
ARTICLE OPEN

Bayesian interim analysis for prospective randomized studies:
reanalysis of the acute myeloid leukemia HOVON 132
clinical trial
Niek G. van der Maas 1,14, Jurjen Versluis1,14, Kazem Nasserinejad1, Joost van Rosmalen2,3, Thomas Pabst4,5, Johan Maertens 6,
Dimitri Breems7, Markus Manz 5,8, Jacqueline Cloos9, Gert J. Ossenkoppele9, Yngvar Floisand10, Patrycja Gradowska1,11,
Bob Löwenberg 1, Gerwin Huls12, Douwe Postmus13, Francesco Pignatti13 and Jan J. Cornelissen1,13✉

© The Author(s) 2024

Randomized controlled trials (RCTs) are the gold standard to establish the benefit-risk ratio of novel drugs. However, the evaluation
of mature results often takes many years. We hypothesized that the addition of Bayesian inference methods at interim analysis time
points might accelerate and enforce the knowledge that such trials may generate. In order to test that hypothesis, we
retrospectively applied a Bayesian approach to the HOVON 132 trial, in which 800 newly diagnosed AML patients aged 18 to 65
years were randomly assigned to a “7+ 3” induction with or without lenalidomide. Five years after the first patient was recruited,
the trial was negative for its primary endpoint with no difference in event-free survival (EFS) between experimental and control
groups (hazard ratio [HR] 0.99, p= 0.96) in the final conventional analysis. We retrospectively simulated interim analyses after the
inclusion of 150, 300, 450, and 600 patients using a Bayesian methodology to detect early lack of efficacy signals. The HR for EFS
comparing the lenalidomide arm with the control treatment arm was 1.21 (95% CI 0.81–1.69), 1.05 (95% CI 0.86–1.30), 1.00 (95% CI
0.84–1.19), and 1.02 (95% CI 0.87–1.19) at interim analysis 1, 2, 3 and 4, respectively. Complete remission rates were lower in the
lenalidomide arm, and early deaths more frequent. A Bayesian approach identified that the probability of a clinically relevant
benefit for EFS (HR < 0.76, as assumed in the statistical analysis plan) was very low at the first interim analysis (1.2%, 0.6%, 0.4%, and
0.1%, respectively). Similar observations were made for low probabilities of any benefit regarding CR. Therefore, Bayesian analysis
significantly adds to conventional methods applied for interim analysis and may thereby accelerate the performance and
completion of phase III trials.
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INTRODUCTION
Time elapsing between design, completion of patient accrual, and
final outcome analysis of prospective randomized clinical trials
(RCT) is generally very long, which hampers the rapid approval of
drugs for patients with a high or unmet clinical need. To allow for
timely access to new therapies, regulatory authorities have
permitted drug development strategies other than RCTs, which
have increasingly been used in (conditional) approval by the FDA
and EMA [1, 2]. Recent FDA evaluation of the Accelerated
Approval track highlighted the importance of enhancing quality
and efficiency in drug development tracks using prospective
comprehensive strategies in order to expedite therapeutic
advancements [3].
Prospective phase III RCTs are still pivotal to evaluate the risk-

benefit ratio of experimental therapies compared to a well-
balanced control group [4–7]. The expected benefit of the

experimental treatment is often based on data from earlier phase
II studies. RCTs may include interim analyses that focus on toxicity
or efficacy endpoints to prevent excessive harm for patients or to
stop a study early because of early evidence of benefit or futility.
However, the conventional, frequentist approach commonly
employed to evaluate these endpoints in clinical trials might be
limited by implicit prior assumptions, the need for long-term
follow-up to observe the number of events required for final
evaluation, and conservative interim stopping rules.
Bayesian statistical methods have been proposed as a tool that

might meet these limitations, for example to estimate the
maximum tolerated dose of a drug in early phase studies. It
may allow for an adaptive conduct of trials by incorporating prior
knowledge from historical patients with similar disease and
treatment characteristics [8–10]. While Bayesian inference has
been well-established in the design of phase I/II studies [11–20],
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its use in prospective phase III RCTs has been more limited
[21–28].
This study aims to retrospectively evaluate how external data as

prior knowledge can be used to analyze primary and secondary
trial endpoints, and to challenge the original study assumptions at
successive interim analyses of an RCT. Therefore, we reanalyzed a
prospective phase III trial from the Haematology-Oncology for
Adults in the Netherlands (HOVON) and the Swiss Group for
Clinical Cancer Research (SAKK) cooperative groups in patients
with acute myeloid leukemia (AML) which did not meet its primary
endpoint [29], and used a dynamic borrowing approach with
Bayesian inference to reinforce the control treatment arm with
external data from a previous AML trial.

