Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Homeostatic proliferation leads to telomere attrition and increased PD-1 expression after autologous hematopoietic SCT for systemic sclerosis

Abstract

In the months that follow autologous hematopoietic stem cell transplantation (AHSCT), lymphopenia drives homeostatic proliferation, leading to oligoclonal expansion of residual cells. Here we evaluated how replicative senescent and exhausted cells associated with clinical outcomes of 25 systemic sclerosis (SSc) patients who underwent AHSCT. Patients were clinically monitored for skin (modified Rodnan’s skin score, mRSS) and internal organ involvement and had blood samples collected before and semiannually, until 3 years post-AHSCT, for quantification of telomere length, CD8+CD28 and PD-1+ cells, and serum cytokines. Patients were retrospectively classified as responders (n = 19) and non-responders (n = 6), according to clinical outcomes. At 6 months post-AHSCT, mRSS decreased (P < 0.001) and the pulmonary function stabilized, when compared with pre-transplant measures. In parallel, inflammatory cytokine (IL-6 and IL-1β) levels and telomere lengths decreased, whereas PD-1 expression on T-cells and the number of CD8+CD28 cells expressing CD57 and FoxP3 increased. After AHSCT, responder patients presented higher PD-1 expression on T- (P < 0.05) and B- (P < 0.01) cells, and lower TGF-β, IL-6, G-CSF (P < 0.01), and IL-1β, IL-17A, MIP-1α, and IL-12 (P < 0.05) levels than non-responders. Homeostatic proliferation after AHSCT results in transient telomere attrition and increased numbers of senescent and exhausted cells. High PD-1 expression is associated with better clinical outcomes after AHSCT.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Denton CP, Khanna D. Systemic sclerosis. Lancet. 2017;S0140-6736:30933–9.

    Google Scholar 

  2. Farge D, Labopin M, Tyndall A, Fassas A, Mancardi GL, Laar Van J, et al. Autologous hematopoietic stem cell transplantation for autoimmune diseases: an observational study on 12 years’ experience from the European Group for Blood and Marrow Transplantation Working Party on Autoimmune Diseases. Haematologica. 2010;95:284–92.

    Article  Google Scholar 

  3. van Laar JM, Farge D, Sont JK, Naraghi K, Marjanovic Z, Larghero J, et al. Autologous hematopoietic stem cell transplantation vs intravenous pulse cyclophosphamide in diffuse cutaneous systemic sclerosis. JAMA. 2014;311:2490–8.

    Article  Google Scholar 

  4. Del Papa N, Onida F, Zaccara E, Saporiti G, Maglione W, Tagliaferri E, et al. Autologous hematopoietic stem cell transplantation has better outcomes than conventional therapies in patients with rapidly progressive systemic sclerosis. Bone Marrow Transplant. 2016;52:53–58.

    Article  Google Scholar 

  5. Muraro Pa, Douek DC, Packer A, Chung K, Guenaga FJ, Cassiani-Ingoni R, et al. Thymic output generates a new and diverse TCR repertoire after autologous stem cell transplantation in multiple sclerosis patients. J Exp Med. 2005;201:805–16.

    Article  CAS  Google Scholar 

  6. Delemarre EM, Van Den Broek T, Mijnheer G, Meerding J, Wehrens EJ, Olek S, et al. Autologous stem cell transplantation aids autoimmune patients by functional renewal and TCR diversification of regulatory T cells. Blood. 2016;127:91–101.

    Article  CAS  Google Scholar 

  7. Abrahamsson SV, Angelini DF, Dubinsky AN, Morel E, Oh U, Jones JL, et al. Non-myeloablative autologous haematopoietic stem cell transplantation expands regulatory cells and depletes IL-17 producing mucosal-associated invariant T cells in multiple sclerosis. Brain. 2013;136:2888–903.

    Article  Google Scholar 

  8. Farge D, Henegar C, Carmagnat M, Daneshpouy M, Marjanovic Z, Rabian C, et al. Analysis of immune reconstitution after autologous bone marrow transplantation in systemic sclerosis. Arthritis Rheum. 2005;52:1555–63.

    Article  CAS  Google Scholar 

  9. Farge D, Arruda LCM, Brigant F, Clave E, Douay C, Marjanovic Z, et al. Long-term immune reconstitution and T cell repertoire analysis after autologous hematopoietic stem cell transplantation in systemic sclerosis patients. J Hematol Oncol. 2017;10:21.

