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Germline, mono-allelic mutations in RUNX1 cause familial platelet disorder (RUNX1-FPD) that evolves into myeloid malignancy
(FPD-MM): MDS or AML. FPD-MM commonly harbors co-mutations in the second RUNX1 allele and/or other epigenetic regulators.
Here we utilized patient-derived (PD) FPD-MM cells and established the first FPD-MM AML cell line (GMR-AML1). GMR-AML1 cells
exhibited active super-enhancers of MYB, MYC, BCL2 and CDK6, augmented expressions of c-Myc, c-Myb, EVI1 and PLK1 and surface
markers of AML stem cells. In longitudinally studied bone marrow cells from a patient at FPD-MM vs RUNX1-FPD state, we
confirmed increased chromatin accessibility and mRNA expressions of MYB, MECOM and BCL2 in FPD-MM cells. GMR-AML1 and PD
FPD-MM cells were sensitive to homoharringtonine (HHT or omacetaxine) or mebendazole-induced lethality, associated with
repression of c-Myc, EVI1, PLK1, CDK6 and MCL1. Co-treatment with MB and the PLK1 inhibitor volasertib exerted synergistic in vitro
lethality in GMR-AML1 cells. In luciferase-expressing GMR-AML1 xenograft model, MB, omacetaxine or volasertib monotherapy, or
co-treatment with MB and volasertib, significantly reduced AML burden and improved survival in the immune-depleted mice. These
findings highlight the molecular features of FPD-MM progression and demonstrate HHT, MB and/or volasertib as effective agents
against cellular models of FPD-MM.
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INTRODUCTION
RUNX1 is a DNA-binding subunit of the core binding factor (CBF)
complex and master transcriptional regulator involved in normal
and malignant hematopoiesis [1–3]. Most mono-allelic germline
mutations in RUNX1 are missense or missense/truncation
mutations that lead to nonsense mediated decay and loss of
mutant (mt) RUNX1 protein, thereby behaving mostly as loss of
function mutations [2–4]. Germline mutations in RUNX1 cause
autosomal dominant Familial Platelet Disorder (FPD), with a
propensity to evolve into myeloid malignancy (FPD-MM), i.e.,
MDS or AML [1–3, 5, 6]. FPD-MM harbors co-mutations, most
commonly on the second allele of RUNX1, and on BCOR, PHF6, K/
N-RAS, WT1 or TET2, which confer relative resistance to standard
therapy for MDS or AML [2, 5, 7, 8]. Lack of specific targeted
therapy and resistance to standard AML therapies accounts for
poorer prognosis and outcome observed in FPD-MM [2, 7–9].
Although curative in some patients with FPD-MM, allogeneic
stem cell transplantation from an unrelated, matched donor
carries the risk of graft versus host disease and AML relapse
[10, 11]. Therefore, there is a strong rationale and need to
develop and test novel and effective small molecule drugs for
FPD/MM, with the goal of eliminating the FPD-MM clone and
reverting the disease back to RUNX1-FPD state. To achieve this
goal, it is also important to develop the relevant in vitro cellular
and patient-derived (PD) xenograft models of RUNX1-FPD and

FPD-MM, which can be utilized for testing novel targeted
therapies for FPD-MM.
In present studies we assessed the active enhancers and gene-

expression alterations in PD bone marrow aspirate (BMA) cells
harvested longitudinally during RUNX1-FPD and after it had
evolved to FPD-MM. In a previous report, utilizing mRNA signature
of RUNX1 knockdown by shRNA in AML cells harboring mtRUNX1,
we had conducted LINCS (Library of Integrated Network-based
Cellular Signatures) 1000-CMap (Connectivity Mapping) analysis
[12, 13]. From this, we had identified expression mimickers (EMs),
including the protein synthesis inhibitor homoharringtonine (HHT
or omacetaxine) and anthelmintic fenbendazole (analog of
mebendazole) [14–16]. Present studies determined greater lethal
activity of HHT or mebendazole (MB) in PD cells from FPD-MM
compared to RUNX1-FPD or normal CD34+ progenitor cells. From
a patient who progressed from RUNX1-FPD (expressing mtRUNX1
K194N) to FPD-MM, with co-mutations documented by NGS in
BCOR, PHF6, SF3B1 and SRSF2, we procured BMA cells and
successfully established the first, continuously cultured cell line
(GMR-AML1) expressing the same germline mtRUNX1. Findings
presented here also highlight the molecular/genetic features
associated with progression of RUNX1-FPD to FPD-MM, including
those in the newly established GMR-AML1 cell line. Tail vein
infusion and engraftment of luciferase-transduced GMR-AML1
caused splenomegaly and 100% mortality of NSG mice by
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approximately day-40, post-infusion. Treatment with HHT or
mebendazole, versus vehicle control, significantly reduced GMR-
AML1 burden and improved overall survival of NSG mice
engrafted with GMR-AML1 cells. They also demonstrate that co-
treatment with HHT and venetoclax, or MB with the polo-like
kinase (PLK1) inhibitor volasertib [17], exerted synergistic lethality
in GMR-AML1 cells. If these EMs exert greater lethality against
HPCs from patients with FPD-MM compared to RUNX1-FPD, they
will have the potential to revert FPD-MM back to RUNX1-FPD
hematopoiesis.

