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Gene interaction network analysis in multiple myeloma detects
complex immune dysregulation associated with shorter survival
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The plasma cell cancer multiple myeloma (MM) varies significantly in genomic characteristics, response to therapy, and long-term
prognosis. To investigate global interactions in MM, we combined a known protein interaction network with a large clinically
annotated MM dataset. We hypothesized that an unbiased network analysis method based on large-scale similarities in gene
expression, copy number aberration, and protein interactions may provide novel biological insights. Applying a novel measure of
network robustness, Ollivier-Ricci Curvature, we examined patterns in the RNA-Seq gene expression and CNA data and how they
relate to clinical outcomes. Hierarchical clustering using ORC differentiated high-risk subtypes with low progression free survival.
Differential gene expression analysis defined 118 genes with significantly aberrant expression. These genes, while not previously
associated with MM, were associated with DNA repair, apoptosis, and the immune system. Univariate analysis identified 8/118 to be
prognostic genes; all associated with the immune system. A network topology analysis identified both hub and bridge genes which
connect known genes of biological significance of MM. Taken together, gene interaction network analysis in MM uses a novel
method of global assessment to demonstrate complex immune dysregulation associated with shorter survival.
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INTRODUCTION
The plasma cell cancer multiple myeloma (MM) has highly
heterogenous clinical outcomes, with a key determinant of
response to treatment being genomic driver events. The most
common recurrent genomic events are hyperdiploidy, with a
predominance of gains in chromosomes 3, 5, 7, 9, 11, 15, 19, and
21, and canonical chromosomal translocations affecting the
immunoglobulin heavy chain on chromosome 14 [1]. MM harbors
relatively few recurrent point mutations compared with many
other cancers, with only NRAS, KRAS, TP53, FAM46C and DIS3
having a prevalence above 10% [2].
Prognostic scoring updates have expanded the International

Staging System (ISS) to incorporate several chromosomal translo-
cations [t(4;14), t(14;16)] and copy number aberrations (CNA;
deletion17p, gain/amplification1q), with each feature being
considered as an individual event [3, 4]. It has been recognized,
however, that neither these features nor somatic mutations are
sufficient to define prognosis, with more extensive genomic
assessments required to accurately predict biological behavior.
Previous studies have described various genomic subtypes of

MM using RNA-sequencing (RNA-Seq) and/or CNA data [5–10].
The subtypes identified by these methods tend to be dominated
by a single genomic event (i.e., hyperdiploidy, t(11;14), t(4;14),
high proliferation index) or a combination of previously described
events (i.e., complex hyperdiploidy with gain1q and monosomy

13) [9]. Furthermore, these studies demonstrate the utility of a
variety of genomic methods that have been previously applied to
this problem. [11] presents a study which finds genes are
dysregulated in MM and provides excellent evidence of the
important role of CCND1 and CCND2 genes. This built upon the
early work of [12] showing the importance of CCND genes and
[13] which presented a hierarchical clustering-based approach to
the gene expression data.
Gene expression profiling was carried out in [7, 11–13], and only

one [11] used networks as part of the study design. The authors
used a method for reconstruction of regulatory networks using
the principles of mutual information, to form networks from the
gene expression data itself. Important network features were
identified by further investigating the largest hubs of the network.
RNA sequencing based analysis was presented in [14], which

also includes a network-based analysis methodology using the
CoMMpass dataset release 17. To form a network, they used only
the RNA-seq dataset and examined its coexpression to form
edges. By clustering the network into submodules, they identified
key modules and driver genes for MM including many which are
now part of the R-ISS and R2-ISS staging systems. Together, these
works represent a baseline analysis of MM and genes associated
with prognosis using a variety of techniques.
In the present work, we consider that integrating data from a

comprehensive systems view, incorporating complex interactions
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between multiple genes in a network, may define patterns of
biological behavior not captured by individual genomic events.
Recently, a novel measure of network robustness, Ollivier Ricci
curvature (ORC), has been used to characterize breast and ovarian
cancers [15, 16] and other pathological states [17]. ORC measures
the ability of a given connection or interaction, between a pair of
nodes—here being genes—to withstand perturbation, consider-
ing both local and global connectivity in assessing the robustness
of each pathway (see “Methods” for a detailed description). In the
context of cancer genomics, positive curvature implies that there
are multiple, robust active pathways for communication between
the two genes. This edge, or connection, can be described as
“hub-like”. Negative curvature implies that if the connection
between two genes is impacted, the effect is relatively greater
because of lack of direct feedback controls; this edge can be
considered “bridge-like”. Therefore, ORC analysis predicts the
effect of changes in gene expression within a wider network as
opposed to just the individual gene. Via this method, we focused
on finding “bridge-genes.” These are genes which are not already
implicated in MM, but instead connect multiple hub genes, some
of which are already implicated in MM. We hypothesize that by
including these bridge-genes, biologists can improve the set of
precision oncology therapeutics under development.
We utilize the ongoing Multiple Myeloma Research Foundation

