Google Scholar 

  32. Singh S, Ross SR, Acena M, Rowley DA, Schreiber H. Stroma is critical for preventing or permitting immunological destruction of antigenic cancer cells. J Exp Med. 1992;175:139–46.

    Article  CAS  Google Scholar 

  33. Pekarek LA, Starr BA, Toledano AY, Schreiber H. Inhibition of tumor growth by elimination of granulocytes. J Exp Med. 1995;181:435–40.

    Article  CAS  Google Scholar 

  34. Seung LP, Seung SK, Schreiber H. Antigenic cancer cells that escape immune destruction are stimulated by host cells. Cancer Res. 1995;55:5094–5100.

    CAS  PubMed  Google Scholar 

  35. Seung LP, Rowley DA, Dubey P, Schreiber H. Synergy between T-cell immunity and inhibition of paracrine stimulation causes tumor rejection. Proc Natl Acad Sci USA. 1995;92:6254–8.

    Article  CAS  Google Scholar 

  36. Cortez-Retamozo V, Etzrodt M, Newton A, Rauch PJ, Chudnovskiy A, Berger C, et al. Origins of tumor-associated macrophages and neutrophils. Proc Natl Acad Sci USA. 2012;109:2491–6. https://doi.org/10.1073/pnas.1113744109.

    Article  CAS  PubMed  Google Scholar 

  37. Purhonen S, Palm J, Rossi D, Kaskenpaa N, Rajantie I, Yla-Herttuala S, et al. Bone marrow-derived circulating endothelial precursors do not contribute to vascular endothelium and are not needed for tumor growth. Proc Natl Acad Sci USA. 2008;105:6620–5.

    Article  CAS  Google Scholar 

  38. Arina A, Idel C, Hyjek EM, Alegre ML, Wang Y, Bindokas VP, et al. Tumor-associated fibroblasts predominantly come from local and not circulating precursors. Proc Natl Acad Sci USA. 2016;113:7551–6. https://doi.org/10.1073/pnas.1600363113.

    Article  CAS  PubMed  Google Scholar 

  39. Singel KL, Segal BH. Neutrophils in the tumor microenvironment: trying to heal the wound that cannot heal. Immunol Rev. 2016;273:329–43. https://doi.org/10.1111/imr.12459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Coffelt SB, Wellenstein MD, de Visser KE. Neutrophils in cancer: neutral no more. Nat Rev Cancer. 2016;16:431–46. https://doi.org/10.1038/nrc.2016.52.

    Article  CAS  PubMed  Google Scholar 

  41. Bronte V, Wang M, Overwijk WW, Surman DR, Pericle F, Rosenberg SA, et al. Apoptotic death of CD8+T lymphocytes after immunization: induction of a suppressive population of Mac-1+/Gr-1+cells. J Immunol. 1998;161:5313–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Bronte V, Brandau S, Chen SH, Colombo MP, Frey AB, Greten TF, et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun. 2016;7:12150 https://doi.org/10.1038/ncomms12150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kammertoens T, Friese C, Arina A, Idel C, Briesemeister D, Rothe M, et al. Tumour ischemia by Interferon-γ resembles physiological blood vessel regression. Nature. 2017;545:98–102.

    Article  CAS  Google Scholar 

  44. Ohlund D, Elyada E, Tuveson D. Fibroblast heterogeneity in the cancer wound. J Exp Med. 2014;211:1503–23. https://doi.org/10.1084/jem.20140692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chang HY, Chi JT, Dudoit S, Bondre C, van de Rijn M, Botstein D, et al. Diversity, topographic differentiation, and positional memory in human fibroblasts. Proc Natl Acad Sci USA. 2002;99:12877–82.

    Article  CAS  Google Scholar 

  46. Arina A, Karrison T, Galka E, Schreiber K, Weichselbaum RR, Schreiber H. Transfer of allogeneic CD4+T cells rescues CD8+T cells in anti-PD-L1-resistant tumors leading to tumor eradication. Cancer Immunol Res. 2017;5:127–36. https://doi.org/10.1158/2326-6066.CIR-16-0293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Spiotto MT, Schreiber H. Rapid destruction of the tumor microenvironment by CTLs recognizing cancer-specific antigens cross-presented by stromal cells. Cancer Immun. 2005;5:8.