    Article  Google Scholar 

  10. Alexander T, Thiel A, Rosen O, Massenkeil G, Sattler A, Kohler S, et al. Depletion of autoreactive immunologic memory followed by autologous hematopoietic stem cell transplantation in patients with refractory SLE induces long-term remission through de novo generation of a juvenile and tolerant immune system. Blood. 2009;113:214–23.

    Article  CAS  Google Scholar 

  11. Lucas C. M. Arruda, Kelen C. R. Malmegrim, João R. Lima-Júnior, Emmanuel Clave, Juliana B. E. Dias, Daniela A. Moraes, Corinne Douay, Isabelle Fournier, Hélène Moins-Teisserenc, Antônio José Alberdi, Dimas T. Covas, Belinda P. Simões, Pauline Lansiaux, Antoine Toubert, Maria Carolina Oliveira, (2018) Immune rebound associates with a favorable clinical response to autologous HSCT in systemic sclerosis patients. Blood Advances 2 (2):126–141

    Article  CAS  Google Scholar 

  12. Arruda LCM, Lorenzi JCC, Sousa APA, Zanette DL, Palma PVB, Panepucci RA, et al. Autologous hematopoietic SCT normalizes miR-16, -155 and -142-3p expression in multiple sclerosis patients. Bone Marrow Transplant. 2015;50:380–9.

    Article  CAS  Google Scholar 

  13. Arruda LCM, de Azevedo JTC, de Oliveira GLV, Scortegagna GT, Rodrigues ES, Palma PVB, et al. Immunological correlates of favorable long-term clinical outcome in multiple sclerosis patients after autologous hematopoietic stem cell transplantation. Clin Immunol. 2016;169:47–57.

    Article  CAS  Google Scholar 

  14. Wu Z, Bensinger SJ, Zhang J, Chen C, Yuan X, Huang X, et al. Homeostatic proliferation is a barrier to transplantation tolerance. Nat Med. 2004;10:87–92.

    Article  CAS  Google Scholar 

  15. Muraro PA, Robins H, Malhotra S, Howell M, Phippard D, Desmarais C, et al. T cell repertoire following autologous stem cell transplantation for multiple sclerosis. J Clin Invest. 2014;124:1168–72.

    Article  CAS  Google Scholar 

  16. O’Donovan A, Pantell MS, Puterman E, Dhabhar FS, Blackburn EH, Yaffe K, et al. Cumulative inflammatory load is associated with short leukocyte telomere length in the Health, Aging and Body Composition Study. PLoS ONE. 2011;6:e19687.

    Article  Google Scholar 

  17. Calado RT, Young NS. Telomere diseases. N Engl J Med. 2009;361:2353–65.

    Article  CAS  Google Scholar 

  18. Akiyama M, Asai O, Kuraishi Y, Urashima M, Hoshi Y, Sakamaki H, et al. Shortening of telomeres in recipients of both autologous and allogeneic hematopoietic stem cell transplantation. Bone Marrow Transpl. 2000;25:441–7.

    Article  CAS  Google Scholar 

  19. Rufer N, Brümmendorf TH, Chapuis B, Helg C, Lansdorp PM, Roosnek E. Accelerated telomere shortening in hematological lineages is limited to the first year following stem cell transplantation. Blood. 2001;97:575–7.

    Article  CAS  Google Scholar 

  20. Robertson J, Testa N, Russell N, Jackson G, Parker A, Milligan D, et al. Telomere length Accelerated telomere shortening following allogeneic transplantation is independent of the cell source and occurs within the first year post transplant. Bone Marrow Transplant. 2001;27:1283–6.

    Article  CAS  Google Scholar 

  21. Peffault de Latour R, Calado RT, Busson M, Abrams J, Adoui N, Robin M, et al. Age-adjusted recipient pre-transplant telomere length and treatment-related mortality after hematopoietic stem cell transplantation. Blood. 2012;120:3353–9.

    Article  CAS  Google Scholar 

  22. Van Den Hoogen F, Khanna D, Fransen J, Johnson SR, Baron M, Tyndall A, et al. 2013 classification criteria for systemic sclerosis: an American College of Rheumatology/European League Against Rheumatism Collaborative Initiative. Arthritis Rheum. 2013;65:2737–47.

    Article  Google Scholar 

  23. LeRoy EC, Black C, Fleischmajer R, Jablonska S, Krieg T, Medsger TA, et al. Scleroderma (systemic sclerosis): Classification, subsets and pathogenesis. J Rheumatol. 1988;15:202–5.

