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Lymphopenia confers poorer prognosis in Myelodysplastic
Syndromes with very low and low IPSS-M
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To the editor:
Myelodysplastic neoplasms (MDS) are hematopoietic stem cell

(HSC) disorders arising in the bone marrow (BM) from clonal
outgrowth, with the successive acquisition of genetic lesions. MDS
are characterized by ineffective hematopoiesis leading to persis-
tent cytopenia affecting one or more hematopoietic lineages,
dysplasia, and an increased risk of transformation to acute
myeloid leukemia (AML) [1]. Recent incorporation of genomic
profiling in addition to hematologic and cytogenetic parameters
in MDS prognostic assessment has improved patient risk
stratification [2].
Along with MDS cell-intrinsic genetic lesions, increasing

evidence indicates dynamic changes in both adaptive and innate
immunity during MDS course, including T lymphocyte aberrant
polarization [3], and reduced B [4] and NK [5] numbers and
phenotype. The central role of host immunity in MDS pathogen-
esis is not captured by currently used revised or molecular
international prognostic scoring systems (IPSS-R/M) [2, 6].
Absolute lymphocyte count (ALC) has been shown to predict

inferior survival in solid cancers [7], and more recently, in the
context of essential thrombocythemia based on a 4-tiered model
incorporating age and absolute neutrophil count (ANC) [8]. In
MDS, few reports have suggested a prognostic impact of ALC at
diagnosis in del(5q) [9], non-del(5q) [10] and MDS with ring
sideroblasts (RS) [11] patient subsets, mostly in IPSS-R-assessed
low-risk (LR) patients [12]. However, these studies did not analyze
the correlation between ALC and MDS genetic alterations, and it
remains unclear if the addition of ALC in disease risk assessment
may improve patient stratification in light of the most recent
molecular prognostic scores [2]. In this work, we describe the
prevalence of lymphopenia in MDS, the interaction with molecular
features, and the prognostic impact of lymphopenia on outcome.
We included in this retrospective study all patients with a

diagnosis of MDS according to WHO 2016 criteria, followed in our
center (Saint-Louis Hospital, Paris, France) between January 2015
and January 2022, and who had at least 1 molecular evaluation
using next-generation sequencing targeting a panel of 80 genes
(Table S1) as previously described [13]. In our cohort, although the
receiver operating characteristic plot-based optimal cutoff point
was 1.6 G/L, we chose a close institutional laboratory reference of
1.5 G/L to define lymphopenia as more clinically relevant. Patients
with ALC > 5 G/L (n= 2) at MDS diagnosis were excluded to rule
out potential concomitant lymphoproliferative disorder. Low (LR),
intermediate (IR), and high-risk (HR) MDS were defined according
to IPSS-M (LR: IPSS-M Low and Very Low, scores <0.5; IR: IPSS-M
Moderate Low and Moderate High, scores −0.5 to 0.5; and HR:
IPSS-M High and Very High, scores > 0.5 respectively) and IPSS-R
(LR: Very Low and Low; IR: Intermediate; HR: High and Very High).

Survival analyses were estimated between MDS diagnosis until
death from any cause (OS) or last follow-up, or until AML
transformation (leukemia-free survival, LFS) or last follow-up.
Allogeneic stem cell transplantation (allo-SCT) was considered a
censoring event. Cox proportional hazard regression model was
applied for multivariate analysis. The discriminatory power of
prognostic models and the relative fitness for the predictive score
were evaluated using Harrel’s concordance index [14]. The study
was performed in accordance with the ethical guidelines of the
Declaration of Helsinki. All patients provided informed consent for
molecular and clinical data analysis.
Our cohort included a total of 372 MDS patients (45% females)

with a median age of 72 range[21–95] years, encompassing 230
(62%), 70 (19%), and 72 (19%) patients with IPSS-M LR, IR and HR
MDS respectively (Table 1). Compared to IPSS-R, IPSS-M reclassi-
fied 175 patients (47%, including 97 (26%) who were upstaged
and 78 (21%) downstaged, Fig. S1).
The median ALC in our whole cohort was 1.20 IQR[0.87–1.60] G/

