Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Prognostic significance of microRNA-99a in acute myeloid leukemia patients undergoing allogeneic hematopoietic stem cell transplantation

Abstract

Overexpression of microRNA-99a (miR-99a) have been associated with adverse prognosis in acute myeloid leukemia (AML). Nevertheless, whether it also predicts poor outcome in post-allogeneic hematopoietic stem cell transplantation (allo-HSCT) AML patients remains unclear. To further elucidate the prognostic value of miR-99a, 74 AML patients with miR-99a expression report who underwent allo-HSCT from The Cancer Genome Atlas database were identified and grouped into either miR-99ahigh or miR-99alow based on their miR-99a expression levels relative to the median. Two groups had similar clinical and molecular characteristics except that miR-99ahigh group had fewer patients of the French-American-British M4 subtype (P = 0.018) and more frequent CEBPA mutations (P = 0.005). Univariate analysis indicated that high miR-99a expression was unfavorable for both event-free survival (EFS) and overall survival (OS; P = 0.029; P = 0.012, respectively). Multivariate analysis suggested that high miR-99a expression was an independent risk factor for both EFS and OS in AML patients who underwent allo-HSCT [hazard ratio (HR) 1.909, 95% confidence interval (CI) 1.043–3.494, P = 0.036 and HR 2.179, 95% CI 1.192–3.982, P = 0.011, respectively]. Our results further proved that high miR-99a expression could predict worse outcome in AML patients, even in those who underwent intensive post-remission therapy such as allo-HCST.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

References

  1. Kreso A, Dick JE. Evolution of the cancer stem cell model. Cell Stem Cell. 2014;14:275–91.

    Article  CAS  Google Scholar 

  2. Mrózek K, Marcucci G, Paschka P, Whitman SP, Bloomfield CD. Clinical relevance of mutations and gene-expression changes in adult acute myeloid leukemia with normal cytogenetics: are we ready for a prognostically prioritized molecular classification? Blood. 2007;109:431–48.

    Article  Google Scholar 

  3. Metzelder SK, Schroeder T, Lübbert M, Ditschkowski M, Götze K, Scholl S, et al. Long-term survival of sorafenib-treated FLT3-ITD-positive acute myeloid leukaemia patients relapsing after allogeneic stem cell transplantation. Eur J Cancer. 2017;86:233–9.

    Article  CAS  Google Scholar 

  4. Lin N, Fu W, Zhao C, Li B, Yan X, Li Y. Biologico-clinical significance of DNMT3A variants expression in acute myeloid leukemia. Biochem Biophys Res Commun. 2017;494:270–7.

    Article  CAS  Google Scholar 

  5. Minetto P, Guolo F, Clavio M, Kunkl A, Colombo N, Carminati E, et al. A blastic plasmacytoid dendritic cell neoplasm-like phenotype identifies a subgroup of NPM1-mutated AML patients with worse prognosis. Am J Hematol. 2017. https://doi.org/10.1002/ajh.24956.

    Article  PubMed  Google Scholar 

  6. Xuan Y, Yang H, Zhao L, Lau WB, Lau B, Ren N, et al. MicroRNAs in colorectal cancer: small molecules with big functions. Cancer Lett. 2015;360:89–105.

    Article  CAS  Google Scholar 

  7. Marcucci G, Mrózek K, Radmacher MD, Garzon R, Bloomfield CD. The prognostic and functional role of microRNAs in acute myeloid leukemia. Blood. 2011;117:1121–9.

    Article  CAS  Google Scholar 

  8. Marcucci G, Radmacher MD, Maharry K, Mrózek K, Ruppert AS, Paschka P, et al. MicroRNA expression in cytogenetically normal acute myeloid leukemia. N Engl J Med. 2008;358:1919–28.

    Article  CAS  Google Scholar 

  9. Schwind S, Maharry K, Radmacher MD, Mrózek K, Holland KB, Margeson D, et al. Prognostic significance of expression of a single microRNA, miR-181a, in cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. J Clin Oncol. 2010;28:5257–64.

    Article  CAS  Google Scholar 

  10. Sun SM, Rockova V, Bullinger L, Dijkstra MK, Döhner H, Löwenberg B, et al. The prognostic relevance of miR-212 expression with survival in cytogenetically and molecularly heterogeneous AML. Leukemia. 2013;27:100–6.

    Article  CAS  Google Scholar 

  11. Zhu C, Wang Y, Kuai W, Sun X, Chen H, Hong Z. Prognostic value of miR-29a expression in pediatric acute myeloid leukemia. Clin Biochem. 2013;46:49–53.

    Article  CAS  Google Scholar 

  12. Marcucci G, Maharry KS, Metzeler KH, Volinia S, Wu YZ, Mrózek K, et al. Clinical role of microRNAs in cytogenetically normal acute myeloid leukemia: miR-155 upregulation independently identifies high-risk patients. J Clin Oncol. 2013;31:2086–93.

    Article  CAS  Google Scholar 

  13. Si X, Zhang X, Hao X, Li Y, Chen Z, Ding Y, et al. Upregulation of miR-99a is associated with poor prognosis of acute myeloid leukemia and promotes myeloid leukemia cell expansion. Oncotarget. 2016;7:78095–109.

    PubMed  PubMed Central  Google Scholar 

  14. Gupta V, Tallman MS, He W, Logan BR, Copelan E, Gale RP, et al. Comparable survival after HLA-well-matched unrelated or matched sibling donor transplantation for acute myeloid leukemia in first remission with unfavorable cytogenetics at diagnosis. Blood. 2010;116:1839–48.

    Article  CAS  Google Scholar 

  15. Ley TJ, Miller C, Ding L, Raphael BJ, Mungall AJ, Robertson A, et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013;368:2059–74.

