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BCMA expression on multiple myeloma cells
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Multiple myeloma (MM) is a blood malignancy defined by an
uncontrolled clonal growth of plasma cells. Currently, new
immunotherapies are being introduced that utilize BCMA to
redirect the patient’s T-cells to kill MM cells, using either chimeric
antigen receptor (CAR) T-cells [1] or bispecific BCMAxCD3 T-cell-
engaging antibodies [2, 3]. These agents show unprecedented
effects in early clinical trials, including an almost complete initial
response rate in patients with refractory MM and durable
remissions in ~50% of these patients [1–5]. However, the efficacy
depends on the BCMA expression level. Downregulation of BCMA
can limit long-term effectiveness and lead to relapse [6–8].
Conversely, cytokine release syndrome has been reported in
patients with extremely high levels of BCMA expression on MM
cells [9]. Hence, it is essential to understand the regulation of
BCMA expression.
BCMA, encoded by TNFRSF17, is a receptor surface glycoprotein

receptor expressed on plasma cells [10, 11]. Previously, only a
few regulators of BCMA expression have been reported. Firstly, the
γ-secretase protease cleaves BCMA and about 140
other transmembrane proteins [12], including amyloid precursor
protein. γ-secretase inhibitors, originally developed to prevent
amyloid formation in Alzheimer’s disease [13], have been
suggested as a means to boost BCMA-targeted immunotherapy
for MM [14–16]. Secondly, the POU2AF1, PRDM1, IRF4, and RUNX3
transcription factors and the IL4 and IL6 cytokines have been
suggested to upregulate BCMA [17–22].
To search for BCMA regulators, we conducted a genome-wide

CRISPR/Cas9 screen in the OPM2 and MOLP8 MM cell lines using
the Brunello library [23], containing 76,441 small guide RNA
(sgRNA) sequences targeting 19,114 genes. We isolated BCMA-
high-expressing (BCMAhi) and BCMA-low-expressing (BCMAlo) cells
by fluorescence-activated cell sorting and assessed sgRNA
representation using massively parallel sequencing. The details
of the experiments are described in Supplementary Methods.
Twenty-six genes showed significant differences in sgRNA

representation (Supplementary Table 1). These genes showed a
strong correlation between OPM2 and MOLP8 effect sizes
(Pearson r= 0.70, P= 6.0 × 10−5). We observed enrichment of
TNFRSF17 in BCMAlo cells (Fig. 1; Supplementary Table 1),
confirming specificity. Analysis of bulk- and single-cell mRNA-
sequencing data showed enrichment of expression of the 26
genes in plasma cells (Supplementary Figs. 1–3). To see if the
identified genes regulate other MM immunotherapy targets, we
carried out similar CRISPR/Cas9 screens for CD38 and CD319,
observing no convincing effects for any of the 26 genes
(Supplementary Table 2).
The identified set of genes showed more functional interactions

than expected (STRING database [24]; 26 interactions vs. seven

expected, P= 3.4 × 10−8), with γ-secretase and oligosaccharyl
transferase genes forming distinct subnetworks (Supplementary
Fig. 4; Supplementary Table 3). The most enriched gene in BCMAhi

cells was PSENEN, encoding presenilin enhancer 2, an essential γ-
secretase subunit [25, 26]. γ-secretase also contains nicastrin
(NCSTN), presenilin 1 or 2 (PSEN1 or PSEN2), and aph1 homolog A
or B (APH1A or APH1B). NCSTN is a substrate-recruiting
component [27], PSEN1 and PSEN2 alternative active subunits
[28], and APH1A and APH1B alternative stabilizing subunits
[29–32]. Combinatorically, the incorporation of either APH1A or
APH1B and either PSEN1 or PSEN2 produces four types of γ-
secretase [31–38]. We found enrichment in BCMAhi cells of NCSTN,
PSEN1, and APH1A but not for PSEN2 and APH1B (Fig. 1,
Supplementary Table 1, 2). Directed CRISPR/Cas9 knockdown of
the four γ-secretase genes identified in the screen increased BCMA
expression up to 11.2-fold, whereas knockdown of APH1B and
PSEN2 produced weaker effects (Fig. 2 and Supplementary Fig. 5).
In BCMAlo cells, we detected enrichment of 6 genes involved in

protein N-glycosylation (STT3A, DDOST, ALG5, TMEM258, RPN2, and
OST4; Fig. 1, Supplementary Table 1). BCMA was recently identified
as a glycoprotein with a complex type N-glycan at a single
N-glycosylation site, asparagine 42, and altered glycosylation
affects BCMA ligand binding [39]. Strikingly, DDOST, STT3A, RPN2,
TMEM258, and OST4 all encode subunits of the oligosaccharyl-
transferase (OST) complex that catalyzes the initial transfer of
high-mannose oligosaccharides (Glc(3)Man(9)GlcNAc(2)) to aspar-
agine residues within the Asn-X-Ser/Thr motif, the first step in
N-glycosylation [40]. ALG5 encodes an enzyme required for the
addition of glucose residues to the oligomannose core [41]. For
further validation, we knocked down five of the N-glycosylation
genes by directed CRISPR/Cas9, observing 3.6-fold downregula-
tion of BCMA on average (Fig. 2 and Supplementary Fig. 5). These
data indicate that N-glycosylation is required for BCMA presenta-
tion on the MM cell surface.
Somatic loss-of-function mutations in genes required for BCMA