METHODS
Study design
In this reanalysis of a randomized phase III clinical trial, the HOVON 132
AML/SAKK 30/13 (HO132) study was used [29]. Four interim analyses were
simulated in the prospective conduct of the HO132 trial after the inclusion
of 150, 300, 450, and 600 patients for an early benefit-risk assessment
(Fig. 1). Outcome data from patients enrolled in the control treatment arm
of the preceding prospective HOVON 102 AML/ SAKK 30/09 (HO102) trial
[30] were used to reinforce the control treatment arm of the HO132.

Data sources
Data from the HO132 and HO102 trials were used in this reanalysis
(Table 1). The HO132 is a phase III RCT which included patients aged 18 to
65 years with newly diagnosed AML between 2014 and 2017 [29]. Patients
were randomized between two cycles of standard remission induction
therapy with or without lenalidomide. After remission, induction therapy,
patients in complete remission (CR) or CR with incomplete hematologic
recovery (CRi) received post‐remission treatment with either a third cycle
of chemotherapy, high‐dose chemotherapy followed by autologous stem
cell transplantation (SCT) or an allogeneic SCT, as described previously [29].
The primary endpoint was event free survival (EFS), with a total of 800
patients with 441 events being considered to detect an hazard ratio (HR) of
0.76 with 82% power and at the 5% significance level, corresponding with
an increased EFS of 10% at 3 years by lenalidomide. Upon final analysis in
2019, EFS was not significantly different between patients receiving
intensive induction with or without lenalidomide (HR 0.99, p= 0.96) [29].
Additionally, the percentage of patients achieving CR or CRi after two
cycles of induction chemotherapy was 82% for the experimental arm and
87% for the control arm (odds ratio [OR] 0.71 p= 0.08). Measurable

residual disease (MRD) negativity in patients in CR after the second
induction cycle were 78 and 77% (OR 0.92, p= 0.73), respectively. Early
mortality rates at 2 months after the start of treatment were also not
different (7 and 5%, respectively). The incidence and severity of adverse
events were comparable between the arms during both the induction and
maintenance phases, with no evident variations in the frequencies of
adverse events.
The preceding HO102 trial randomized patients between intensive

induction treatment with or without clofarabine for patients with newly
diagnosed AML, aged between 18 to 65 years. Patients included in the
control treatment arm received induction treatment similar to the patients
in the HO132 control treatment arm. Patient accrual occurred between
2010 to 2013 and the primary endpoint was EFS.
Propensity score matching between patients from the control treatment

arms from both the HO102 and HO132 was used to aim for similar patient
characteristics. Propensity scores were obtained through logistic regression
on age and European LeukemiaNET 2017 risk [31]. After the propensity
score was calculated for each individual, HO102 controls were matched 1:1
to HO132 controls using the nearest neighbor matching algorithm [32]. A
total of 300 patients were used from the HO102 control treatment arm,
which were matched with HO132 control patients in order to maximize the
number of external control patients. Subsequently, outcome data of the
300 patients from the HO102 control treatment arm were used for the
construction of the Bayesian prior (see next paragraph, Fig. S1–5) at each
interim analysis, meaning that primary analyses were based on the HO132
trial data with a reinforced control treatment arm (for more details see
supplementary methods). The median follow-up time was 7, 10, 12 and
16 months at each simulated interim analysis, respectively.