(MMRF) multi-site longitudinal clinical registry study, which follows
patients newly diagnosed with MM and collects both clinical and
genomic information periodically [9, 18]. The project, entitled
CoMMpass (Relating Clinical Outcomes in Multiple Myeloma to
Personal Assessment of Genetic Profile), has over a thousand
patients enrolled in the latest interim analysis (IA19), and
represents the largest publicly available MM genomic data
repository. The dataset includes clinical information, RNA sequen-
cing (RNA-Seq) information, copy number aberration (CNA),
among others. To understand the relationship between genes,
we used a gene interactome derived from the Human Protein
Reference Database (HPRD) [19].
In this study, we apply an innovative geometric network

analysis that integrates complex gene-product interactions to

characterize global patterns of MM biological behavior. Hierarch-
ical clustering defined groups of patients having different survival
times, despite similar ISS distributions. We identified 118 genes
having significantly aberrant expression, most of which are
previously unassociated with MM, and 8 genes with prognostic
capabilities which are part of the immune system. These genes are
not just hub genes, but bridge genes which help modulate
connections between two larger hub genes. Here, we demon-
strate that protein-gene interaction network analysis in MM
demonstrates complex immune dysregulation which associates
with shorter survival.

METHODS
In this study, we perform a comprehensive geometric network analysis that
integrates complex gene-product interactions to characterize patterns in
biological states. The methodology is mathematically well-defined and has
no fitting parameters, with an outline of the process illustrated in Fig. 1.

Genomic data
The MMRF CoMMpass dataset (release iteration: IA19), available to all
researchers at www.research.mmrf.org, includes clinical information, RNA-
Seq gene expression, and CNA data collected over time. Further
information on the data collection and curation methods has previously
been published [9]. For inclusion in this study, subjects must have RNA-Seq
and CNA data extracted from the bone marrow prior to the start of
treatment and both demographic and survival information. For the RNA-
Seq data, the data provided by the MMRF was preprocessed using the
SALMON toolbox [20], included filtering unstranded immunoglobulin
values, and was normalized as transcripts per million (TPM) and log-
transformed. For the CNA data, the data provided by the MMRF was
preprocessed using GATK [9].
Hyperdiploidy was defined by >2 gains involving >60% of the

chromosome affecting chromosomes 3, 5, 7, 9, 11, 15, 19 or 21. Mutational
signatures were assessed using mmsig (https://github.com/UM-Myeloma-
Genomics/mmsig), a fitting algorithm designed specifically for MM, to
estimate the contribution of each mutational signature in each sample
[21]. APOBEC-mutational activity was calculated by combining SBS2 and
SBS13, with the top 10% being defined as hyper-APOBEC (https://
cancer.sanger.ac.uk/signatures/sbs/) [22]. The complex structural variant

Fig. 1 Overview of the data processing pipeline. This study uses a novel measure of network robustness, Ollivier-Ricci curvature, to examine
genes associated with shorter progression free survival in multiple myeloma. RNA-Seq RNA-sequencing, HPRD Human Protein Reference
Database, CNA copy number aberration, ORC Ollivier-Ricci curvature, GSEA gene set enrichment analysis.
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chromothripsis was defined by manual curation according to previously
published criteria [23].

Gene-product interaction data
For network analysis on gene-product interactions, we used the curated
network given by the Human Protein Reference Database (HPRD) [19]. The
database consists of 9600 genes and notates 36,822 interaction pairs. We
used the largest connected component of shared information among the
HPRD, RNA-Seq, and CNA data sets, which included 8427 of 9600 potential
genes.