    PubMed  Google Scholar 

  48. Schietinger A, Philip M, Liu RB, Schreiber K, Schreiber H. Bystander killing of cancer requires the cooperation of CD4(+) and CD8(+) T cells during the effector phase. J Exp Med. 2010;207:2469–77. e-pub ahead of print 2010/10/06.

    Article  CAS  Google Scholar 

  49. Haspot F, Li HW, Lucas CL, Fehr T, Beyaz S, Sykes M. Allospecific rejection of MHC class I-deficient bone marrow by CD8 T cells. Am J Transplant. 2014;14:49–58. https://doi.org/10.1111/ajt.12525.

    Article  CAS  PubMed  Google Scholar 

  50. Leisegang M, Engels B, Schreiber K, Yew PY, Kiyotani K, Idel C, et al. Eradication of large solid tumors by gene therapy with a T-cell receptor targeting a single cancer-specific point mutation. Clin Cancer Res. 2016;22:2734–43. https://doi.org/10.1158/1078-0432.CCR-15-2361.

    Article  CAS  PubMed  Google Scholar 

  51. Sahin U, Derhovanessian E, Miller M, Kloke BP, Simon P, Lower M, et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature. 2017;547:222–6. https://doi.org/10.1038/nature23003.

    Article  CAS  PubMed  Google Scholar 

  52. Ott PA, Hu Z, Keskin DB, Shukla SA, Sun J, Bozym DJ, et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature. 2017;547:217–21. https://doi.org/10.1038/nature22991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367:645–8. https://doi.org/10.1038/367645a0.

    Article  CAS  PubMed  Google Scholar 

  54. Hope KJ, Jin L, Dick JE. Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol. 2004;5:738–43.

    Article  CAS  Google Scholar 

  55. Quintana E, Shackleton M, Sabel MS, Fullen DR, Johnson TM, Morrison SJ. Efficient tumour formation by single human melanoma cells. Nature. 2008;456:593–8.

    Article  CAS  Google Scholar 

  56. le Viseur C, Hotfilder M, Bomken S, Wilson K, Rottgers S, Schrauder A, et al. In childhood acute lymphoblastic leukemia, blasts at different stages of immunophenotypic maturation have stem cell properties. Cancer Cell. 2008;14:47–58.

    Article  Google Scholar 

  57. Rehe K, Wilson K, Bomken S, Williamson D, Irving J, den Boer ML, et al. Acute B lymphoblastic leukaemia-propagating cells are present at high frequency in diverse lymphoblast populations. EMBO Mol Med. 2013;5:38–51.

    Article  CAS  Google Scholar 

  58. Elder A, Bomken S, Wilson I, Blair HJ, Cockell S, Ponthan F, et al. Abundant and equipotent founder cells establish and maintain acute lymphoblastic leukaemia. Leukemia. 2017;31:2577–86.

    Article  CAS  Google Scholar 

  59. Goardon N, Marchi E, Atzberger A, Quek L, Schuh A, Soneji S, et al. Coexistence of LMPP-like and GMP-like leukemia stem cells in acute myeloid leukemia. Cancer Cell. 2011;19:138–52.

    Article  CAS  Google Scholar 

  60. Quek L, Otto GW, Garnett C, Lhermitte L, Karamitros D, Stoilova B, et al. Genetically distinct leukemic stem cells in human CD34- acute myeloid leukemia are arrested at a hemopoietic precursor-like stage. J Exp Med. 2016;213:1513–35.

    Article  CAS  Google Scholar 

  61. Thomas D, Majeti R. Biology and relevance of human acute myeloid leukemia stem cells. Blood. 2017;129:1577–85.

    Article  CAS  Google Scholar 

  62. Anderson K, Lutz C, van Delft FW, Bateman CM, Guo Y, Colman SM, et al. Genetic variegation of clonal architecture and propagating cells in leukaemia. Nature. 2011;469:356–61. https://doi.org/10.1038/nature09650.

    Article  CAS  PubMed  Google Scholar 

  63. Notta F, Mullighan CG, Wang JC, Poeppl A, Doulatov S, Phillips LA, et al. Evolution of human BCR-ABL1 lymphoblastic leukaemia-initiating cells. Nature. 2011;469:362–7. https://doi.org/10.1038/nature09733. e-pub ahead of print 2011/01/21.