expression could confer resistance to BCMA-targeted immu-
notherapies. To understand if loss-of-function mutations in the
identified N-glycosylation genes are tolerated by MM cells, we
analyzed CRISPR/Cas9 knockdown effects in the DepMap com-
pendium, observing no or only mild suppression of cell growth
(median Chronos gene score >−1) for 5 of the 6 N-glycosylation
genes (Supplementary Fig. 6). Consistent with this, none of the
N-glycosylation genes showed evidence of intolerance to loss-of-
function variants in the Genome Aggregation Database (Supple-
mentary Table 4). Additionally, germline loss-of-function muta-
tions in DDOST underlie Congenital Disorder of Glycosylation type
Ir, an autosomal recessive disorder characterized by develop-
mental defects, intellectual disability, and humoral immunodefi-
ciency [42, 43]. Loss-of-function mutations in ALG5 have been
reported in atypical polycystic kidney disease. These observations
suggest that loss-of-function mutations in the N-glycosylation
genes are unlikely to lead to clonal elimination.
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In addition to γ-secretase genes and N-glycosylation genes,
we detected 16 genes significantly affecting BCMA expression.
For example, in BCMAhi cells, we saw strong enrichment of
HEXIM1 (HEXIM P-TEFb Complex Subunit 1) and UBE2M

(ubiquitin-conjugating enzyme E2M). HEXIM1 functions as an
RNA polymerase II inhibitor [44] and regulator of NF-κ-B and
corticosteroid-driven transcription [45, 46], which play key roles
in MM. UBE2M encodes an E2 ubiquitin ligase that attaches
ubiquitin to proteins to trigger their degradation. Directed
knockdown of HEXIM1 and UBE2M upregulated BCMA 2.3-fold
and 3.8-fold, respectively (Supplementary Fig. 5). Interestingly,
no ubiquitination mechanism has been described before for
BCMA. Additional genes of interest include those implicated in
transcriptional regulation (TP53TG3B, POLR1A, CNIH1, ZNF792,
TCEB2), mitochondrial metabolism (TAZ, CO15), and ribosome
biogenesis (SDAD1, LTV1).
In summary, we report a genome-wide screen for regulators

of BCMA expression. Using conservative criteria, we identify 26
genes. Of these, only the four γ-secretase genes belong to a
biological process previously implicated in BCMA regulation
[14, 15]. These results have potential for clinical translation:
Firstly, we confirm γ-secretase as a potent negative regulator of
BCMA expression. In a recent phase-1 study, patients with
relapsed MM were pre-treated with γ-secretase inhibitor before
receiving BCMA CAR T-cells [16], producing an average 12.2-
fold upregulation of BCMA, which is on par with our findings.
Our data and this trial warrant intensified studies to determine
the value of adding γ-secretase inhibitors to BCMA-directed
immunotherapy. Secondly, we identify impaired
N-glycosylation as a tentative resistance mechanism to BCMA-
targeted immunotherapies. Accordingly, these genes should be
investigated further in samples of MM patients resistant versus
sensitive to BCMA-targeting immunotherapies; such data sets
will likely become available once BCMA-targeting agents are
used on a larger scale. Finally, we identify several new genes
that could potentially be utilized to boost BCMA expression,
including several additional regulators with strong effects (e.g.,
HEXIM1 and UBE2M). While detailed investigations of each of
these genes are beyond the scope of this study, further studies
should be performed to verify the mechanistic impact on the
anti-MM activity of T-cell-engaging immunotherapies in both
cell lines and primary MM cells. Our work provides new insight
into the regulation of BCMA expression, with potential
implications for the treatment of MM.
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Fig. 1 Screening results. We performed genome-wide CRISPR/
Cas9 screens in the OPM2 and MOLP8 MM cell lines. We sorted
BCMA-high-expressing (BCMAhi) and BCMA-low-expressing
(BCMAlo) cells, determined the sgRNA abundance by massively
parallel sequencing, and calculated log2 ratios reflecting the sgRNA
frequency in BCMAhi relative to BCMAlo cells. The x and y axes
represent OPM2 and MOLP8 cells, respectively. Blue: Genes encoding
γ-secretase subunits. Red: Genes encoding oligosaccharyltransferase
subunits or other enzymes involved in N-glycosylation. Black:
TNFSRF17, which encodes BCMA itself. The summary statistics are
given in Supplementary Table 1.
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Fig. 2 Summary of validation data. To validate our screening results and directly estimate effects on BCMA expression, we performed
CRISPR/Cas9 knockdown of 14 genes in OPM2 cells (detailed data in Supplementary Fig. 5). a Representative example showing the effects of
CRISPR/Cas9 knockdown, in this case of the PSENEN gene. CRISPR/Cas9-treated cells show a bimodal distribution (blue), reflecting CRISPR-
edited and unedited cells. Untreated cells show a unimodal distribution (grey). Using Gaussian Mixture Modeling, we estimated the mean
BCMA intensity of the right-shifted cell population (blue line). We calculated the log10 fold-change relative to the mean intensity of untreated
cells (grey line). b Summary of changes in BCMA expression for all genes tested x four biological replicates each. Blue: Genes encoding γ-
secretase subunits. Red: Genes encoding oligosaccharyltransferase subunits or other enzymes involved in N-glycosylation.
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