Bayesian statistical methods
Bayesian inference is a method of statistical inference using Bayes’ theorem
to update a probability distribution of a parameter when new information is
obtained. Three key concepts need to be considered including (1) the prior
distribution (prior), (2) the likelihood, and (3) the posterior probability. The
prior is a probability distribution that represents the prior knowledge before
seeing any data. The prior can be based on previously observed data or
expert opinion. Non-informative priors can be used when no prior data or
expert opinion is available. The likelihood is a function that describes the
probability density of the newly observed data. The posterior probability is
a probability distribution based on the prior distribution combined with the
likelihood of newly observed data. The posterior probability represents the
updated belief of an event or hypothesis given the available evidence (Fig.
S6). Three Markov Monte Carlo chains were run with 50,000 iterations.
Chain convergence was evaluated by quantile plots and the Gelman–Rubin
diagnostic. See supplementary methods for more details about dynamic
borrowing with the commensurate prior.
Posterior probability distributions of the treatment difference (i.e. risk

difference) were calculated for efficacy endpoints including (1) EFS, (2) CR
rate after two cycles of chemotherapy, (3) proportion of MRD negative
patients in CR after cycle 2, and safety endpoints including (4) rate of early
mortality within 2 months after start of treatment, and (5) rate of grade 4–5
adverse events. The probability distributions were summarized to provide
point estimates of the probability distribution median and 95% Bayesian
credible intervals (95% CI) on the treatment difference and HR between
both arms. CR, MRD, adverse events above grade III and early death
outcomes were assessed with Bayesian beta-binomial models and the
probability of any benefit (treatment difference > 0%) of the lenalidomide
treatment versus the control treatment arm was estimated. EFS was
evaluated using a Bayesian Weibull survival model and the probability
distributions of the HR for EFS were used to estimate the probability of
HR < 0.76, which was the assumed effect size for EFS in the HO132 study.
Less optimistic treatment effects were also studied, including the
probability of EFS HR < 0.87, which corresponded to a 5% increase in EFS
at 3 years by lenalidomide. Lastly, the probability of EFS HR < 1 was
estimated, which corresponds to any benefit in EFS for the lenalidomide
treatment arm.
All Bayesian analyses were performed in R version 4.2.2 with the

additional software of JAGS, using the package “rjags” [33, 34]. The R script
of the analyses can be found online (https://github.com/niekvandermaas/
Bayesian_reanalysis_HO132_paper).

Conventional futility methods
In this study, a conventional group sequential design was retrospectively
implemented to monitor early efficacy and futility through four interim

RCT 
HO132

Lenalidomide treatment arm

Control treatment arm

Matched HO102 based on age + ELN risk

Simulated
interim analyses

Sample size

1 2 3 4

150 300 450 600

Fig. 1 Study design flow diagram. Four interim analyses were
simulated in the prospective course of the HO132 after inclusion of
150, 300, 450, and 600 patients. The randomized clinical trial HO132
AML / SAKK 30/13 (HO132) randomized the lenalidomide versus
control treatment arm 1:1. A total of 300 control treatment arm
patients of the HO132 study and 300 control treatment arm patients
of the preceding prospective HOVON 102 AML/SAKK 30/09 (HO102)
trial were matched in pairs by propensity scores using age and AML
risk (ELN risk) profile [31]. Clinical and outcome data from matched
patients included in the HO102 control treatment arm were used to
construct a prior for the current control treatment arm of the HO132
in the Bayesian analysis.
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analyses at the same time points as for the Bayesian approach with EFS as
the primary endpoint. This sequential design was based on the original
HO132 statistical analysis plan and would require 883 patients with 488
events to detect a HR of 0.76 with 82% power and a one-sided Type I error
of 2.5%. The higher number of patients and events in a group sequential
design reflects the penalty of four interim efficacy analyses. Efficacy and
futility bounds were derived using a Lan-DeMets O’Brien-Fleming
approximation spending function, and the analysis was conducted using
EAST statistical software [35].

RESULTS
Benefit-risk assessment at interim analyses
Treatment efficacy: EFS. Lenalidomide treatment was compared
with the reinforced control treatment at the four defined interim
time-points. The HR for EFS was 1.21 (95% CI 0.81 to 1.69), 1.05
(95% CI 0.86 to 1.30), 1.00 (95% CI 0.84 to 1.19), and 1.02 (95% CI
0.87 to 1.19), at interim analyses 1, 2, 3, and 4, respectively (Fig. 2,
Table S1). At interim analyses 1 and 2, the probability of being

