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Dear Editor,
Lineage switch in leukemia, characterized by a complete cell-

fate conversion from one lineage to another, is associated with a
dismal prognosis. The era of immunotherapy has witnessed a
notable increase in its incidence, approaching 8% of B-ALL
following anti-CD19 chimeric antigen receptor T-cell (CAR-T)
therapy [1]. This significant challenge underscores the pressing
need for a deeper understanding of lineage switch. The existing
literature, primarily comprising case reports and small case series,
fails to offer a comprehensive portrayal of the clinicopathological
features of this phenomenon [1–5]. Furthermore, data on its
genetic and molecular basis are scant, with the understanding
largely limited to its association with KMT2A fusions and BCR::ABL1
[6, 7]. Thus, we undertook a multi-institutional investigation into
lineage switch in acute leukemias, with a two-fold aim: primarily,
to achieve an in-depth understanding of its clinicopathologic
features, a crucial step for identifying at-risk patients and shaping
prevention and management strategies in susceptible popula-
tions; and secondly, to identify potential genetic drivers and gain
insights into clonal evolution pathways of these leukemias,
ultimately paving the way toward targeted therapies.
This study included 33 cases of acute leukemia, which underwent

lineage switch, diagnosed from 2003 to 2022. To exclude cases
where the second leukemia might be therapy-related, inclusion was
limited to patients demonstrating cytogenetic or molecular evidence
for clonal-relatedness between their first and second leukemias, as
determined by karyotype, fluorescence in-situ hybridization (FISH),
and next-generation sequencing (NGS). In two cases (#6 and 18), the
clonal relatedness was further substantiated by identical IGH gene
rearrangements. Furthermore, patients diagnosed with mixed-
phenotype acute leukemia for the first acute leukemia, whether
bilineal or biphenotypic, were excluded. However, we included cases
of bilineal leukemia diagnosed as the second leukemia, provided one
population represented residual disease of the first leukemia.
The cohort comprised 22 males and 11 females, with a median

age of 34.6 years (range, 0.1–83.2). The first leukemia underwent a
lineage switch after a median interval of 7.8 months (range,
0.9–38.2). At the switch point, 79% (26/33) of patients were in
complete remission (CR) of the first leukemia, as confirmed by flow
cytometry. The switch involved a conversion from ALL to acute
myeloid leukemia (AML) in 28 patients (25 with B-ALL and 3 with
T-ALL), from lymphoid blast phase (LyBP) to myeloid blast phase
(MyBP) of CML in one, and from AML (including one case of myeloid
sarcoma) to B-ALL in four (Table 1). Children appeared more likely to
present with T-ALL or AML as an initial diagnosis compared to
adults and experienced a modestly longer duration between the
initial diagnosis and lineage switch (Table S1). Prior to lineage
switch, all 33 patients received chemotherapy and six underwent

allogeneic hematopoietic stem cell transplantation (HSCT). In
addition, 15 of the B-ALL patients also received targeted
immunotherapies, including anti-CD19 monoclonal antibodies in
ten patients, anti-CD20 in five, and anti-CD22 in five, as well as CAR-
T therapy in two (Table 1 and Table S2). In these scenarios, lineage
switch is believed to be driven by the immunologic pressure
exerted by the targeted therapy, where a phenotypic switch may
allow immune escape of leukemic cells. The release of inflammatory
cytokine is also thought to contribute to the process [8].
Morphologically, AML, either presenting as the first or the

second leukemia, predominantly displayed monocytic or myelo-
monocytic differentiation (21/33, 64%) (Table 1 and Fig. S1). The
disease in the remaining patients was classified as AML with
minimal differentiation (5/33, 15.2%), AML with maturation
(3/33, 9.1%), pure erythroid leukemia (2/33, 6.1%), AML without
maturation (1/33, 3.0%), and MyBP-CML (1/33, 3.0%). The
immunophenotype of these cases, as detailed in Table S3,
generally aligns with that of their respective typical leukemia types.
Following lineage switch, 28 patients underwent chemotherapy,