L, and there was a trend toward lower ALC in patients aged above
65 years (1.28 G/L IQR[0.92–1.68] versus 1.15 G/L IQR[0.84–1.53] for
patients below or above 65 years respectively, p= 0.08, Fig. S2A)
and in male patients (1.28 G/L IQR[0.95–1.66] versus 1.1 G/L
IQR[0.84–1.5] in female and male patients respectively, p= 0.09,
Fig. S2B), although not statistically significant. Lymphopenia was
highly prevalent in all MDS subgroups (68%, 79 and 75% in LR, IR
and HR MDS respectively) (Fig. 1A, B), and ALC inversely correlated
with both IPSS-M (Spearman rho=−0.13, p= 0.01; Fig. S2C) and
IPSS-R (Spearman rho=−0.10, p= 0.04; Fig. S2D) scores.
We next compared MDS patients with (n= 265, 71%) and

without (n= 107, 29%) lymphopenia (Table 1). The presence of
lymphopenia correlated with more severe other cytopenias,
including lower white blood cell (WBC) count (median 3.50 [2.4,
5.0] versus 5.38 [4.0, 7.7], p < 0.01), lower absolute neutrophil
(median 1.90 IQR[1.10–3.40] versus 2.70 IQR[1.60–4.20], p= 0.01)
and monocyte (median 0.31 IQR[0.17–0.46] versus 0.42
IQR[0.25–0.78], p= 0.04) counts. There was no difference in the
representation of MDS with excess of blast (EB) subtypes (78/265,
29% versus 21/107, 21% in patients with or without lymphopenia
respectively; p= 0.9). However, we found significantly fewer MDS
patients with ring sideroblasts (RS) subsets in the lymphopenia
group (27/265, 10% versus 22/107, 21%; p < 0.01).
In our whole cohort, 332/372 (89%) of patients had at least one

molecular abnormality (Fig. 1C). Lymphopenia was not signifi-
cantly associated with any recurrently mutated pathways, includ-
ing epigenetic regulation (TET2, IDH1/2, DNMT3A, ASXL1, EZH2,
BCOR; OR 1.01 [0.64–1.59]), spliceosome (SF3B1, SRSF2, U2AF1,
ZRSR2; OR: 0.77 [0.49–1.22]), signal transduction (NRAS, KRAS, KIT,
NK1, CBL, NF1; OR: 1.22 [0.65–2.29]), transcription regulation (WT1,
RUNX1, GATA2, ETV6; OR: 1.33 [0.65–2.73]), cohesin complex
(STAG2, RAD21, SMC3: OR 0.96 [0.43–2.15]), and DNA repair
(TP53, PPM1D; OR: 1.33 [0.65–2.73]) (Fig. S3). Of note, the
prevalence of SF3B1 mutation (29/107 (27%) versus 27/265
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(10%), p < 0.01) was higher in MDS patients without lymphopenia
(Fig. 1C).
Next, we estimated the probability of OS and LFS across IPSS-M

categories and analyzed the impact of lymphopenia on patient
outcome. Median follow-up of the entire cohort was 49.6
IQR[20.3–55.0] months. IPSS-M categories showed significantly
different probabilities on both OS (Fig. S4A) and LFS (Fig. S4B)
(both p < 0.01), and this effect was maintained in a multivariate
model including age and sex as covariate (HR 2.24 95%

CI[1.91–2.62], p < 0.01 for OS; HR 2.27 95%CI[1.94–2.67], p < 0.01
for LFS). Across different IPSS-M categories, lymphopenia at MDS
diagnosis adversely impacted OS in LR MDS patients (median 8.76
95%CI[NE-NE] years versus not reached, p= 0.02) but not in IR
(median 5.50 95%CI[4.86-NE] versus 8.24 95%CI[NE-NE] years,
p= 0.34) or in HR (median 2.33 95%CI[1.88–4.93] versus 1.42 95%