    Article  CAS  PubMed  Google Scholar 

  64. Bardini M, Woll PS, Corral L, Luc S, Wittmann L, Ma Z, et al. Clonal variegation and dynamic competition of leukemia-initiating cells in infant acute lymphoblastic leukemia with MLL rearrangement. Leukemia. 2015;29:38–50.

    Article  CAS  Google Scholar 

  65. Schmitz M, Breithaupt P, Scheidegger N, Cario G, Bonapace L, Meissner B, et al. Xenografts of highly resistant leukemia recapitulate the clonal composition of the leukemogenic compartment. Blood. 2011;118:1854–64.

    Article  CAS  Google Scholar 

  66. Ma X, Edmonson M, Yergeau D, Muzny DM, Hampton OA, Rusch M, et al. Rise and fall of subclones from diagnosis to relapse in pediatric B-acute lymphoblastic leukaemia. Nat Commun. 2015;6:6604.

    Article  CAS  Google Scholar 

  67. Waanders E, Scheijen B, van der Meer LT, van Reijmersdal SV, van Emst L, Kroeze Y, et al. The origin and nature of tightly clustered BTG1 deletions in precursor B-cell acute lymphoblastic leukemia support a model of multiclonal evolution. PLoS Genet. 2012;8:e1002533 https://doi.org/10.1371/journal.pgen.1002533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. van Delft FW, Horsley S, Colman S, Anderson K, Bateman C, Kempski H, et al. Clonal origins of relapse in ETV6-RUNX1 acute lymphoblastic leukemia. Blood. 2011;117:6247–54.

    Article  Google Scholar 

  69. Mullighan CG, Phillips LA, Su X, Ma J, Miller CB, Shurtleff SA, et al. Genomic analysis of the clonal origins of relapsed acute lymphoblastic leukemia. Science. 2008;322:1377–80.

    Article  CAS  Google Scholar 

  70. Polak R, de Rooij B, Pieters R, den Boer ML. B-cell precursor acute lymphoblastic leukemia cells use tunneling nanotubes to orchestrate their microenvironment. Blood. 2015;126:2404–14.

    Article  CAS  Google Scholar 

  71. Tesfai Y, Ford J, Carter KW, Firth MJ, O’Leary RA, Gottardo NG, et al. Interactions between acute lymphoblastic leukemia and bone marrow stromal cells influence response to therapy. Leuk Res. 2012;36:299–306.

    Article  CAS  Google Scholar 

  72. Ebinger S, Ozdemir EZ, Ziegenhain C, Tiedt S, Castro Alves C, Grunert M, et al. Characterization of rare, dormant, and therapy-resistant cells in acute lymphoblastic leukemia. Cancer Cell. 2016;30:849–62.

    Article  CAS  Google Scholar 

  73. Duan CW, Shi J, Chen J, Wang B, Yu YH, Qin X, et al. Leukemia propagating cells rebuild an evolving niche in response to therapy. Cancer Cell. 2014;25:778–93.

    Article  CAS  Google Scholar 

  74. Liu J, Zhong JF, Zhang X, Zhang C. Allogeneic CD19-CAR-T cell infusion after allogeneic hematopoietic stem cell transplantation in B cell malignancies. J Hematol Oncol. 2017;10:35.

    Article  Google Scholar 

  75. Sotillo E, Barrett DM, Black KL, Bagashev A, Oldridge D, Wu G, et al. Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy. Cancer Discov. 2015;5:1282–95.

    Article  CAS  Google Scholar 

  76. Braig F, Brandt A, Goebeler M, Tony HP, Kurze AK, Nollau P, et al. Resistance to anti-CD19/CD3 BiTE in acute lymphoblastic leukemia may be mediated by disrupted CD19 membrane trafficking. Blood. 2017;129:100–4.

    Article  CAS  Google Scholar 

  77. Weiland J, Pal D, Case M, Irving J, Ponthan F, Koschmieder S, et al. BCP-ALL blasts are not dependent on CD19 expression for leukaemic maintenance. Leukemia. 2016;30:1920–3.

