Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Predicting failure of hematopoietic stem cell mobilization before it starts: the predicted poor mobilizer (pPM) score

Abstract

Predicting mobilization failure before it starts may enable patient-tailored strategies. Although consensus criteria for predicted PM (pPM) are available, their predictive performance has never been measured on real data. We retrospectively collected and analyzed 1318 mobilization procedures performed for MM and lymphoma patients in the plerixafor era. In our sample, 180/1318 (13.7%) were PM. The score resulting from published pPM criteria had sufficient performance for predicting PM, as measured by AUC (0.67, 95%CI: 0.63–0.72). We developed a new prediction model from multivariate analysis whose score (pPM-score) resulted in better AUC (0.80, 95%CI: 0.76–0.84, p < 0001). pPM-score included as risk factors: increasing age, diagnosis of NHL, positive bone marrow biopsy or cytopenias before mobilization, previous mobilization failure, priming strategy with G-CSF alone, or without upfront plerixafor. A simplified version of pPM-score was categorized using a cut-off to maximize positive likelihood ratio (15.7, 95%CI: 9.9–24.8); specificity was 98% (95%CI: 97–98.7%), sensitivity 31.7% (95%CI: 24.9–39%); positive predictive value in our sample was 71.3% (95%CI: 60–80.8%). Simplified pPM-score can “rule in” patients at very high risk for PM before starting mobilization, allowing changes in clinical management, such as choice of alternative priming strategies, to avoid highly likely mobilization failure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

References

  1. Passweg JR, Baldomero H, Bader P, Bonini C, Cesaro S, Dreger P, et al. Hematopoietic stem cell transplantation in Europe 2014: more than 40 000 transplants annually. Bone Marrow Transpl. 2016;51:786–92.

    Article  CAS  Google Scholar 

  2. Weaver CH, Hazelton B, Birch R, Palmer P, Allen C, Schwartzberg L, et al. An analysis of engraftment kinetics as a function of the CD34 content of peripheral blood progenitor cell collections in 692 patients after the administration of myeloablative chemotherapy. Blood. 1995;86:3961–9.

    CAS  PubMed  Google Scholar 

  3. Hubel K, Fresen MM, Apperley JF, Basak GW, Douglas KW, Gabriel IH, et al. European data on stem cell mobilization with plerixafor in non–Hodgkin’s lymphoma, Hodgkin’s lymphoma and multiple myeloma patients. A subgroup analysis of the European Consortium of stem cell mobilization. Bone Marrow Transpl. 2012;47:1046–50.

    Article  CAS  Google Scholar 

  4. Perseghin P, Terruzzi E, Dassi M, Baldini V, Parma M, Coluccia P, et al. Management of poor peripheral blood stem cell mobilization: incidence, predictive factors, alternative strategies and outcome. A retrospective analysis on 2177 patients from three major Italian institutions. Transfus Apher Sci. 2009;41:33–7.

    Article  Google Scholar 

  5. Pusic I, Jiang SY, Landua S, Uy GL, Rettig MP, Cashen AF, et al. Impact of mobilization and remobilization strategies on achieving sufficient stem cell yields for autologous transplantation. Biol Blood Marrow Transpl. 2008;14:1045–56.

    Article  CAS  Google Scholar 

  6. Milone G, Martino M, Spadaro A, Leotta S, Di Marco A, Scalzulli P, et al. Plerixafor on demand combined with chemotherapy and granulocyte colony-stimulating factor: significant improvement in peripheral blood stem cells mobilization and harvest without increase in costs. Br J Haematol. 2013;164:113–23.

    Article  Google Scholar 

  7. Farina L, Guidetti A, Spina F, Roncari L, Longoni P, Ravagnani F, et al. Plerixafor ‘on demand’: results of a strategy based on peripheral blood CD341 cells in lymphoma patients at first or subsequent mobilization with chemotherapy + G-CSF. Bone Marrow Transpl. 2014;9:453–5.

    Article  Google Scholar 

  8. Sancho JM, Morgades M, Grifols JR, Juncà J, Guardia R, Vives S, et al. Predictive factors for poor peripheral blood stem cell mobilization and peak CD34(+) cell count to guide pre–emptive or immediate rescue mobilization. Cytotherapy. 2012;4:823–9.

    Article  Google Scholar 

  9. Lanza F, Lemoli RM, Olivieri A, Laszlo D, Martino M, Specchia G, et al. Factors affecting successful mobilization with plerixafor: an Italian prospective survey in 15 patients with multiple myeloma and lymphoma. Transfusion. 2013;54:31–339.