    CAS  PubMed  Google Scholar 

  24. Burt RK, Oliveira MC, Shah SJ, Moraes DA, Simoes B, Gheorghiade M, et al. Cardiac involvement and treatment-related mortality after non-myeloablative haemopoietic stem-cell transplantation with unselected autologous peripheral blood for patients with systemic sclerosis: a retrospective analysis. Lancet. 2013;381:1116–24.

    Article  Google Scholar 

  25. Malmegrim KCR, de Azevedo JTC, Arruda LCM, Abreu JRF, Couri CEB, de Oliveira GLV, et al. Immunological balance is associated with clinical outcome after autologous hematopoietic stem cell transplantation in type 1 diabetes. Front Immunol. 2017;8:167.

    Article  Google Scholar 

  26. Cawthon RM. Telomere length measurement by a novel monochrome multiplex quantitative PCR method. Nucleic Acids Res. 2009;37:e21.

    Article  Google Scholar 

  27. Ruijter JM, Ramakers C, Hoogaars WMH, Karlen Y, Bakker O, van den Hoff MJB, et al. Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res. 2009;37:e45–e45.

    Article  CAS  Google Scholar 

  28. Frisullo G, Nociti V, Iorio R, Plantone D, Patanella AK, Tonali PA, et al. CD8+Foxp3+T cells in peripheral blood of relapsing-remitting multiple sclerosis patients. Hum Immunol. 2010;71:437–41.

    Article  CAS  Google Scholar 

  29. Beres AJ, Haribhai D, Chadwick AC, Gonyo PJ, Williams CB, Drobyski WR. CD8+Foxp3+regulatory T cells are induced during graft-versus-host disease and mitigate disease severity. J Immunol. 2012;189:464–74.

    Article  CAS  Google Scholar 

  30. Sun W, Popat U, Hutton G, Zang YCQ, Krance R, Carrum G, et al. Characteristics of T-cell receptor repertoire and myelin-reactive T cells reconstituted from autologous haematopoietic stem-cell grafts in multiple sclerosis. Brain. 2004;127:996–1008.

    Article  Google Scholar 

  31. Darlington PJ, Touil T, Doucet JS, Gaucher D, Zeidan J, Gauchat D, et al. Diminished Th17 (not Th1) responses underlie multiple sclerosis disease abrogation after hematopoietic stem cell transplantation. Ann Neurol. 2013;73:341–54.

    Article  CAS  Google Scholar 

  32. De Kleer I, Vastert B, Klein M, Teklenburg G, Arkesteijn G, Yung GP, et al. Autologous stem cell transplantation for autoimmunity induces immunologic self-tolerance by reprogramming autoreactive T cells and restoring the CD4+CD25+immune regulatory network. Blood. 2006;107:1696–702.

    Article  Google Scholar 

  33. Muraro PA, Douek DC. Renewing the T cell repertoire to arrest autoimmune aggression. Trends Immunol. 2006;27:61–67.

    Article  CAS  Google Scholar 

  34. Arruda LCM, Clave E, Moins-Teisserenc H, Douay C, Farge D, Toubert A. Resetting the immune response after autologous hematopoietic stem cell transplantation for autoimmune diseases. Curr Res Transl Med. 2016;64:107–13.

    Article  CAS  Google Scholar 

  35. MacIntyre A, Brouilette SW, Lamb K, Radhakrishnan K, McGlynn L, Chee MM, et al. Association of increased telomere lengths in limited scleroderma, with a lack of age-related telomere erosion. Ann Rheum Dis. 2008;67:1780–2.

    Article  CAS  Google Scholar 

  36. Tarhan F, Vural F, Kosova B, Aksu K, Cogulu O, Keser G, et al. Telomerase activity in connective tissue diseases: elevated in rheumatoid arthritis, but markedly decreased in systemic sclerosis. Rheumatol Int. 2008;28:579–83.

    Article  CAS  Google Scholar 

  37. Roelofs H, De Pauw ESD, Zwinderman AH, Opdam SM, Willemze R, Tanke HJ, et al. Homeostasis of telomere length rather than telomere shortening after allogeneic peripheral blood stem cell transplantation. Blood. 2003;101:358–62.

    Article  CAS  Google Scholar 

  38. Monteiro J, Batliwalla F, Ostrer H, Gregersen PK. Shortened telomeres in clonally expanded CD28CD8+T cells imply a replicative history that is distinct from their CD28+CD8+counterparts. J Immunol. 1996;156:3587–90.

    CAS  PubMed  Google Scholar 

  39. Effros RB, Allsopp R, Chiu CP, Hausner MA, Hirji K, Wang L, et al. Shortened telomeres in the expanded CD28CD8+cell subset in HIV disease implicate replicative senescence in HIV pathogenesis. AIDS. 1996;10:F17–22.