MATERIALS AND METHODS
Primary FPD and FPD-MM samples
Patient-derived FPD and FPD-MM samples (peripheral blood and BMA) for
the conduct of preclinical studies and for the creation of a cell line were
obtained from patients with informed consent, approved by the MD
Anderson Cancer Center’s Institutional Review Board (IRB# PA14-0392).

Generation of a germline mutant Runx1 cell line (GMR-AML1)
The cell suspension of the original patient cells was adjusted to a
concentration of 2 × 106/mL in RPMI-1640 media with 20% FBS, 1% Pen-
Strep, and 1% non-essential amino acids. Cells were incubated in a
humidified incubator at 37 °C and 5% CO2 in air. Media was changed once
per week until cells began to proliferate and grow in small floating clusters.
When cells began to proliferate (less than two months in culture) and
change the color of the media more frequently, media was changed twice
per week by dilution or by centrifugation at 200 × g for 5 min. Early
passages of the cells were cryopreserved in 90% FBS+ 10% DMSO in 5–10
million cell aliquots and stored in liquid nitrogen to allow for characteriza-
tion of the cell line and to monitor for genetic drift. The presence of
germline Runx1 mutation was confirmed via Sanger sequencing.

Whole exome analysis of GMR-AML1
Whole exome analysis was performed on GMR-AML1 cells utilizing Agilent
Exome 7 (SureSelect Human All Exon v7). The raw paired-end (PE) reads in
FASTQ format was aligned to the human reference genome (hg38) for
human DNA-Seq, using BWA alignment software. GMR-AML1 mutant calls
were cataloged and are reported.

Cell lines and cell culture
OCI-AML5 [DSMZ Cat# ACC-247, RRID:CVCL_1620] and OCI-AML2 [DSMZ
Cat# ACC-99, RRID:CVCL_1619] cells were obtained from the DSMZ. HEK-
293T cells were obtained from the Characterized Cell Line Core Facility at
M.D. Anderson Cancer Center, Houston TX. All experiments with cell lines
were performed within 6 months after thawing or obtaining from DSMZ.
The cell lines were also authenticated in the Characterized Cell Line Core
Facility at M.D. Anderson Cancer Center, Houston TX. OCI-AML2 and OCI-
AML5 were cultured in ribonucleoside-containing Alpha-MEM media with
20% FBS, 1% non-essential amino acids (NEAA), and 1% penicillin/
streptomycin. OCI-AML5 cells were supplemented with 10 µg/mL concen-
tration of GM-CSF. HEK-293T cells were cultured in high-glucose-
formulated DMEM media with 10% FBS, 1% NEAA, 1% L-glutamine, and
1% penicillin/streptomycin. Logarithmically growing, mycoplasma-
negative cells were utilized for all experiments. Following drug treatments,
cells were washed free of the drug(s) prior to the performance of the
studies described.

Cell line authentication
The cell lines utilized in these studies were authenticated in the
Characterized Cell Line Core Facility at M.D. Anderson Cancer Center,
Houston TX utilizing STR profiling.

Statistical analysis
Significant differences between values obtained in AML cells treated with
different experimental conditions compared to untreated control cells
were determined using the Student’s t test in GraphPad V9. For the in vivo
mouse models, a two-tailed, unpaired t test was utilized for comparing
total bioluminescent flux. For survival analysis, a Kaplan–Meier plot and a
Mantel–Cox log rank test were utilized for comparisons of different
cohorts. P values of <0.05 were assigned significance.