CI[0.70-NE] years in MDS with or without lymphopenia respec-
tively, p= 1) patients (Fig. 1D). Similarly, the presence of
lymphopenia at MDS diagnosis significantly impacted LFS only
in LR-MDS (median 12.30 95%CI[8.67-NE] years versus not reached,
p= 0.02; Fig. 1D). In the LR-MDS subgroup, the further inclusion of

sex, age at MDS diagnosis and thrombocytopenia (variables
significantly impacting OS and LFS in univariate analysis) in a
multivariate model resulted in borderline p-values regarding the
impact of lymphopenia on OS (p= 0.06; Table S2) and LFS
(p= 0.05; Table S3). We then estimated the impact of lymphope-
nia in SF3B1-mutated MDS patients, given its association with ALC.
In this subgroup, the presence of lymphopenia also adversely
impacted patient outcome regarding OS (Fig. S5A) or LFS (Fig.
S5B) according to IPSS-M strata.
Finally, we wondered if lymphopenia as an additional parameter

might enhance current prognostic stratification models. While IPSS-
M score alone refined Harrel’s concordance index compared to
IPSS-R (0.76 95%CI[0.70–0.82] versus 0.72 95%CI[0.66–0.78] for both OS
and LFS), the addition of lymphopenia variable did not significantly
improve each risk model’s stratification performance (OS: 0.77 95%

CI[0.71–0.83] versus 0.76 95%CI[0.70–0.82]; LFS: 0.73 95%CI[0.67–0.80]
versus 0.72 95%CI[0.66–0.78] in IPSS-R/M with or without lympho-
penia respectively; Fig. S6).
In this single-center retrospective analysis, using a well-clinically

characterized cohort with molecular annotations, in which we

Table 1. Cohort characteristics according to the presśence or not of lymphopenia.

Total (N= 372) No Lymphopenia
(ALC ≥ 1.5 G/L, N= 107)

Lymphopenia
(ALC < 1.5 G/L, N= 265)

p value

Female gender (%) 168 (45%) 56 (52%) 112 (42%) 0.23

Age (years, median [range]) 72 [21–95] 71 [21–95] 73 [28–95] 0.1

Hemoglobin (g/dL, median
[IQR])

10.5 [9.1–12.0] 10.8 [9.3–12.0] 10.3 [9.1–12.0] 0.43

Platelets (G/L, median [IQR]) 137 [76–230] 145 [80–300] 133 [73–210] 0.09

WBC (G/L, median [IQR]) 4.10 [2.8, 5.8] 5.38 [4.0, 7.7] 3.50 [2.4, 5.0] <0.01

Monocytes (G/L, median [IQR]) 0.34 [0.18–0.53] 0.42 [0.25–0.78] 0.31 [0.17–0.46] 0.04

Lymphocytes (G/L, median
[IQR])

1.20 [0.87–1.60] 1.90 [1.6–2.20] 1.01 [0.77–1.30] <0.01

Neutrophils (G/L, median [IQR]) 2.10 [1.20–3.70] 2.70 [1.60–4.20] 1.90 [1.10–3.40] 0.01

BM Blasts (%, median [IQR]) 3.00 [2.0–4.0] 3.00 [2.0–4.0] 3.00 [2.0–5.0] 0.56

WHO 2016 Category

MDS without EB/without RS 186 (50%) 54 (51%) 132 (49%) 0.82

MDS-SLD 43 (12%) 12 (11%) 31 (12%)

MDS-MLD 143 (38%) 42 (39%) 101 (38%)

MDS-RS without EB 49 (13%) 22 (21%) 27 (10%) <0.01

MDS-RS-MLD 29 (8%) 17 (16%) 12 (5%)

MDS-RS-SLD 20 (5%) 5 (5%) 15 (6%)

Isolated Del5q 26 (7%) 5 (5%) 21 (8%) 0.37

MDS-EB 99 (27%) 21 (20%) 78 (29%) 0.09

MDS-EB1 62 (17%) 11 (10%) 51 (19%)