    Article  Google Scholar 

  16. Buccisano F, Hourigan CS, Walter RB. The Prognostic Significance of Measurable (“Minimal”) Residual Disease in Acute Myeloid Leukemia. Curr Hematol Malig Rep. 2017. doi: https://doi.org/10.1007/s11899-017-0420-z.

    Article  Google Scholar 

  17. Qin YZ, Chen Y, Xu LP, Wang Y, Zhang XH, Chen H, et al. Outcome and minimal residual disease monitoring in patients with t(16;21) acute myelogenous leukemia undergoing allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2017. https://doi.org/10.1016/j.bbmt.2017.09.002.

    Article  PubMed  Google Scholar 

  18. Norkin M, Katragadda L, Zou F, Xiong S, Chang M, Dai Y, et al. Minimal residual disease by either flow cytometry or cytogenetics prior to an allogeneic hematopoietic stem cell transplant is associated with poor outcome in acute myeloid leukemia. Blood Cancer J. 2017. doi: https://doi.org/10.1038/s41408-017-0007-x.

  19. Barrett AJ, Battiwalla M. Relapse after allogeneic stem cell transplantation. Expert Rev Hematol. 2010;3:429–41.

    Article  Google Scholar 

  20. Hemmati PG, Pfeifer K, Vuong LG, Jehn CF, Terwey TH, le Coutre P, et al. Allogeneic stem cell transplantation for non-de novo AML or advanced myelodysplastic syndromes: influence of GvHD and donor lymphocyte infusions on long-term outcome. Bone Marrow Transpl. 2017. https://doi.org/10.1038/bmt.2017.215.

    Article  Google Scholar 

  21. Brissot E, Labopin M, Stelljes M, Ehninger G, Schwerdtfeger R, Finke J, et al. Comparison of matched sibling donors versus unrelated donors in allogeneic stem cell transplantation for primary refractory acute myeloid leukemia: a study on behalf of the Acute Leukemia Working Party of the EBMT. J Hematol Oncol. 2017;10:130.

    Article  Google Scholar 

  22. Lu Y, Wu T, Zhao YL, Cao XY, Liu DY, Zhang JP, et al. Effect of NCCN (2015) risk stratification on prognosis of patients with acute myeloid leukemia after allogeneic hematopoietic stem cell transplantation. Zhonghua Xue Ye Xue Za Zhi. 2017;38:44–49.

    CAS  PubMed  Google Scholar 

  23. Marcucci G, Metzeler KH, Schwind S, Becker H, Maharry K, Mrózek K, et al. Age-related prognostic impact of different types of DNMT3A mutations in adults with primary cytogenetically normal acute myeloid leukemia. J Clin Oncol. 2012;30:742–50.

    Article  Google Scholar 

  24. Gale RE, Green C, Allen C, Mead AJ, Burnett AK, Hills RK, et al. The impact of FLT3 internal tandem duplication mutant level, number, size, and interaction with NPM1 mutations in a large cohort of young adult patients with acute myeloid leukemia. Blood. 2008;111:2776–84.

    Article  CAS  Google Scholar 

  25. Lin PH, Li HY, Fan SC, Yuan TH, Chen M, Hsu YH, et al. A targeted next-generation sequencing in the molecular risk stratification of adult acute myeloid leukemia: implications for clinical practice. Cancer Med. 2017;6:349–60.

    Article  CAS  Google Scholar 

  26. Kong J, Zhao XS, Qin YZ, Zhu HH, Jia JS, Jiang Q, et al. The initial level of MLL-partial tandem duplication affects the clinical outcomes in patients with acute myeloid leukemia. Leuk Lymphoma. 2017. https://doi.org/10.1080/10428194.2017.1352091.

    Article  Google Scholar 

  27. Kubesova B, Pavlova S, Malcikova J, Kabathova J, Radova L, Tom N, et al. Low-burden TP53 mutations in chronic phase of myeloproliferative neoplasms: association with age, hydroxyurea administration, disease type and JAK2 mutational status. Leukemia. 2017. https://doi.org/10.1038/leu.2017.230.

    Article  Google Scholar 

  28. Wang X, Li Y, Qi W, Zhang N, Sun M, Huo Q, et al. MicroRNA-99a inhibits tumor aggressive phenotypes through regulating HOXA1 in breast cancer cells. Oncotarget. 2015;6:32737–47.

    PubMed  PubMed Central  Google Scholar 

  29. Wang L, Chang L, Li Z, Gao Q, Cai D, Tian Y, et al. miR-99a and -99b inhibit cervical cancer cell proliferation and invasion by targeting mTOR signaling pathway. Med Oncol. 2014;31:934.

    Article  Google Scholar 

  30. Sun D, Yong SL, Malhotra A, Kim HK, Matecic M, Evans C, et al. miR-99 family of microRNAs suppresses the expression of prostate specific antigen and prostate cancer cell proliferation. Cancer Res. 2011;71:1313–24.

    Article  CAS  Google Scholar 

  31. Xing B, Ren C. Tumor-suppressive miR-99a inhibits cell proliferation via targeting of TNFAIP8 in osteosarcoma cells. Am J Transl Res. 2016;8:1082–90.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (81500118, 61501519), the China Postdoctoral Science Foundation funded project (project No.2016M600443), Jiangsu Province Postdoctoral Science Foundation funded project (project No.1701184B) and PLAGH project of Medical Big Data (Project No.2016MBD-025).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinlong Shi or Lin Fu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Z., Zhou, L., Hu, K. et al. Prognostic significance of microRNA-99a in acute myeloid leukemia patients undergoing allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant 53, 1089–1095 (2018). https://doi.org/10.1038/s41409-018-0146-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41409-018-0146-0

This article is cited by

Search

Quick links