with eight of them also received HSCT (Table 1); three died shortly
without receiving treatment; and treatment specifics were unknown
for two. At the last follow-up, 25 patients died and eight were alive.
Five of the eight surviving patients achieved CR of both leukemias
and three had persistent second leukemia. The median survival for
the whole cohort was 12.3 months from the diagnosis of the first
leukemia and 2.9 months after lineage switch. Notably, among the
eight patients who received HSCT after lineage switch, all seven with
available information achieved CR although two subsequently
relapsed with the second leukemia. In contrast, only one of 19
patient who didn’t receive HSCT after lineage switch was in CR at last
follow-up (p < 0.001). HSCT was also associated with a longer overall
survival (OS) from the second leukemia (93.7 vs 1.9 months;
p< 0.001). Furthermore, the univariate Cox analysis showed that
HSCT, pediatric status, and the presence of 11q23/KMT2A fusions
were all correlated with OS (p< 0.2), while a multivariate analysis
identified HSCT as the sole independent prognostic factor (p< 0.001).
A pivotal contribution of our study is the enhanced under-

standing of the genetic and molecular features of leukemic lineage
switch (Fig. 1, Tables S4 and S5). The most common chromosomal
alterations shared between the first and second leukemias were
11q23/KMT2A fusions (18/33, 54.5%). These rearrangements pre-
dominantly arose from t(4;11) (n= 11), followed by t(9;11) and
t(11;19) (n= 2 each), as well as additional individual cases involving
t(2;11), t(10;11), and inv(11). Other shared alterations included 5q- in
a complex karyotype (n= 4), −7/7q- (n= 2), +8 in a complex
karyotype (n= 2), and -9p-/CDKN2A deletion (n= 2), along with
t(12;19)/TCF3::ZNF384, t(5;14)/TCLX3::BCL11b, t(9;22)/BCR::ABL1,
17p11.2 aberrations, and +13, each observed in one case. Notably,
the second leukemia exhibited a more complex karyotype
compared to the first leukemia, with more cases carrying three or
more chromosomal aberrations (17/29 vs 10/30, p= 0.05), indicat-
ing an evolving genetic landscape.
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Despite the substantial genetic heterogeneity, cases can be
simplistically divided into two distinct clinical subgroups based on
the presence or absence of 11q23/KMT2A fusions (Fig. 1A, Table
S1). The most pronounced difference between the two groups lies
in the high prevalence of an antecedent chronic myeloid
malignancy (CMN) in patients lacking 11q23/KMT2A fusions (6/
15, 40.0%), with a median interval of 3.5 years (range, 0.2–8 years)
preceding the diagnosis of the first acute leukemia. Specifically,
the diseases included myelodysplastic syndrome (n= 3), poly-
cythemia vera, primary myelofibrosis, and CML (n= 1 each).
Another three patients likely had either a “subclinical” CMN or
clonal hematopoiesis, inferred from the sustained stem-line
cytogenetic abnormalities during the interval between the two
acute leukemias. Interestingly, despite the presence of antecedent
or “subclinical” CMN, B-ALL typically emerged as the initial
leukemia (8/9, 88.9%), which, unexpectedly, displayed cytogenetic
abnormalities characteristically associated with myeloid neo-
plasms (7/8, 87.5), including t(8;9)(p22;p24.1) known to involve
PCM1::JAK2, 5q-, -7/7q-, and +8. Remarkably, no patients with
11q23/KMT2A had CMN prior to the first leukemia. Furthermore,
compared to patients with KMT2A fusions, those without the
fusions were older (46.1 vs 25.2 years, p= 0.03) with less frequent
monocytic differentiation of AML (5/15 vs 16/18, p < 0.001).
Notably, two patients in the latter group experienced a lineage
switch to pure erythroid leukemia, a novel finding not previously
reported. Lastly, patients without 11q23/KMT2A fusions tended to
have a more complex karyotype and more detected mutations,
possibly reflecting the founder effect of 11q23/KMT2A fusions
obviating the need for additional leukemogenic events. Targeted
sequencing in 19 patients identified TP53, NRAS, and WT1 as the
most frequently mutated genes. Yet, their mutation frequencies in
our cohort aligned with those in general leukemias of the same
lineage, casting doubt on their driver role in lineage switch [9, 10].
In contrast, mutations of EZH2 and RUNX1 occurred at a
significantly higher rate (20%) in our B-ALL patients without
11q23/KMT2A fusions, in sharp contrast to less than 1% in the
general B-ALL population [11, 12]. The finding, despite the small
sample size, suggests the importance of monitoring for lineage
switch in B-ALL with these mutations. In addition, recurrent
alterations in EZH2 and KMT2A hint at the role of epigenic
dysfunction in leukemic lineage switch [13]. In support, in vitro
research has demonstrated that changes in DNA methylation can
trigger a lineage switch in leukemic cells [14]. Other mutated
genes broadly fell into four groups: tumor suppressors, signaling
and kinase pathways, epigenetic regulators, and transcription
factors (Fig. 1A).
In 10 patients, sequencing data were available in both their first