    Article  CAS  Google Scholar 

  78. Whiteside TL. The tumor microenvironment and its role in promoting tumor growth. Oncogene. 2008;27:5904–12.

    Article  CAS  Google Scholar 

  79. Marincola FM, Jaffee EM, Hicklin DJ, Ferrone S. Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance. Adv Immunol. 2000;74:181–273.

    Article  CAS  Google Scholar 

  80. Garrido F, Ruiz-Cabello F, Cabrera T, Pérez-Villar JJ, López-Botet M, Duggan-Keen M, et al. Implications for immunosurveillance of altered HLA class I phenotypes in human tumours. Immunol Today. 1997;18:89–95.

    Article  CAS  Google Scholar 

  81. Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science. 2011;331:1565–70.

    Article  CAS  Google Scholar 

  82. Booman M, Douwes J, Glas AM, Riemersma SA, Jordanova ES, Kok K, et al. Mechanisms and effects of loss of human leukocyte antigen class II expression in immune-privileged site-associated B-cell lymphoma. Clin Cancer Res. 2006;12:2698–705.

    Article  CAS  Google Scholar 

  83. Schwindt H, Vater I, Kreuz M, Montesinos-Rongen M, Brunn A, Richter J, et al. Chromosomal imbalances and partial uniparental disomies in primary central nervous system lymphoma. Leukemia. 2009;23:1875–84.

    Article  CAS  Google Scholar 

  84. Warren EH, Deeg HJ. Dissecting graft-versus-leukemia from graft-versus-host-disease using novel strategies. Tissue Antigens. 2013;81:183–93.

    Article  CAS  Google Scholar 

  85. Fleischhauer K, Beelen DW. HLA mismatching as a strategy to reduce relapse after alternative donor transplantation. Semin Hematol. 2016;53:57–64.

    Article  CAS  Google Scholar 

  86. Kanakry CG, Fuchs EJ, Luznik L. Modern approaches to HLA-haploidentical blood or marrow transplantation. Nat Rev Clin Oncol. 2016;13:10–24.

    Article  CAS  Google Scholar 

  87. Vago L, Perna SK, Zanussi M, Mazzi B, Barlassina C, Stanghellini MTL, et al. Loss of mismatched HLA in leukemia after stem-cell transplantation. N Engl J Med. 2009;361:478–88.

    Article  CAS  Google Scholar 

  88. Vago L, Toffalori C, Ciceri F, Fleischhauer K. Genomic loss of mismatched human leukocyte antigen and leukemia immune escape from haploidentical graft-versus-leukemia. Semin Oncol. 2012;39:707–15.

    Article  Google Scholar 

  89. O’Keefe C, McDevitt MA, Maciejewski JP. Copy neutral loss of heterozygosity: a novel chromosomal lesion in myeloid malignancies. Blood. 2010;115:2731–9.

    Article  Google Scholar 

  90. Villalobos IB, Takahashi Y, Akatsuka Y, Muramatsu H, Nishio N, Hama A, et al. Relapse of leukemia with loss of mismatched HLA resulting from uniparental disomy after haploidentical hematopoietic stem cell transplantation. Blood. 2010;115:3158–61.

    Article  CAS  Google Scholar 

  91. Hirabayashi K, Kurata T, Horiuchi K, Saito S, Shigemura T, Tanaka M, et al. Loss of mismatched HLA on the leukemic blasts of patients with relapsed lymphoid malignancies following bone marrow transplantation from related donors with HLA class II mismatches in the graft versus host direction. Pediatr Blood Cancer. 2016;63:709–11.

    Article  Google Scholar 

  92. Stölzel F, Hackmann K, Kuithan F, Mohr B, Füssel M, Oelschlägel U, et al. Clonal evolution including partial loss of human leukocyte antigen genes favoring extramedullary acute myeloid leukemia relapse after matched related allogeneic hematopoietic stem cell transplantation. Transplantation. 2012;93:744–9.

    Article  Google Scholar 

  93. Park BG, Sohn YH, Oh HB, Seo EJ, Jang S, Hong SP. Loss of mismatched HLA detected in the peripheral blood of an AML patient who relapsed after haploidentical hematopoietic stem cell transplantation. Ann Lab Med. 2015;35:551–3.