    Article  CAS  Google Scholar 

  40. Vuddamalay Y, van Meerwijk JPM. CD28 and CD28lowCD8+regulatory T cells: of mice and men. Front Immunol. 2017;8:31.

    Article  Google Scholar 

  41. Mollet L, Sadat-Sowti B, Duntze J, Leblond V, Bergeron F, Calvez V, et al. CD8hi+CD57+T lymphocytes are enriched in antigen-specific T cells capable of down-modulating cytotoxic activity. Int Immunol. 1998;10:311–23.

    Article  CAS  Google Scholar 

  42. Autran B, Leblond V, Sadat-Sowti B, Lefranc E, Got P, Sutton L, et al. A soluble factor released by CD8+CD57+lymphocytes from bone marrow transplanted patients inhibits cell-mediated cytolysis. Blood. 1991;77:2237–41.

    CAS  PubMed  Google Scholar 

  43. Mikulkova Z, Praksova P, Stourac P, Bednarik J, Strajtova L, Pacasova R, et al. Numerical defects in CD8+CD28 T-suppressor lymphocyte population in patients with type 1 diabetes mellitus and multiple sclerosis. Cell Immunol. 2010;262:75–9.

    Article  CAS  Google Scholar 

  44. McKinney EF, Lee JC, Jayne DR, Lyons PA, Smith KG. T-cell exhaustion, co-stimulation and clinical outcome in autoimmunity and infection. Nature. 2015;523:612–6.

    Article  CAS  Google Scholar 

  45. Wherry EJ. T cell exhaustion. Nat Immunol. 2011;12:492–9.

    Article  CAS  Google Scholar 

  46. Thangavelu G, Parkman JC, Ewen CL, Uwiera RRE, Baldwin TA, Anderson CC. Programmed death-1 is required for systemic self-tolerance in newly generated T cells during the establishment of immune homeostasis. J Autoimmun. 2011;36:301–12.

    Article  CAS  Google Scholar 

  47. Le Campion A, Gagnerault MC, Auffray C, Bécourt C, Poitrasson-Rivière M, Lallemand E, et al. Lymphopenia-induced spontaneous T-cell proliferation as a cofactor for autoimmune disease development. Blood. 2009;114:1784–93.

    Article  Google Scholar 

  48. de Oliveira GLV, Malmegrim KCR, Ferreira AF, Tognon R, Kashima S, Couri CEB, et al. Up-regulation of fas and fasL pro-apoptotic genes expression in type 1 diabetes patients after autologous haematopoietic stem cell transplantation. Clin Exp Immunol. 2012;168:291–302.

    Article  Google Scholar 

  49. de Oliveira GLV, Ferreira AF, Gasparotto EPL, Kashima S, Covas DT, Guerreiro CT, et al. Defective expression of apoptosis-related molecules in multiple sclerosis patients is normalized early after autologous haematopoietic stem cell transplantation. Clin Exp Immunol. 2017;187:383–98.

    Article  Google Scholar 

  50. Larbi A, Fulop T. From ‘truly naïve’ to ‘exhausted senescent’ T cells: when markers predict functionality. Cytom Part A. 2014;85:25–35.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the financial research agencies CNPq, INSERM, and FAPESP (Scholarship numbers: 2013/18678-3, 2014/20922-2; Center for Cell-Based Therapy, CEPID-FAPESP, grant number 2013/08135-2).

Author contributions

MCO and KCRM are the principal investigators and take primary responsibility for the paper. LCMA, KCRM, AT, and MCO designed the study. LCMA, JRL-J, CD, IF, and EC performed the experiments. LCMA, JRL-J, DAM, BPS, and HM-T collected the data and performed data analysis. DTC provided essential funding to the development of this work. LCMA, KCRM, AT, EC, and MCO wrote the final report. All authors contributed to the editing of the final report. All authors agree on all of the content of the submitted manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Carolina Oliveira.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

These authors share senior authorship: Kelen C. R. Malmegrim, Maria Carolina Oliveira.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arruda, L.C.M., Lima-Júnior, J.R., Clave, E. et al. Homeostatic proliferation leads to telomere attrition and increased PD-1 expression after autologous hematopoietic SCT for systemic sclerosis. Bone Marrow Transplant 53, 1319–1327 (2018). https://doi.org/10.1038/s41409-018-0162-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41409-018-0162-0

This article is cited by

Search

Quick links