Graph formation
The weighted graph is constructed by synthesizing protein interaction
information and RNA data as follows: First, the structure of the graph (i.e.,
nodes and edges) is determined by the protein interaction information
provided from the Human Protein Reference Database (HPRD). Second, the
RNA-seq data are used to assign weights to the nodes and edges of the
HPRD-derived graph. For each sample, node weights are assigned by
mapping the RNA-seq data for each gene to the corresponding node in
the graph. The node weights are then used to define transition
probabilities from one gene to another, which is only non-zero if there is
an edge (i.e., protein interaction) between the corresponding genes. The
idea is that the higher the probability of transitioning from one gene to
another, the larger the edge weight should be. However, the transition
probability need not be symmetric, meaning the transition probability,
p_ij, going from gene i to gene j need not be the same as p_ji, going from j
to i. We therefore define the edge weight w_ij for each edge (i, j) as the
average of the transition probabilities in each direction: w_ij= (p_ij +
p_ji)/2. In this manner, we construct a weighted graph associated with
each sample.

Ollivier Ricci curvature
ORC integrates both local and global connectivity in assessing the
robustness of each interaction as characterized by the numerous feedback
loops in a network modeled by a weighted graph or Markov chain [24].
Robustness, in this context, is defined as the ability of a system to return to
its original state following a perturbation. The ORC calculation is based on
the ratio of an intrinsic graph distance, capturing the metric properties of
the network, to a distance defined via optimal transport theory between
the distributions of neighboring genomic values connected to a given
node. Capturing the sample-dependent pattern of curvature weighted
edges provides a powerful network-wide signature that integrates non-
local information; illustrated in Fig. 2, examples zero, positive and negative
curvature. Note, if an edge in a group is more robust relative to another
group, then the inhibition of that edge would reduce network robustness.
Fragility refers to a network’s ability to recover from a perturbation. If the
interaction between two genes is fragile compared to the interactions with
other genes in a local network, it could be a potential target for future
therapeutics. ORC was calculated as per previous descriptions [15] and is
formulated below.
Formally, ORC is defined as follows:

κORði; jÞ ¼ 1�W1ðμi ; μjÞ
dði; jÞ

where W1 is the Wasserstein distance, also known as the Earth Mover’s
distance (EMD), between the probability distributions, μi, μj. The

probability distribution around a given node (gene), μi, is defined by
the edge weights originating from the given node i to adjacent nodes as
follows:

Where rk indicates either RNA-Seq or CNA values in node k connected to
node i. The denominator d(i, j) is the weighted shortest path between
the two nodes, where the edge weights of the weighted graph are
derived from nodal values (RNA-Seq or CNA) quantifying the information
between two nodes and is formally defined below.

dði; jÞ ¼
X

i�j

1
ffiffiffiffiffiffiffi
wi;j

p

Clustering analysis
To explore the potential subtypes in the cohort, we used a hierarchical
agglomerative clustering method. For each data type, the RNA-Seq, CNA,
and ORC matrices were separately clustered. The number of clusters was
determined by the silhouette score [25], a measure which takes into
account both the average intra-cluster distance and average nearest-
cluster distance to determine the optimal number of clusters. Survival
analysis for progression free survival (PFS) was performed using the
Kaplan–Meier method and log-rank tests were used to determine statistical
significance. Multiple comparisons were corrected using the Benjamini
Hochberg false discovery rate (BH-FDR) [26].

Differential gene expression analysis
To investigate biological differences between the identified subtypes, we
conducted a differential gene expression analysis between high and low-
risk groups, as identified in prior steps, using RNA sequencing read counts
with DESeq2 [27]. The p-values from this analysis were then BH-FDR
corrected. Genes with a corrected p-value <0.05 and an absolute log2 fold
change >3.5 were considered significant.

Pathway analysis
Pathway analysis was performed using the Broad Institute’s Gene Set
Enrichment Analysis (GSEA) tool [28, 29]. The utilized pathways are from
the hallmark gene set collection from the human molecular signatures
database (MSigDB) [30]. The fifty gene sets present different biological
states and processes identified using manual curation. Gene association
with the immune system was determined using ImmuneSigDB, an immune
system pathways database provided by GSEA [31].

Prognosis analysis
To test whether or not an individual gene was prognostic, we used a Cox’s
proportional hazards model [32] with the RNA-Seq data. The p-values from
this analysis were corrected for multiple hypothesis testing using BH-FDR.
For genes that were significant with RNA-Seq, we repeated the modeling
analysis using CNA data.