RESULTS
Establishing the first FPD-MM GMR-AML cell line
To address the need to develop relevant in vitro and in vivo
models and test novel targeted therapies for FPD-MM, we
successfully established the first, continuously cultured cell line
(GMR-AML1) expressing germline mtRUNX1. This cell line was
generated from the BMA cells from a patient with FPD-MM that
developed from RUNX1-FPD expressing mtRUNX1 K194N (Fig. 1A).
In this patient, progression to FPD-MM was associated with co-
mutations, including BCOR A1437fs (VAF 13%) and SF3B1 D781G
(VAF 4%), as documented by NGS (Fig. 1B). Notably, the mutations
identified by NGS in the FPD-MM cells from the patient were not
detected by NGS in the GMR-AML1 cell line except for the RUNX1
K194N, which was also identified in other pedigree members who
had developed FPD (Fig. S1A). Additionally, one of the members of
the pedigree also exhibited transformation of FPD to FPD-MM.
This attests to the biologic significance of the presence of the
germline RUNX1 K194N mutation. GMR-AML1 cells were cytogen-
etically diploid and lacked MYC or MLL1 rearrangement, or other
copy number gains or losses on array CGH (Fig. S1B, C and not
shown). Instead, whole exome sequencing (WES) performed on
GMR-AML1 cell line identified additional mutations in TP53 (P72R),
AIM2 (K340fs), NELFB (L523F), CEP152 (Y370X), SUGP2 (H23L),
RRM2B (R71fs), TADA3 (T27R), SPDYE6 (G292C) and PRDM9
(S814R) with % VAF ranging between 33 to 55% (Fig. S1D). The
functional significance of TP53 codon 72 alteration for the
transformation to FPD-MM is unclear [18]. Collectively, these
genetic alterations suggest that GMR-AML1 cell line is derived
from the clonal expansion under in vitro culture conditions of AML
stem-progenitor cells present in the BMA of the patient with FPD-
MM. The in vitro survival and growth of GMR-AML1 cells is likely
promoted by these WES-detected mutations. We next further
characterized the biologic features of GMR-AML1 cell line
expressing mtRUNX1. Figure 1C shows the morphologic features
of the GMR-AML1 cells. Most of these cells are poorly differ-
entiated myeloid progenitors. As determined by flow cytometry,
GMR-AML1 cells express CD117, CD123, CD99, CD33, TIM3, CD86,
and CD18, but not CD34, CLEC12A, CD38, CD244, CD11b, CD14,
CD3 and CD5 (Fig. 1D). Flow cytometry also showed the cell cycle
distribution of GMR-AML1 cells, with 58.2, 21.1 and 20.7% of cells
in G1, S and G2/M phase of the cell cycle, respectively (Fig. 1E).
Additionally, tail vein-infused GMR-AML1 cells in NSG mice
engrafted in the mice, resulting in AML growth and mortality of
all mice in 4 to 5 weeks post engraftment (vide infra, Fig. 2E).

Alterations in chromatin accessibility and gene expressions in
FPD-MM and GMR-AML1 cells
We next conducted ATAC-Seq and RNA-Seq analyses on cells
harvested longitudinally from a patient at the RUNX1-FPD versus
FPD-MM stage [19]. Figure 1F demonstrates that, compared to
RUNX1-FPD, FPD-MM cells exhibited a significant increase in
chromatin accessibility. Notably, log2-fold increase in ATAC-Seq
peaks was observed at several loci, including MECOM, PIM1, RELB,
CDKN1B, CDK6, SPI1, MYB and BCL2 loci, whereas ATAC-Seq peaks
declined at the PRDM9, WNT5A, TERT and AF3 loci (Figs. 1G and
S1E). RNA-Seq analysis showed significant increase in 404 mRNA
expressions and decline in 1305 mRNA expressions in FPD-MM
cells, as compared to RUNX1-FPD cells (Fig. S1F). QPCR analysis
showed significant increase in BCL2 and MYB but decline in
RUNX1 and SPI1 mRNA expressions (Fig. S1G). Notably, ATAC-Seq
and RNA-Seq peaks significantly increased at the MECOM locus,
involved in AML stem cell renewal and differentiation arrest [20],
in FPD-MM compared to RUNX1-FPD cells (Fig. 1H). We next
conducted ChIP analysis with anti-H3K27Ac antibody in GMR-AML
cells [4, 19]. This demonstrated high occupancy of H3K27Ac at the
active super-enhancers of 1478 genes, including those of MYC,
RUNX3, MYB, CDKN1B, BCL2 and CDK6 (Fig. 1I) [21]. To assess gene
expressions, we performed immunoblot analyses to compare
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protein expressions in GMR-AML1 cells with germline mtRUNX1
versus OCI-AML5 and OCIAML2 cells, which express somatic
heterozygous mtRUNX1 and two copies of wtRUNX1 [12],
respectively, as well as versus CD34+ normal hematopoietic
progenitor cells. Figure 1J demonstrates that, compared to normal
CD34+ progenitor cells, GMR-AML1 cells expressed higher levels
of c-Myb, EVI1, c-Myc, polo-like kinase 1 (PLK1), NOTCH1, BCL2,
BcL-xL, MCL1, BAX and BAK. However, compared to OCI-AML5,
GMR-AML1 cells expressed lower levels of c-Myb, c-Myc and BCL2
(Fig. 1J). These findings highlight the increased activity of
chromatin and increased expression of specific oncoproteins that
are associated with arrested differentiation, increased in vitro
growth and in vivo leukemogenic potential of GMR-AML1 cells.