below the anticipated HR of 0.76 was 1.2% and 0.6%, which
probability was 0.4% at interim analyses 3 and 0.1% at interim
analysis 4 (Fig. 2, Table S1). The probability for a moderate
treatment benefit in EFS (HR < 0.87) at interim analysis 1, 2, 3, and
4 was 5.0%, 6.5%, 9.0%, and 4.4%, respectively (Fig. S7). The
probability of any benefit (HR < 1.0) for the lenalidomide treat-
ment arm compared with the control treatment arm was
moderate at all interim analyses, with a probability for any benefit
of 16.4%, 32.9%, 49.0%, and 41.0%, respectively (Fig. S8).
While the lack of treatment efficacy for EFS was already

identified early after the first interim analysis using Bayesian
inference with 150 patients enrolled, a conventional group
sequential design showed that the HR of treatment benefit by
lenalidomide crossed the futility boundary at the third interim
analysis with 450 patients randomized (Fig. 3). The observed HR
for EFS comparing the lenalidomide arm with the control
treatment arm was 1.12, 0.92, 0.99, and 1.02 at interim analysis
1, 2, 3, and 4 respectively (Fig. 3).

Table 1. Patient outcome and characteristics of studies HO132 & HO102 [29, 30].

HOVON 132 HOVON 102

Lenalidomide
treatment arm

Control treatment
arm

Historical control
treatment arm

Total 388 100% 392 100% 426 100%

Gender

Male 233 60.1% 210 53.6% 226 53.1%

Female 155 39.9% 182 46.4% 200 46.9%

Age, years

Median 54 53 53

Range 18–65 18–65 18–65

WBC at diagnosis (x109/l)

Median 6.7 8.0 6.5

Range 0–297 0–265 0–341

ELN risk categorya

Favorable 148 38.1% 137 34.9% 147 34.5%

Intermediate 101 26.0% 131 33.4% 113 26.5%

Adverse 139 35.8% 124 31.6% 166 39.0%

CR reached after

Cycle 1 (early CR) 254 65.5% 276 70.4% 282 66.2%

Cycle 2 (late CR) 65 16.8% 64 16.3% 78 18.3%

Later 30 7.7% 16 4.1% 14 3.3%

Never 39 10.1% 36 9.2% 52 12.2%

MRD

Negative 201 51.8% 215 54.8% 159 37.3%

Positive 64 16.5% 54 13.8% 67 15.7%

No CR 39 10.1% 36 9.2% 52 12.2%

Missing 84 21.6% 87 22.2% 148 34.7%

Deaths within 60 days 26 6.7% 21 5.4% 34 8.0%

Grade 4–5 adverse events 116 29.9% 112 28.6% 118 27.7%

Overall survival at 4 years (standard error) 55% 54% 44%

±3% ±3% ±2%

Event free survival at 4 years (standard error) 44% 44% 36%

±3% ±3% ±2%

Recruitment period 2014–2017 2014–2017 2010–2013

WBC white blood cell count, CR complete remission, MRD measurable residual disease.
aAccording to the European LeukemiaNET AML risk classification 2017 by Döhner et al. [31].
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Treatment efficacy: CR and MRD negativity. In the lenalidomide
treatment arm, the median percentage of patients obtaining CR
was lower compared with the control treatment arm at interim
analysis 1 (82% vs 91% comparing the lenalidomide arm vs control
treatment arm; treatment difference: −8.9%; 95% CI −19.9 to 1.0,
Fig. 4A, Table S1) and the probability of a higher CR rate in the
lenalidomide treatment arm compared with the control treatment
arm was 3.9% (Fig. 4A, Table S1). At interim analyses 2 to 4 the
median CR proportions resulted in treatment differences of −7.8%
(79% vs 87%; 95% CI −16.0 to 0.02), −7.0% (80% vs 87%; 95% CI
−13.5 to −0.5), and −9.8% (78% vs 88%; 95% CI −15.6 to −4.1)
with a probability of a higher CR rate of 2.8%, 1.7%, and 0.0%,
respectively (Fig. 4A, Table S1). A low probability of a higher CR
rate in the lenalidomide treatment arm suggests no benefit of this
treatment compared with the control treatment arm.
Data on MRD after two induction cycles in patients who

obtained a CR was available in 78.1% of patients, which was
equally balanced between treatment arms (Table 1). Patients in CR
and assigned to the lenalidomide treatment arm were less often
MRD negative compared with the control treatment arm at every
interim analysis. At interim analysis 1, 73% of patients in the