Network topology analysis
To understand how genes are connected to each other, a given gene’s
immediate neighbors are visualized as a ‘1-hop plot.’ Furthermore, a ‘2-
hop plot’ shows not only a gene’s immediate neighbors but also the
nearest neighbors of the immediate neighbor genes, in order to
contextualize the relative portion of the overall network a given gene
occupies. Bridge genes connect with relatively few genes in the network,
while hub genes form many connections relative to the rest of the genes
in the network.

RESULTS
Patient cohort
CoMMpass IA19 RNA-Seq and CNA data were available for 659
patients. The mean age in the dataset was 62.5 ± 10.7 years; 60%
were male, and the ISS distribution was 35% stage I, 35% stage II,
and 30% stage III. For the cohort, the 5-year PFS rate was ~32%,
with the longest survival time listed at 8 years. An overview is
presented in Supplementary Table 1.

Fig. 2 Ollivier Ricci curvature on example networks. Gray edges
indicate zero curvature between nodes, blue edges indicate positive
curvature, and red edges indicate negative curvature. In the center
image, there are multiple paths that can be traced out between any
pair of nodes; therefore, the curvature is positive. Conversely, the red
edges in the right-most figure show negative curvature values since
the removal of any edge would bisect the graph.
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Hierarchical clustering using Ollivier-Ricci curvature
differentiates subtypes with low progression-free
survival rates
The largest connected network component from shared informa-
tion between the HPRD, RNA-Seq, and CNA data consisted of 8468
nodes and 33,695 edges. ORC, a correlate for robustness of
strength between gene interaction pairs, was computed for each
of the 33,695 interaction pairs in each individual patient.
Hierarchical clustering of the resultant ORC matrix together with
CNA data produced 8 clusters (Supplementary Fig. 1A, Fig. 3A),
while clustering based on RNA-Seq produced 6 clusters (Supple-
mentary Fig. 1B, Fig. 3B); both methods being significant for PFS
(CNA; p= 0.0082, RNA-Seq; p= 0.0016, log-rank test). Interestingly,
the clustering appears to be defining biological differences not
captured by the ISS prognostic score, with a relatively even
distribution of ISS stages in each cluster.
Considering the dominant impact of hyperdiploidy on CNA

analyses, we repeated hierarchical clustering on the non-
hyperdiploid samples and found PFS prediction remained
significant (p= 0.0002, log-rank test). Of note, analyzing CNA via
ORC produced a cluster representing 10% of patients with a
markedly inferior PFS when compared to the remaining clusters
(Fig. 3A, C); median PFS was 1.7 years, despite only 35% of patients
being ISS III. When assessing previously described copy number
risk factors (Supplementary Table 2), patients in this cluster almost
universally contain aberration in chr1q (gain; 57%, amplification;
29%, diploid 3%), while also harboring the highest proportion of
the complex structural variant chromothripsis (43% of patients,
p < 0.0001 compared with the remaining clusters, Fisher’s exact

test). This finding is congruent with previously published data
demonstrating chromothripsis to be an independent prognostic
factor in MM [23], and with an increasing body of knowledge
demonstrating that multiple genomic insults compound to worse
survival [23, 33].
Clustering of the ORC matrix with RNA-Seq data produced more

variation in PFS between clusters (Fig. 3B, D). Of note, clusters 2
and 3 contain the majority of t(11;14) patients (Supplementary
Table 3). Considering the dominant role of CCND1 in MM
pathophysiology, we repeated hierarchical clustering in the non-
t(11;14) samples, which remained significant for PFS-prediction
(p= 0.0002, log-rank test). When clustering with all patients; 98%
of those in cluster 4 harbor t(4;14), and 81% of those in cluster 6
have a translocation affecting MAF,MAFA or MAFB, with 72%
having increased APOBEC-mutational activity. Clusters 1 and 5 are
more heterogenous, with a combination of hyperdiploidy,
canonical translocations, gain/amp1q, TP53 aberration and chro-
mothripsis. While a high proportion of patients in the 2 clusters
with the shortest PFS (4 and 6) carry a previously described
genomic risk factor, the other clusters (1 and 3) demonstrate a
longer PFS despite 29.2% being ISS III, and 34% harboring a risk
factor included in R-ISS / R2-ISS. Given that clustering with ORC
using RNA-Seq demonstrated better discrimination of PFS
compared with CNA, we have elected to focus on RNA-Seq for
the remainder of the current study. A heatmap showing the
subject distribution between the two clustering results is shown in
Supplementary Fig. 2. Heatmaps showing both the distribution of
common markers of MM by both cluster label and patients are
presented in Supplementary Fig. 3 for CNA based clustering and