Effect of RUNX1 depletion on cell growth and sensitivity to
homoharringtonine (HHT, omacetaxine) in GMR-AML1 and
FPD-MM cells
We next determined the effects of RUNX1 depletion by CRISPR
knock out (KO) on cell growth and drug sensitivity of GMR-AML1
cells. These cells, transduced with and expressing Cas9, were
further transduced with a lentivirus expressing a RUNX1 gRNA
(targeting either exon 4 or 5) and EGFP. Forty-eight hours after
transduction, the cells were sorted into GFP positive (Runx1 KO) or
negative control (Ctrl) populations. Immunoblot analysis showed
that, compared to the exon 4 gRNA, exon 5 gRNA-mediated
RUNX1 KO led to greater depletion of RUNX1, PU.1, c-Myc, c-Myb,
CDK4/6, but not of RUNX3 or CBFβ in GMR-AML1 cells (Fig. 2A).
Compared to the control, exon 5 gRNA more than exon 4 gRNA,
increased the % of G1 and reduced the % of cells in S and G2/M
phases of the cell cycle, likely due to greater decline in the levels
of the cell cycle regulatory oncoproteins (Fig. 2B). Next, the same
number of GFP positive (RUNX1 KO) and negative (Ctrl) GMR-
AML1 cells were mixed and co-cultured for 30 days. The
percentage of GFP-positive cells was determined via flow
cytometry, following passage of the cells every 3 days in culture.
In this competitive in vitro culture assay, depletion of RUNX1 via
RUNX1-KO was associated with marked decline in the GFP+ GMR-
AML1 compared to the control cells (Fig. 2C). Compared to sgRNA
control, RUNX1 knockout in GMR-AML1 cells also reduced
engraftment potential in bone marrow, liver, and spleen of NSG
mice during an in vivo competition assay (Fig. 2D and S2A).
Additionally, NSG mice engrafted with GMR-AML1 cells in which
RUNX1 was knocked out, compared to sgRNA control-treated cells
engrafted in the mice, exhibited significantly delayed progression
and prolonged survival (Fig. 2E).
We had previously reported that, compared to AML cells

expressing two copies of wtRUNX1, in the isogenic AML cells
expressing heterozygous mtRUNX1, RUNX1 depletion caused
greater sensitivity to homoharringtonine (HHT or omacetaxine)-
induced cell death, associated with reduced levels of c-Myc, c-Myb,
MCL1 and Bcl-xL [12]. In present studies also, exposure to HHT for
48 h dose-dependently induced loss of viability in GMR-AML1 cells,
whereas treatment with venetoclax was ineffective (Fig. 2F), likely
due to relatively high expression of MCL1, Bcl-xL and BFL-1 (Fig. 1J
and vide infra) [22, 23]. Additionally, treatment with daunorubicin,
panobinostat (a pan-HDAC inhibitor), cytarabine or etoposide also
dose-dependently induced apoptosis in GMR-AML1 cells (Fig. S2B)
[24]. However, GMR-AML1 cells were insensitive to A1155463 (Bcl-
xL inhibitor), AZD5991 (MCL1 inhibitor), the DNA hypomethylating
drugs, azacytidine and decitabine, or INCB059872 (LSD1 inhibitor
inhibitor)-induced loss of viability (Fig. S2B) [25]. In addition to GMR-
AML1 cells, we also determined the dose dependent-lethal effects
of HHT on the BMA cells from 11 patients with FPD versus 8
patients with FPD-MM (Fig. 2G). As shown in Fig. 2G, HHT exerted
greater lethal activity against FPD-MM as compared to FPD cells.
Fig. S2C, D show the oncoplot of the co-mutations and specific
RUNX1 mutations in each of the BMA sample cells from FPD versus
FPD-MM patients, respectively.