lenalidomide treatment arm were in MRD negative CR, whereas
83% of patients were MRD negative in the control treatment arm
(treatment difference: −10.3%; 95% CI −28.5 to 6.8, Fig. S9, Table
S1). The probability for a higher MRD negative CR rate for the
lenalidomide treatment arm compared with the control treatment
arm was 12.2% at the first interim analysis. At interim analyses 2 to
4, the probability of higher MRD negative rates were 10.1%, 6.2%,
and 12.0%, respectively (Fig. S9, Table S1). Similar to CR, a low
likelihood of a higher MRD rate in the lenalidomide treatment arm
indicates that this treatment does not have any advantage
compared with the control treatment arm.

Treatment toxicity: early death and adverse events. Death within
the first 60 days of treatment was more frequently observed in the
experimental treatment arm compared with the control treatment
arm at interim analysis 1 (7% vs 2%; treatment difference: 5.1%;
95% CI −1.3 to 12.8, Fig. 4B, Table S1). The treatment differences
at interim analyses 2 to 4 were 3.2% (8% vs 5%; 95% CI −2.0 to
9.1), 2.3% (8% vs 6%; 95% CI −2.2 to 7.2), and 2.0% (8% vs 6%;
95% CI −1.9 to 6.1), respectively. Grade 4–5 adverse events were
not different between both arms in any of the interim analyses
(Fig. S10, Table S1).

Interim analyses without external data
The impact of the external data (HO102 trial) on the primary
outcome analysis of EFS for lenalidomide vs control treatment was
determined by performing a Bayesian analysis without external
data (Table S2). The HR was 1.09 (95% CI 0.72 to 1.65), 0.95 (95% CI
0.71 to 1.28), 1.00 (95% CI 0.78 to 1.27), and 1.05 (95% CI 0.85 to
1.29) at interim analyses 1 to 4, respectively (Table S2), which
corresponds to a similarly low probability of the assumed benefit
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Fig. 2 Estimation of the probability for the assumed treatment
effect (HR < 0.76) by Bayesian analysis of event free survival
comparing lenalidomide treatment versus reinforced control
treatment. The blue bell shape in the figure depicts the posterior
distribution of the HR between arms for event free survival with the
median HR. The benefit threshold is set at the assumed treatment
effect of HR= 0.76. The arrows on left of the benefit threshold
indicates the probability for HR < 0.76, showing the evidence for the
assumed benefit of the experimental treatment arm and right of the
benefit threshold the probability for HR > 0.76.
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the study may be stopped for futility. The blue area in the figure is
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blue area, the study may be stopped for efficacy. The estimated
event-free survival hazard ratio for lenalidomide treatment effect
was 1.12, 0.92, 0.99, and 1.02 at interim analysis 1, 2, 3, and 4,
respectively.
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(HR < 0.76) for EFS of 4.7%, 7.0%, 1.6%, and 0.2%, respectively
(Table S2). This suggests that the external data had a relatively
limited impact on the Bayesian analysis at interim time points. The
probability of a moderate treatment effect (HR < 0.87) for EFS in
favor of the lenalidomide treatment arm was 14.8%, 27.5%, 14.5%,
and 4.4%, respectively and for any benefit by lenalidomide for EFS
was 34.7%, 62.7%, 52.6%, and 33.6%.

DISCUSSION
A prospective RCT is the preferred type of trial to evaluate the
benefits and risks of new therapies [4–7]. Historical reports have
highlighted that 71% of RCTs in hemato-oncology resulted in non-
significant outcomes or negative findings. This observation might
be linked to unrealistically high expectations regarding the
treatment effect size [36]. Currently, innovative approaches are
being developed that may accelerate and enhance the knowledge
arising from prospective studies, including phase II and phase III
studies. Bayesian statistical methods have been applied in phase I/
II studies but may also be applied in phase III RCTs. Here, we
retrospectively simulated four interim analyses within a recent
phase III RCT, randomizing patients for lenalidomide in AML [29].
We evaluated outcome parameters during patient accrual using a
Bayesian approach and compared it to conventional frequentist
statistical methods. At all four Bayesian interim analyses, the
likelihood of the expected benefit (HR < 0.76) was very low. In
contrast, the frequentist group sequential design declared futility
in the third interim analysis. Additionally, our Bayesian analysis of
efficacy endpoints, including CR and MRD negative CR, at four
interim time points showed a low probability of benefit (<15%) by
lenalidomide. Risk assessment showed excess mortality in patients