Fig. 3 Hierarchical clustering using Ollivier Ricci Curvature (ORC) predicts progression-free survival (PFS) in multiple myeloma.
Kaplan–Meier analysis of PFS based on ORC according to (A) copy number aberration, and (B) RNA sequencing. To better understand the
differences between the high risk and low risk cohorts, clusters with similar outcomes were grouped. C For CNA based clustering, clusters 1–6
and 8 were combined into the low-risk group. Cluster 7 was the high-risk group. D For RNA-sequencing data, clusters 4 and 6 were combined
into a high-risk group. Clusters 1 and 3 were combined into a low-risk group.
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Supplementary Fig. 4 for RNA-seq based clustering. We hypothe-
sized that expanding on the ORC analysis with gene set
enrichment analysis (GSEA), prognostic modeling, and network
topology analysis will provide further biological insights.

Expression analysis using ORC-based risk groups
demonstrates differential DNA damage and immune system
signaling
Differential gene expression analysis was conducted comparing
high-risk (clusters 4 and 6) and low-risk (clusters 1 and 3) as
defined by ORC analysis of RNA-Seq data. Gene sets enriched in
the high-risk group includes inflammatory response, IL-6/JAK/
STAT3 signaling and DNA damage response (DDR) signaling (P53
pathway, DNA repair and apoptosis, Table 1). Of note, there was
no significant difference between the groups in p53 function by
traditional methods (TP53 mutations and del17p), therefore our
methods are capturing more global dysregulation in DNA damage
signaling than is evident by standard mutation and copy number
analysis.
Within these differentially expressed pathways, 118 genes were

selected for further pathway analysis (having absolute log fold
change >3.5 and corrected p-value < 0.05, Supplementary Table
4). Of these 118 genes, 19 were under-expressed and 99 were
overexpressed in the short survival group compared to the longer
survival group in the poor survival group. Of these 118 genes, the
majority of them are “bridge genes,” with the rest being hub
genes and genes which only form a singular connection with
another gene. There were 23 genes that formed a single
connection, 80 bridge genes that formed connections with 2–16
genes, and 15 genes which formed >16 connections—which is
twice the average number of connections in the HPRD network.
Furthermore, of the 118 genes, none overlapped with the MM
gene list presented in [34] and only WEE1 was in common with
the gene list GEP70 [13]. Compared to the subjects identified by

GEP70 as high-risk versus this study, there was a 58% overlap,
consistent with expectation from a complementary analysis, and
demonstrating that our methods are capturing novel biological
features.
In univariate analysis, 8/118 genes were predictors of PFS (BUB1,

MCM1, NOSTRIN, PAM, RNF115, SNCAIP, SPRR2A and WEE1, Table 2),
with 5 of these also being significant when analyzing based on
CNA (NOSTRIN, PAM, RNF115, SNCAIP and SPRR2A). We note a gene
dosage effect for RNF115 related to chr1q copy number gain.
Average RNA-seq values by cluster are reported in Supplementary
Table 5 and a plot showing the relationship between RNA-seq and
CNA for RNF115, a 1q gene, is shown in Supplementary Fig. 5.
Interestingly, none of these 8 genes feature in previously
described lists of MM driver genes [33, 35], suggesting that we
are capturing novel aspects of MM biology. In addition to
differential expression in the inflammatory response and IL-6/
JAK/STAT3 signaling gene sets, interrogation of the ImmuneSigDB
database demonstrated 110 /118 genes to overlap with Immune-
SigDB pathways, including all 8 of the independently prognostic
genes (Table 2). Taken together, these findings suggest that global
assessment of gene interactions can detect complex immune
dysregulation.

Local neighborhood 1-hop and 2-hop gene networks
demonstrate differential DNA damage and immune system
signaling
A key feature of gene network analysis is the ability to capture a
wide range of gene-pair interactions, above and beyond the
expression levels of a single gene. While this analysis may be
difficult to interpret in the context of highly connected genes, it
can detect complex patterns (i.e., an overall increase or decrease
in network robustness) or specific individual interactions (i.e., a
gene-pair demonstrating an increase in robustness while all other
local connections become more fragile).

Table 1. Differential gene expression analysis according to ORC-based risk groups.