Effects of HHT on chromatin accessibility and gene
expressions in GMR-AML and FPD-MM cells
Utilizing bulk RNA-Seq and ATAC-Seq analyses, we compared the
chromatin accessibility and mRNA gene-expression perturbations
in HHT treated (100 nM for 8 h) versus the untreated control GMR-
AML1 cells. Genome wide, 739 genes showed significant and
concordant increase in ATAC-Seq and RNA-Seq peaks, whereas
652 genes showed a concordant decline in the peaks [26],
prominently among these were the ribosomal genes involved in
protein translation (Fig. 3A, B). ATAC-Seq and RNA-Seq peaks also
concordantly declined at numerous RNA-Pol II transcribed genes,
including DNA POLR2B, TBL1X, CHD4, IGFBP3, CCNE1, CCND2,
HDAC5/7, PTPN11, Caspase-8 and RRM2 (Fig. S3). RNA-Seq analysis
of GMR-AML1 cells showed that the reactome of gene expressions
involving protein translation was negatively enriched, with
significant decline in the mRNA of EIF4A1 (Fig. 3C, D). HHT
treatment also negatively enriched gene expressions in the gene-
sets of MYC targets and oxidative phosphorylation in GMR-AML1
cells (Fig. 3E, F).
In addition to GMR-AML1 cells, utilizing scRNA-Seq analyses, we

also determined the effects of HHT treatment on mRNA
expressions in PD FPD-MM BMA cells [12, 26]. Figures 4A and
S4A demonstrate that, following HHT treatment, there was a
marked reduction in the HSC and pro-myelocyte populations of
cells, whereas the cell numbers of macrophages increased
markedly. In the residual HSC cluster of cells, there was log2-
fold decline in MYB, PBX3 and RUNX1/2 mRNA expressions, but
significant increase in mRNA of CDKN1A and BIRC3 (Fig. 4B). Bulk
RNA-Seq performed on an FPD-MM sample also showed positive
enrichment of the mRNA expressions belonging to the gene-sets
(HALLMARK) of apoptosis signaling and TP53 targets but negative
enrichment of c-Myc targets (Fig. S4B). Notably, following HHT
treatment, there was also negative enrichment of the reactomes
of G2/M checkpoint, DNA replication, cell-cycle checkpoints, E2F
mediated regulation of DNA replication, mitotic spindle check-
point and nuclear envelope breakdown (Fig. S4C). RNA-Seq
analysis of FPD-MM cells also showed that HHT treatment caused
log2-fold decline in mRNA of MYC, MYB, MCM2/4, FOXM1 and
myeloperoxidase (MPO) but increase in CDKN1A, CDKN2B,
BCL2A1, ATF3/4, PMAIP1 and HMOX1 (Fig. S4D). Notably, RNA-
Seq evaluation of a separate PD FPD-MM cell sample revealed
similar effects of HHT treatment on gene-expressions (Fig. S4E–J).
We also compared baseline mRNA expressions and response to
HHT in GMR-AML1 and the two FDP-MM samples. As shown in Fig.
S4K, L, we observed marked similarity in gene expression at
baseline and following HHT treatment in the two FPD-MM
samples and GMR-AML1 cells. Following HHT treatment, immuno-
blot analyses showed that, compared to untreated controls, GMR-
AML1 cells exhibited reduced protein levels of c-Myb, c-Myc, PU.1,
CDK4/6, MCL1, BFL1, Bcl-xL and RUNX1 (Fig. 4C). Mass cytometry
conducted on the same BMA cells showed that in the
phenotypically characterized FPD-MM stem cells, based on high
surface expression of CLL1 (CLEC12A), CD117, and CD123, but low
expression of CD11b, CD244 and CD86, HHT treatment reduced
the expression of CD34, c-Myc, EVI1, MCL1, Bfl1, p53, p-RB, PU.1,
RUNX1 and CDK6 (Fig. 4D). The effects of HHT treatment on
protein expressions also explain why, although GMR-AML1 cells
were relatively insensitive to treatment with venetoclax, cotreat-
ment with HHT and venetoclax synergistically induced apoptosis
of GMR-AML1 cells (Fig. 4E).