    Google Scholar 

  10. Sinha S, Gertz MA, Lacy MQ, Dispenzieri A, Hayman SR, Buadi FK, et al. Majority of patients receiving initial therapy with lenalidomide–based regimens can be successfully mobilized with appropriate mobilization strategies. Leukemia. 2012;26:1119–22.

    Article  CAS  Google Scholar 

  11. Giralt S, Stadtmauer EA, Harousseau JL, Palumbo A, Bensinger W, Comenzo RL, et al. International Myeloma Working Group (IMWG) consensus statement and guidelines regarding the current status of stem cell collection and high–dose therapy for multiple myeloma and the role of plerixafor (AMD 3100). Leukemia. 2009;23:1904–12.

    Article  CAS  Google Scholar 

  12. Attolico I, Pavone V, Ostuni A, Rossini B, Musso M, Crescimanno A, et al. Plerixafor added to chemotherapy plus G–CSF is safe and allows adequate PBSC collection in predicted poor mobilizer patients with multiple myeloma or lymphoma. Biol Blood Marrow Transpl. 2012;18:241–9.

    Article  CAS  Google Scholar 

  13. Efron B, Tibshirani RJ. An Introduction to the bootstrap. Boca Raton, FL. CRC press, 1994.

  14. Olivieri A, Marchetti M, Lemoli R, Tarella C, Iacone A, Lanza F, et al. Proposed definition of ‘poor mobilizer’ in lymphoma and multiple myeloma: an analytic hierarchy process by ad hoc working group Gruppo Italiano Trapianto di Midollo Osseo. Bone Marrow Transpl. 2012;47:342–51.

    Article  CAS  Google Scholar 

  15. Abhyankar S, DeJarnette S, Aljitawi O, Ganguly S, Merkel D, McGuirk J. Risk–based approach to optimize autologous hematopoietic stem cell (HSC) collection with the use of plerixafor. Bone Marrow Transpl. 2012;47:83–487.

    Article  Google Scholar 

  16. Costa LJ, Alexander ET, Hogan KR, Schaub C, Fouts TV, Stuart RK. Development and validation of a decision-making algorithm to guide the use of plerixafor for autologous hematopoietic stem cell mobilization. Bone Marrow Transpl. 2011;6:64–69.

    Article  Google Scholar 

  17. Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology. 1982;143:29–36.

    Article  CAS  Google Scholar 

  18. DeLong ER, DeLong DM, Clarke–Pearson. DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44:837–45.

    Article  CAS  Google Scholar 

  19. Trajman A, Luiz RR. McNemar chi2 test revisited: comparing sensitivity and specificity of diagnostic examinations. Scand J Clin Lab Invest. 2008;68:77–80.

    Article  CAS  Google Scholar 

  20. Hoster E, Dreyling M, Klapper W, Gisselbrecht C, van Hoof A, Kluin–Nelemans HC, et al. A new prognostic index (MIPI) for patients with advanced-stage mantle cell lymphoma. Blood. 2008;111:558–65.

    Article  CAS  Google Scholar 

  21. Micallef IN, Sinha S, Gastineau DA, Wolf R, Inwards DJ, Gertz MA, et al. Cost-effectiveness analysis of a risk-adapted algorithm for plerixafor use in autologous peripheral blood stem cell mobilization. Biol Blood Marrow Transpl. 2013;19:87–93.

    Article  CAS  Google Scholar 

  22. Horwitz ME, Chute JP, Gasparetto C, Long GD, McDonald C, Morris A, et al. Preemptive dosing of plerixafor given to poor stem cell mobilizers on day 5 of G-CSF administration. Bone Marrow Transpl. 2012;47:1051–5.

    Article  CAS  Google Scholar 

  23. Gambell P, Herbert K, Dickinson M, Stokes K, Bressel M, Wall D, et al. Peripheral blood CD34+cell enumeration as a predictor of apheresis yield: an analysis of over 1000 collections. Biol Blood Marrow Transpl. 2012;18:763–72.

    Article  Google Scholar 

  24. Pierelli L, Perseghin P, Marchetti M, Accorsi P, Fanin R, Messina C, et al. Best practice for peripheral blood progenitor cell mobilization and collection in adults and children: results of a Società Italiana Di Emaferesi e Manipolazione Cellulare (SIDEM) and Gruppo Italiano Trapianto Midollo Osseo (GITMO) consensus process. Transfusion. 2012;52:893–905.