Pathway Genes Q-value Directionality

Mitotic spindle BIN1, GEMIN4, LATS1 5.15e-3 Underexpressed

DNA repair ADA, CCNO, ERCC4, GTF2H5, NFX1, DCTN4 9.16e-5 Overexpressed

IL6 JAK STAT3 signaling CCL7, JUN, IFNGR1, IL2RA 1.52e-3 Overexpressed

Inflammatory response CCL7, KIF1B, MEP1A, PDPN, KCNJ2 1.62e-3 Overexpressed

P53 pathway ADA, JUN, SAT1, PLK2, NOL8 1.62e-3 Overexpressed

Apoptosis JUN, IFNGR1, SAT1, PAK1 6.44e-3 Overexpressed

Directionality indicates the gene-set expression in the high-risk group compared with the low-risk group, with risk being defined by ORC of RNA-Seq data.

Table 2. Gene expression in 8 novel immune-network genes associate with survival.

Gene Coefficient 95%–105% Range Q-value Gene description Number of ImmunoSigDB gene
sets

BUB1 1.36 ± 0.05 1.22–1.51 1.71e-8 BUB1 mitotic checkpoint serine/threonine
kinase

5

MCM6 1.45 ± 0.07 1.27–1.66 6.19e-8 Minichromosome maintenance complex
component 6

4

NOSTRIN 1.58 ± 0.11 1.27–1.98 4.49e-5 Nitric oxide synthase trafficking 1

PAM 0.72 ± 0.08 0.62–0.83 1.34e-5 Peptidylglycine alpha-amidating
monooxygenase

7

RNF115 1.42 ± 0.11 1.14–1.77 1.72e-3 Ring finger protein 115 6

SNCAIP 1.40 ± 0.09 1.17–1.67 2.03e-4 Synuclein alpha interacting protein 1

SPRR2A 1.34 ± 0.05 1.22–1.46 1.43e-10 Small proline rich protein 2 A 3

WEE1 1.32 ± 0.04 1.23–1.41 6.19e-15 WEE1 G2 checkpoint kinase 9

Coefficients <1 indicate a protective effect—associated with longer PFS. Coefficients >1 indicate a detrimental effect—associated with a shorter PFS.
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Comparing high-risk and low-risk clusters as defined by ORC
analysis of RNA-Seq data, we note several interesting network
expression patterns. Within DDR-signaling, TP53 and ATM signal-
ing pathways overwhelming become more robust in the high-risk
group (Fig. 4A, B), with more robust pathways generally expected
to exert increased effects. While we typically associate loss of p53
function with poor prognosis in cancer, global network analysis is
detecting global changes in expression that may not fully capture
functional protein levels. The same analysis performed on the
basis of CNA demonstrates a mixture of TP53 connections
becoming more robust and more fragile, possibly reflecting the
impact of del17p (Supplementary Fig. 6A).
In addition to DDR-signaling, networks centered on CCND1 and

MYC become more robust overall (Fig. 4C, D), which suggests

these signaling and transcriptional hubs remain dominant in the
context of high-risk disease. In contrast to the above networks
showing a clear signal of robustness, the effect on RAF / RAS / MAPK
and NFKB signaling are more heterogenous (Supplementary Fig.
6B–D), suggesting that some parts of this network may play an
oversized role in MM biology compared with the other interactions.
Considering the immune dysregulation observed on GSEA

analysis, signaling through some cytokines and receptors become
more fragile (i.e., IL-6, IFNg; Fig. 4E, F), while others demonstrate a
more heterogenous effect (i.e., TNF, IFNa; Supplementary Fig. 6F, G).
In this context, pathways becoming more fragile would be expected
to exert less than normal control. Interestingly, multiple networks
involving therapeutic targets for MM immune-based therapies
become more fragile, suggesting potential therapeutic vulnerabilities.

Fig. 4 Local neighborhood of selected genes relevant to MM biology and the immune system. Each line or edge represents the interaction
between a gene-pair in a network, comparing the median interactions observed in the high-risk group compared with those in the low-risk
group. Blue edges indicate that the connections are more robust in the high-risk group, while orange edges are more fragile, risk being
defined by the RNA-Seq-based clustering analysis. A: TP53, B: ATM, C: CCND1, D: MYC, E: IL6, F: IFNGR1, G: TNFRSF17, H: CD38, I: IKZF3. Higher
resolution images are available at www.github.com/aksimhal/mm-orc-subtypes.

A.K. Simhal et al.