Lethal activity of mebendazole (MB), other anti-mitosis agents
and established anti-AML agents in GMR-AML1 cells
Based on the EMs revealed by the LINCS1000 CMap analysis
described in a previous report [4], we also determined the effects of
mebendazole (MB) on freshly procured FPD-MM vs RUNX1-FPD cells.
As shown in Fig. 5A, MB induced greater loss of viability in FPD-MM
as compared to RUNX1-FPD cells. In contrast, MB treatment was
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markedly less toxic toward normal CD34+ HPCs (Fig. S5). We next
determined the effects of MB treatment on chromatin accessibility
and transcription in FPD-MM cells. Figure 5B demonstrates that
exposure to MB significantly reduced genome wide chromatin
accessibility, as determined by ATAC-Seq peaks density in FPD-MM
cells. Following MB treatment of FPD-MM cells, RNA-Seq analysis
revealed significant positive enrichment of the gene-sets involved in
G2/M checkpoint, mitotic metaphase and anaphase, mitosis, spindle
checkpoint, mitotic spindle and polo-like kinase mediated events
(Fig. 5C). In contrast, there was also negative enrichment of the

gene-sets of ribosomal RNA processing, eukaryotic translation
initiation/elongation and protein translation (Fig. 5C). Specifically,
HALLMARK gene-sets of c-Myc targets and the reactome of protein
translation were negatively enriched (Fig. 5D, E). Guided by these
MB-mediated mRNA perturbations, we conducted CyTOF analysis to
determine the effects of MB treatment on specific protein
expressions. As shown in Fig. 5F, MB treatment reduced the protein
levels of RUNX1, CDK6, PU.1, c-Myc, EVI1, HOXA9, MEIS1, BFL1 and
MCL1 in phenotypically-defined FPD-MM myeloid stem-progenitor
cells [26, 27]. In GMR-AML1 cells, consistent with tubulin
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polymerization activity of MB, shown in Fig. 6A, MB treatment for
24 h induced increase in % of cells in the G2/M phase of the cell-
cycle (Fig. 6B). Exposure to >300 nM of MB for 72 h also induced loss
of viability in GMR-AML1 cells (Fig. 6C). RNA-Seq analysis conducted
in GMR-AML1 cells following treatment with MB revealed negative
enrichment of the reactome of ribosomal RNA processing, eukaryotic
translation initiation/elongation and protein translation, as well as
negative enrichment of the MYC targets (Figs. 6D, E, S6A, B). A log2-
fold significant decline in the mRNA of ribosomal proteins was
observed in the reactome of protein translation in GMR-AML1 cells
(Fig. 6F). RPPA (reversed phase protein array) analysis of GMR-AML1
cells revealed that MB treatment increased protein expression of
p-Aurora A/B/C kinases, Aurora A/B kinase and PLK1, but reduced
protein levels of p-MEK, eEF2K, PI3K-p85, p-eIF4E and MAPK (Fig. 6G).
Based on these perturbations due to MB treatment, we also
determined the effects of treatment with MB, volasertib (PLK1
inhibitor) or alisertib (Aurora A kinase inhibitor) on nascent
polypeptide elongation [12, 28]. Exposure to MB or volasertib, but
not alisertib, significantly inhibited nascent polypeptide elongation
in GMR-AML1 cells (Fig. 6H). Indeed, co-treatment with MB and
volasertib or plogosertib induced synergistic lethality in GMR-AML1
cells, with delta synergy scores of >10 by the ZIP method (Figs. 6I
and S6C). In contrast, treatment with volasertib did not induce
significant lethality, or its co-treatment with MB did not significantly
increase MB-induced lethality in CD34+ normal progenitor cells (Fig.
S6D, E). These findings highlight the lethal activity and associated
molecular perturbations due to MB and/or volasertib against cellular
models of FPD-MM.