randomized to the lenalidomide arm. Our data indicate that
interim analyses in phase III clinical trial using Bayesian inference
addressing both the benefits and risks of an experimental drug
proved to be highly informative.
Randomized phase III clinical trials are generally designed, taking

into account results from earlier phase I/II studies. By virtue of
randomization, the experimental treatment can be evaluated to a
concurrent control population with little or minimal bias. Bayesian
statistics additionally allow for the use of external data in the
context of a RCT, next to the randomized control population. It
may be done so upon trial completion, but also during patient
accrual at specific interim analysis time points. It might allow for a
reinforced control treatment arm with an informative prior [8].
External and current data need to be carefully matched for risk
factors and eligibility criteria to avoid selection bias as much as
possible. Here, a previous trial conducted by HOVON-SAKK was
used, that included patients with similar inclusion criteria and
control treatment. It enabled a rapid and complete matching
procedure by a dynamic borrowing approach, which improved the
precision of the posterior probabilities for EFS. In addition, it might
be recommended to consider the results with and without added
prior knowledge in order to investigate the impact of the external
data. Here, a low probability of obtaining an HR < 0.76 for EFS was
also observed without the external control treatment data,
suggesting that these data did not essentially change the
conclusion of the Bayesian analysis at interim time points. The
external data added relatively limited value because the lenalido-
mide treatment arm performed worse than the control treatment
arm for multiple efficacy endpoints, including EFS, CR and MRD
negative CR, already from an early time point. Although the
conclusion of the interim analyses were not different using external
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data, reinforcing a control arm increases statistical power, which
consequently may potentially lead to a reduction in sample size
[37]. Furthermore, Bayesian analysis at interim time points may
provide broader-based recommendations to an independent
safety and monitoring board (DSMB) of an ongoing study, which
should preferably remain blinded to the trial team. If an alarming
signal at multiple interim analyses time points arises, that may
impact the advice to the principal investigator and trial team.
However, to implement a Bayesian sequential design in the future,
it has been recommended by regulatory authorities to evaluate the
operating characteristics such as power and type I error rate, for
establishing a futility threshold [38].
A Bayesian approach to interim analysis might have several

limitations. First, Bayesian approaches or adaptive designs cannot
control for selection bias and residual confounding, highlighting
the importance of a control arm in a randomized setting. Second,
incorporating overly positive (or negative) prior information may
introduce bias impacting the posterior distribution [39]. Third, we
assumed that clinical data from the HO102 trial were comparable
to the HO132 trial. While there were no large differences in
baseline characteristics between the two studies, EFS was
significantly different without matching. After matching, EFS at
interim analysis was similar illustrating that without addressing
changes in the underlying population by e.g. matching methods,
external data may introduce bias.
RCTs are often criticized for their limited generalizability due to

the selection of patients, such as the exclusion of patients with
older age and comorbidities [40, 41]. Real-world data (RWD)
contain patient health and healthcare data of patients, predomi-
nantly outside the context of clinical trials [42]. Thereby, these
data have the potential to provide insights into the benefits and
risks of therapeutic interventions in a more generalizable patient
population. Similar as done in this study with external data, RWD
may be applied in the context of prospective phase III studies, in
order to reinforce the control population. Nevertheless, an
ongoing challenge is to approximate the quality of RWD and trial
data as much as possible [43].
In conclusion, simulations of four interim analyses in the

HO132 study showed that the assumed benefit of lenalidomide
was unlikely to be achieved, which was already observed after the
first interim analysis using Bayesian inference with external data as an
informative prior, whereas a conventional evaluation would have a
futility conclusion only after the third interim analysis. These results
augment conventional futility analyses, highlighting the potential of
Bayesian statistical methods to provide earlier and highly informative
insights into trial outcomes at interim time points. This methodology
might be considered to expedite clinical trial adaptation and enhance
efficiency in drug development. External data, such as historical trial
data or RWD, may be used to increase the precision of the control
treatment arm of clinical trials, but caution must be taken to ensure
data comparability and minimize bias.
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