and second leukemias (Fig. 1B), which shed important lights on
the cellular origin and evolution pathway of lineage switch. In five
cases, findings supported divergent clonal evolution: aside from
shared genetic alterations, distinct additional mutations were
observed between the two leukemias. Hypothetically, in such
cases, both leukemias are derived from the same leukemia-
initiating cell, which retains the potential to differentiate into
either a lymphoid or myeloid lineage. In contrast, the other five
patients showed no clear branching in clonal architecture: they
maintained the whole set of original mutations, with or without
acquiring additional mutations in the second leukemia. Perhaps, in
these scenarios, lineage switch originates from the bulk of
leukemic blasts through either direct reprogramming or dediffer-
entiation to a multipotent state followed by commitment to a new
lineage. This complexity suggests that multiple tumor evolution-
ary mechanisms may exist. The distinction between different
pathways in individual cases could guide the selection of tailored
targeted therapies. Two pivotal questions arise: (1) In tumors
following divergent clonal evolution, could simultaneous targeting
of both lineages prevent tumor escape? And if so, how can we
identify patients for whom the benefits outweigh the side effectsTa
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of additional treatment? (2) For tumors aligned with the
reprogramming or dedifferentiation pathways, might the reduc-
tion of extrinsic inducible factors serve as a preventive strategy
[15]? It is our hope that this study prompts further inquiries into
these critical areas.

In conclusion, the present study provides a comprehensive
clinicopathological, genetic, and molecular characterization of this
dismal event. Potential risk factors include pediatric patients,
11q23/KMT2A fusions, B-ALL with EZH2 or RUNX1 mutations, B-ALL
emerging after a clonally related CMN phase, or B-ALL carrying
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genetic abnormalities typically associated with myeloid neo-
plasms. The presence of these risk factors warrants a thorough
immunophenotypic evaluation of multiple cell lineages, particu-
larly following therapy or at relapse, to promptly detect a lineage
switch. Currently, judicious consolidation with early allogeneic
HSCT could be considered in this subset of patients. Enhanced
genomic understanding and insights into clonal evolution can
pave the way for innovative preventive and therapeutic strategies
against this challenging disease.
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Fig. 1 Clonal evolution and mutation analysis in leukemic lineage switch. A Key clinical, cytogenetic, and molecular findings in patients
with leukemic lineage switch. B Clonal architecture of individual patients based on the results of NGS performed on paired specimens of the
first and second leukemias. VAF for specific mutations are indicated in parentheses. Dashed circles and dashed lines: inferred clones or
pathways without direct molecular evidence. In patient 24, the VAF of JAK2 V617F in both the first and second leukemias was notably lower
compared to other mutations, suggesting a loss of JAK2 mutation during leukemic transformation of PV, a phenomenon previously reported.
Patient 29 was undergoing steroid treatment at the time of NGS for T-ALL, which was conducted one week after the initial diagnosis, with a
bone marrow blast count of 49.5% and peripheral blood blasts at 21% by differential count. MDS myelodysplastic syndrome, NGS next-
generation sequencing, Pt patient, PV polycythemia vera, VAF variant allele frequency.
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