In vivo efficacy of omacetaxine (HHT), MB and/or volasertib in
a xenograft model of GMR-AML1 cells
We next determined the in vivo anti-leukemia efficacy of omacetaxine
(HHT or OM) or mebendazole in the xenograft model of luciferase/
GFP transduced GMR-AML1 cells. Following tail vein infusion and
engraftment of GMR-AML1-Luc/GFP cells, cohorts of NSG mice were
treated with vehicle control or previously determined safe doses of
the drugs [12, 14]. Figure 7A demonstrates that following three weeks
of treatment, single agent OM or MB, compared to vehicle control,
significantly reduced leukemia burden due to GMR-AML1 cells, with
greater reduction caused by treatment with 40mg/kg of MB.
Following 4-weeks of treatment, each drug compared to vehicle
control also significantly improved survival of NSG mice, without
inducing toxicity (Fig. 7B). In a separate study, cohorts of mice
engrafted with GMR-AML1-Luc/GFP cells were treated with vehicle
control, MB and/or volasertib. Compared to vehicle control, although
treatment with volasertib significantly reduced leukemia burden and
spleen size, co-treatment with volasertib and MB was significantly
even more effective in reducing the leukemia burden as well as in
reducing the spleen size in NSG mice (Fig. 7C–E). Following 6 weeks of
treatment, compared to vehicle control, treatment with volasertib or
MB significantly improved survival of the NSG mice. Moreover, co-
treatment with MB and volasertib was significantly more effective
than volasertib alone in improving survival of NSG mice, again
without inducing toxicity (Fig. 7F). These findings highlight the single
agent in vivo efficacy of OM, MB and volasertib, as well as superior
efficacy of co-treatment with MB and volasertib against the xenograft
model of GMR-AML1 cells.
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DISCUSSION
In this study, we present a comprehensive characterization of the
first continuously cultured cell line (GMR-AML1) derived from BMA
of a patient with FPD-MM. GMR-AML1 faithfully retains the RUNX1
mutation found in the original FPD-MM stage in the patient,
making it a valuable tool for investigating disease mechanisms
and therapeutic interventions. The biologic significance of the
germline RUNX1 K194N mutation is highlighted by the observa-
tion that the other pedigree members with the same germline
mutation had developed FPD or FPD-MM. The GMR-AML1 cell line
exhibits a unique genetic co-mutation profile with mutations
detected at the high VAF level distinct from the patient’s FPD-MM
cells, suggestive of clonal expansion and adaptation during the in

vitro culture. WES of GMR-AML1 cells revealed additional
mutations in genes such as TP53, AIM2, NELFB, and others,
indicating the role of these mutations in promoting in vitro
survival and growth. GMR-AML1 cells expressed surface markers of
AML stem cells [26, 29], providing insights into their differentiation
status. GMR-AML cells induced an aggressive AML phenotype
highlighted by splenic enlargement and lethal outcomes in
approximately six weeks after engraftment in immune-
depleted mice.
Consistent with a previous report on AML with mtRUNX1 [4], we

demonstrate that depletion of RUNX1 using CRISPR KO in GMR-
AML1 cells led to altered cell cycle distribution and reduced cell
growth, supporting the critical role of RUNX1 in maintaining
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stained with DAPI. Cells were imaged by confocal microscopy. Original magnification is 60×. B GMR-AML1 cells were treated with the indicated
concentration of MB for 24 h. Cells were fixed with 70% molecular grade ethanol, stained with propidium iodide, and cell cycle analysis was
determined by flow cytometry. C GMR-AML1 cells were treated with the indicated concentrations of MB for 72 h. Then the percentage apoptotic
cells were determined by Annexin V and TO-PRO-3 iodide staining and flow cytometry. D–F GMR-AML1 cells were treated with 1000 nM of MB
for 16 h and bulk RNA-Seq analysis was performed. Gene set enrichment analysis (GSEA) in MB treated cells compared with HALLMARK and
REACTOME pathway datasets. G GMR-AML1 cells were treated with 3000 nM MB for 16 h in biologic triplicates. Reverse phase protein array
(RPPA) analysis was conducted. Log2 fold-changes in selected significantly altered proteins are shown. H GMR-AML1 cells were treated with the
indicated concentrations of MB, Volasertib, or Alisertib for 16 h. Nascent polypeptide elongation was detected by OPP puromycin incorporation
assay and flow cytometry. Column represents mean of six independent experiments; bar represents SEM. I GMR-AML1 cells were treated with the
indicated concentrations of MB and/or Volasertib for 48 h. Then the percentage annexin V-positive apoptotic cells were determined by flow
cytometry. Delta synergy scores (by ZIP method) were determined using SynergyFinder v3.0.
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cellular homeostasis. In GMR-AML1 cells, treatment with HHT was
lethal and induced synergistic lethality with venetoclax. The
presence of active super-enhancers of MYB, MYC, CDK6 and BCL2,
associated with increased gene-expressions of MCL1 and Bcl-xL
may explain why GMR-AML1 cells were relatively resistant to
monotherapy with venetoclax and with MCL1 or Bcl-xL-specific