MDS-EB2 37 (10%) 10 (9%) 27 (10%)

MDS-U 12 (3%) 5 (5%) 7 (3%) 0.33

IPSS-R

Low 243 (65%) 77 (72%) 166 (63%) 0.05

Intermediate 69 (19%) 15 (14%) 54 (20%) 0.24

High 60 (16%) 15 (14%) 45 (17%) 0.64

IPSS-M

Low 230 (62%) 74 (69%) 156 (59%) 0.03

Intermediate 70 (19%) 15 (14%) 55 (21%) 0.19

High 72 (19%) 18 (17%) 54 (20%) 0.54

BM bone marrow, EB excess of blasts, IPSS international prognostic scoring system, MDS myelodysplastic syndromes, RS ring sideroblasts, SLD single lineage
dysplasia, WBC while blood cell count, WHO world health organization.
Bold values denote statistical significance at the p < 0.05 level.
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Fig. 1 Interaction of lymphopenia with MDS clinical and molecular features, and prognostic impact. A Prevalence of lymphopenia (defined
as absolute lymphocyte count (ALC) < 1.5 G/L) in IPSS-M subgroups; (B) ALC in IPSS-M subgroups (threshold of 1.5 G/L is indicated with a black
bar); (C) Mutational landscape of most commonly mutated genes in MDS patients with or without lymphopenia; **p < 0.01; (D) Impact of
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validated IPSS-M prognostic value, lymphopenia was highly
prevalent at MDS diagnosis in all IPSS-M subgroups and ALC
negatively correlated with disease severity.
To define lymphopenia, we used a local laboratory-based

threshold of 1.5 G/L higher than previously used cut-offs [10,
12, 15]. This yielded a high prevalence (more than 2 thirds) of
lymphopenia across all IPSS-M subgroups, possibly suggesting a
specific effect of MDS on ALC. Indeed, although ALC is known to
decrease with age (due to thymic involution or myeloid skewing),
mean ALC remains >2 G/L throughout life in healthy individuals
[16]. The absence of difference in ALC according to age or gender in
our cohort could corroborate this hypothesis. The relative bone
marrow failure and increased myeloid bias secondary to specific
MDS-related somatic mutations in HSC [17] likely contribute to this
phenotype. Consistently, lymphoid progenitors [4] and mature
lymphocytes [18] have been reported as decreased in MDS patients.
Of note, SF3B1-mutated MDS patients had a decreased prevalence
of lymphopenia, confirming previous reports showing the relative
preservation of ALC in MDS-RS subtypes [10, 12], in line with
preferential erythroid-restricted alterations in this MDS subgroup.
The presence of lymphopenia adversely impacted OS in the LR-

MDS subgroup but not in IR and HR patients, suggesting a
protective role of host immunity on disease progression mostly
prevalent at disease onset. In more advanced MDS stages, other
alterations as cell-intrinsic genetic alterations or BM microenvir-
onment modifications may have a stronger impact in driving
disease progression, potentially explaining the lack of significant
stratification benefit in adding lymphopenia variable in both IPSS-
R and IPSS-M scores. This hypothesis is corroborated by the
restricted prognostic impact of lymphopenia on LFS in LR-MDS
subgroup. Of note, the association between lymphopenia and
survival in both SF3B1-mutated and non-mutated MDS patients
confirm previous results from other groups [11, 12]. Additional
studies are needed to decipher whether or not lymphopenia may
result from clone-intrinsic defective lymphopoiesis, or may
contribute ro the worsening of cytopenia, the latter hypothesis
suggesting a potential benefit of immunomodulatory drugs.
Given the retrospective setting of our study, we cannot exclude

certain confounding factors that might have affected ALC at
diagnosis, as concomitant infections or treatment with steroids.
Future more in-depth works will be needed to better correlate

lymphocyte subsets, multiparametric phenotyping, and MDS
genotype, potentially leading to targeted immunotherapies,
especially in the LR-MDS subgroup.
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