    Article  CAS  Google Scholar 

  94. Crucitti L, Crocchiolo R, Toffalori C, Mazzi B, Greco R, Signori A, et al. Incidence, risk factors and clinical outcome of leukemia relapses with loss of the mismatched HLA after partially incompatible hematopoietic stem cell transplantation. Leukemia. 2015;29:1143–52.

    Article  CAS  Google Scholar 

  95. Peccatori J, Forcina A, Clerici D, Crocchiolo R, Vago L, Stanghellini MTL, et al. Sirolimus-based graft-versus-host disease prophylaxis promotes the in vivo expansion of regulatory T cells and permits peripheral blood stem cell transplantation from haploidentical donors. Leukemia. 2015;29:396–405.

    Article  CAS  Google Scholar 

  96. Cieri N, Greco R, Crucitti L, Morelli M, Giglio F, Levati G, et al. Post-transplantation cyclophosphamide and sirolimus after haploidentical hematopoietic stem cell transplantation using a treosulfan-based myeloablative conditioning and peripheral blood stem cells. Biol Blood Marrow Transplant. 2015;21:1506–14.

    Article  CAS  Google Scholar 

  97. McCurdy SR, Iglehart BS, Batista DA, Gocke CD, Ning Y, Knaus HA, et al. Loss of the mismatched human leukocyte antigen haplotype in two acute myelogenous leukemia relapses after haploidentical bone marrow transplantation with post-transplantation cyclophosphamide. Leukemia. 2016;30:2102–6.

    Article  CAS  Google Scholar 

  98. Grosso D, Johnson E, Colombe B, Alpdogan O, Carabasi M, Filicko-O’Hara J, et al. Acquired uniparental disomy in chromosome 6p as a feature of relapse after T-cell replete haploidentical hematopoietic stem cell transplantation using cyclophosphamide tolerization. Bone Marrow Transplant. 2017;52:615–9.

    Article  CAS  Google Scholar 

  99. Russo A, Oliveira G, Berglund S, Greco R, Gambacorta V, Cieri N, et al. NK cell recovery after haploidentical HSCT with posttransplant cyclophosphamide: dynamics and clinical implications. Blood. 2018;131:247–62.

    Article  CAS  Google Scholar 

  100. Waterhouse M, Pfeifer D, Pantic M, Emmerich F, Bertz H, Finke J. Genome-wide profiling in AML patients relapsing after allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2011;17:1450–.e1.

    Article  CAS  Google Scholar 

  101. Toffalori C, Cavattoni I, Deola S, Mastaglio S, Giglio F, Mazzi B, et al. Genomic loss of patient-specific HLA in acute myeloid leukemia relapse after well-matched unrelated donor HSCT. Blood. 2012;119:4813–5.

    Article  CAS  Google Scholar 

  102. Hamdi A, Cao K, Poon LM, Aung F, Kornblau S, Fernandez Vina MA, et al. Are changes in HLA Ags responsible for leukemia relapse after HLA-matched allogeneic hematopoietic SCT? Bone Marrow Transplant. 2015;50:411–3.

    Article  CAS  Google Scholar 

  103. Jena B, Dotti G, Cooper LJN. Redirecting T-cell specificity by introducing a tumor-specific chimeric antigen receptor. Blood. 2010;116:1035–44.

    Article  CAS  Google Scholar 

  104. Tsirigotis P, Byrne M, Schmid C, Baron F, Ciceri F, Esteve J, et al. Relapse of AML after hematopoietic stem cell transplantation: methods of monitoring and preventive strategies. A review from the ALWP of the EBMT. Bone Marrow Transplant. 2016;51:1431–8.

    Article  CAS  Google Scholar 

  105. Ahci M, Toffalori C, Bouwmans E, Crivello P, Brambati C, Pultrone C, et al. A new tool for rapid and reliable diagnosis of HLA loss relapses after HSCT. Blood. 2017;130:1270–3.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolaus Kröger.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horowitz, M., Schreiber, H., Elder, A. et al. Epidemiology and biology of relapse after stem cell transplantation. Bone Marrow Transplant 53, 1379–1389 (2018). https://doi.org/10.1038/s41409-018-0171-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41409-018-0171-z

This article is cited by

Search

Quick links