inhibitors [21–23]. Synergy of co-treatment with HHT and
venetoclax may be explained by HHT-induced decline in active
chromatin and mRNA expressions of genes involved in protein
translation and of c-Myc targets, as well as in protein levels of
MCL1, Bcl-xL and BFL1 in GMR-AML1 cells. These findings are
consistent with previous reports showing lethal activity of HHT
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Fig. 7 Treatment with Omacetaxine, Mebendazole, or Volasertib reduce leukemia burden and improve overall survival of NSG mice
engrafted with GMR-AML1 cells. A Total bioluminescent flux (P/S) in NSG mice engrafted with (1 million) GMR-AML1 cells and treated for
three weeks as indicated. B Kaplan–Meier survival curve of NSG mice engrafted with (1 million) GMR-AML1 cells and treated for four weeks as
indicated. Significance was determined by a Mantel-Cox log rank test. C Representative images of mice engrafted with GMR-AML1 Luc/GFP
cells and treated with 20mg/kg MB and/or 15mg/kg Volasertib for two weeks and IVIS imaged. D Total bioluminescent flux (P/S) in NSG mice
engrafted with (1 million) GMR-AML1 cells and treated for two weeks as indicated. *p < 0.05; **p < 0.005; ****p < 0.0001. E Representative
images of spleens from mice engrafted with GMR-AML1 Luc/GFP cells and treated with 20mg/kg MB and/or 15 mg/kg Volasertib for four
weeks. F Kaplan-Meier survival curve of NSG mice engrafted with (1 million) GMR-AML1 cells and treated for six weeks as indicated.
Significance was determined by a Mantel-Cox log rank test.
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and venetoclax in AML with somatic mtRUNX1 [12]. Additionally,
similar to HHT, the tubulin antagonist and cell-cycle G2/M phase-
arresting agent MB, also reduced gene-expressions associated
with cell cycle progression and protein translation, as well as
induced in vitro loss of viability of GMR-AML1 cells. Based on our
findings that MB treatment increases PLK1 levels in GMR-AML1
cells, and both MB and PLK1 inhibitor volasertib reduce nascent
peptide elongation, co-treatment with MB and volasertib also
exerted synergistic in vitro lethality in GMR-AML1 cells. Consistent
with this, monotherapy with omacetaxine (HHT), MB, and
volasertib demonstrated efficacy in the xenograft mouse model
of GMR-AML1 cells by reducing leukemia burden and improving
overall survival. Co-treatment with MB and volasertib also
exhibited superior in vivo efficacy, suggesting a potential
synergistic therapeutic strategy for FPD-MM. Taken together, the
establishment of the GMR-AML1 cell line addresses a critical need
for developing relevant additional in vitro and in vivo models to
study FPD-MM and develop targeted therapies.
Our findings also provide valuable insights into the genetic

landscape, biological features, and potential therapeutic strategies
for the rare and clinically challenging disorder of FPD-MM. ATAC-
Seq and RNA-Seq analyses provided valuable information on the
chromatin accessibility and gene expression changes associated
with disease progression from RUNX1-FPD to FPD-MM. These
analyses identified key loci with altered chromatin accessibility
and gene expression, such as MECOM, PIM1, RELB, CDKN1B, CDK6,
MYB, and BCL2, highlighting potential drivers of disease evolution.
The increased activity of super-enhancers further underscores the
regulatory changes driving the transition to FPD-MM. Our study
extended to the investigation of HHT, mebendazole (MB) and
other anti-mitosis agents as potential therapeutic options. HHT
and MB treatments showed selective toxicity against FPD-MM
compared to RUNX1-FPD cells. Notably, HHT and MB also reduced
pro-growth and pro-survival oncoproteins in FPD-MM cells
expressing AML stem cell markers. In FPD-MM cells, MB treatment
reduced chromatin accessibility and gene expressions associated
with cell cycle progression and protein translation, further
supporting its role as a potential therapeutic agent in FPD-MM.
Taken together, findings presented highlight the potential of
targeted therapeutic interventions in FPD-MM, leveraging vulner-
abilities induced by the RUNX1 mutation and the co-mutations.
These targeted therapies could also then be potentially tested as
chemo-preventive strategies to retard progression of RUNX1-FPD
to FPD-MM.
In conclusion, our study presents a comprehensive character-

ization of the first FPD-MM GMR-AML cell line, providing insights
into its genetic profile, biological features, and response to
therapeutic agents. These findings offer new perspectives on the
pathogenesis of FPD-MM and highlight potential avenues for the
development of precision therapies targeting this challenging
disorder. Moving forward, deeper exploration of the identified
genetic alterations and their functional consequences could
uncover new avenues for targeted therapies in FPD-MM with
the goal to revert it to RUNX1-FPD [30].

DATA AVAILABILITY
Bulk ATAC Seq, single-cell ATAC-Seq, ChIP-Seq, bulk RNA-Seq and single-cell RNA-Seq
datasets have been deposited in GEO as a Super Series and assigned Accession ID
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