    Article  Google Scholar 

  25. Giralt S, Costa L, Schriber J, Dipersio J, Maziarz R, McCarty J, et al. Optimizing autologous stem cell mobilization strategies to improve patient outcomes: consensus guidelines and recommendations. Biol Blood Marrow Transpl. 2014;20:295–308.

    Article  Google Scholar 

  26. Chow E, Rao KV, Wood WA, Covington D, Armistead PM, Coghill J, et al. Effectiveness of an algorithm-based approach to the utilization of plerixafor in patients undergoing chemotherapy-based stem cell mobilization. Biol Blood Marrow Transpl. 2014;20:1064–8.

    Article  CAS  Google Scholar 

  27. Mohty M, Hübel K, Kröger N, Aljurf M, Apperley J, Basak GW, et al. Autologous haematopoietic stem cell mobilisation in multiple myeloma and lymphoma patients: a position statement from the European Group for Blood and Marrow Transplantation. Bone Marrow Transpl. 2014;49:865–72.

    Article  CAS  Google Scholar 

  28. Whitaker R. Validation examples of the analytic hierarchy process and analytic network process. Math Comput Model. 2007;46:840–59.

    Article  Google Scholar 

  29. Šimundić AM. Measures of diagnostic accuracy: basic definitions. EJIFCC. 2009;19:203–11.

    PubMed  PubMed Central  Google Scholar 

  30. Ferrante di Ruffano L, Hyde C, McCaffery KJ, Bossuyt PM, Deeks JJ. Assessing the value of diagnostic tests: a framework for designing and evaluating trials. BMJ. 2012;344:e686.

    Article  Google Scholar 

  31. Grimes DA, Schulz KF. Refining clinical diagnosis with likelihood ratios. Lancet. 2005;365:1500–5.

    Article  Google Scholar 

  32. Olivieri A, Saraceni F. Mobilization policy in multiple myeloma: minimum target or law of redundancy? Two different approaches by the two sides of the Atlantic Ocean. Bone Marrow Transpl. 2016;51:348–50.

    Article  CAS  Google Scholar 

  33. Yuan S, Wang S. How do we mobilize and collect autologous peripheral blood stem cells? Transfusion. 2017;57:13–23.

    Article  Google Scholar 

  34. Steyerberg EW, Harrell FE Jr., Borsboom GJ, Eijkemans MJ, Vergouwe Y, Habbema JD. Internal validation of predictive models: efficiency of some procedures for logistic regression analysis. J Clin Epidemiol. 2001;54:774–81.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to Giuseppe Ausoni, Paola Brambilla, Saveria Capria, Gloria Margiotta Casaluci, Michele Cimminiello, Annarita Conconi, Carmela Cuomo, Katia Codeluppi, Mario Delia, Roberta Distefano, Annalisa Di Marco, Luca Facchini, Salvatore Gattillo, Maria Gozzer, Svitlana Gumenyuk, Francesco Marchesi, Giovanna Meloni, Angela Melpignano, Luca Nassi, Domenico Pastore, Giuseppe Pietrantuono, Michele Pizzuti, Giovanni Quarta, Azzurra Anna Romeo, Federica Sorà, Andrea Spadaro and Stefania Trinca for their contribution to this study.

Author contributions

J.O. performed the statistical analysis and wrote the manuscript; A.O. contributed to study design, interpreted the results, contributed to manuscript writing, reviewed, and approved the manuscript; E.D.N. contributed to study design and to the statistical analysis; F.S. contributed to data collection and interpretation of the results, approved and edited the manuscript; I.A., M.C., M.P., P.P., P.E.P. contributed to data collection and interpretation of the results; P.C., L.F., G.G., L.N., S.S., N.P., M.M., T.M., M.P., F.Z., F.C., S.M., A.M., P.M., S.C., F.M., K.C., G.M., F.L., G.S., D.P., G.M. contributed to contributed to patient care and data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Attilio Olivieri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olivieri, J., Attolico, I., Nuccorini, R. et al. Predicting failure of hematopoietic stem cell mobilization before it starts: the predicted poor mobilizer (pPM) score. Bone Marrow Transplant 53, 461–473 (2018). https://doi.org/10.1038/s41409-017-0051-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41409-017-0051-y

This article is cited by

Search

Quick links