6

Blood Cancer Journal          (2023) 13:175 

http://www.github.com/aksimhal/mm-orc-subtypes


This included TNFRSF17 (encoding for BCMA, a cellular-therapy
target), CD38 (the target of monoclonal antibody daratumumab),
IZKF3 (a target of immunomodulatory agent lenalidomide) and
SLAMF7 (the target of monoclonal antibody elotuzumab) (Fig. 4G-I,
Supplementary Fig. 6H, I).
From the list of 8 novel genes having expression associated

with high-risk MM, all have a recognized role in immune
regulation (Table 2). In contrast with the other genes, only
WEE1, (encoding for a tyrosine kinase which affects G2-M
transition), has been previously implicated in MM biology [36].
In the HPRD, WEE1 acts as a hub gene, forming an above average
number of connections with its immediate neighbors (18 versus
8.4 for the whole graph). Interestingly, within the 8 prognostic
genes, BUB1 and WEE1 connect to each other in a 2-hop analysis
via PLK1, CDK1, and CRK. From the genes with significantly
different expression between risk groups, 24/118 (20.3%) connect
to the 8 prognostic genes within the two-hop analysis.
The 8 genes identified play different roles in their local

neighborhoods (Fig. 5); NOSTRIN, (a nitric oxide synthase trafficker),
RNF115, (an E3 ubiquitin ligase), and SPRR2A (induced by type-2
cytokines in response to infection) form bridge-like connections to
a single other gene. NOSTRIN connects to another nitric oxide gene,
NOS3, RNF115 to the RAS oncogene family member RAB7A, while
SPRR2A connects with EVPL (associated with squamous cell cancer
and autoimmune disease). Four genes act as bridges for their local
neighborhood: BUB1, MCM6, PAM, and SNCAIP (Figs. 5, 6). While
these genes are not hub genes per se, they connect to multiple hub
genes and could therefore play a modulating role.
For example, in the 2-hop analysis, the mitotic checkpoint

kinase BUB1 connects to HDAC1 (Fig. 6A), a histone deacetylase
commonly upregulated in MM cells with a well-defined impact on
prognosis [37]. We note multiple network connections between
BUB1 and HDAC1, as well as connections between BUB1 and each
of CDK1 (cell-cycle transition regulator) and APC (a tumor-
suppressor protein within the Wnt signaling pathway). PAM,
encoding for a protein with multiple functions described, connects

to PRKCA, a protein kinase involved in regulation of proliferation,
tumorigenesis, and inflammation. Interestingly, the network
connections around PRKCA are predominantly more robust in
the high-risk group. SNCAIP, (which inhibits ubiquitin ligase
activity), connects with PTN (Fig. 6F; a hub gene encoding for a
protein having a role in cell survival, angiogenesis and tumorigen-
esis), previously noted to be elevated in MM patients [38]. Our
analysis finds that the connection between SNCAIP and PTN
becomes more robust in the high-risk group. Interestingly, when
comparing the 1- and 2-hop networks between RNA-Seq and CNA
data, several gene networks were highly analogous between the
two methods (Supplementary Fig. 7).
Overall, the complex gene interactions captured through ORC

analysis have the capacity to significantly improve our under-
standing of biological differences between patients have short
and long survival, extending on what we understand from
traditional mutation and copy number analysis.

DISCUSSION
In order to investigate global gene-protein interaction networks in
MM and their impact on prognosis, we combined a known protein
interaction network, HPRD, with a large MM dataset; CoMMpass.
We applied a novel measure of network robustness, ORC, to
examine patterns in the RNA-Seq gene expression and CNA data
and how they relate to clinical outcomes. Hierarchical clustering
using ORC produced 6 clusters based on RNA-Seq and 8 clusters
based on CNA data, with both data sources predictive of PFS.
Previously published genomic classifications in MM based on RNA-
Seq and/or CNA data have defined between four to twelve
clusters, depending on the data and analytical approach [5–10]. To
date, no study has integrated genomic information with known
protein interaction information in an analysis able to simulta-
neously integrate local and global network information. By using
techniques previously shown to uncover differences in network
strength in other domains, such as ovarian cancer and autism

Fig. 5 Local neighborhood of the eight genes identified as being predictive of PFS. Each line or edge represents the interaction between a
gene-pair in a network, comparing the median interactions observed in the high-risk group compared with those in the low-risk group. Blue
edges indicate that the connections are more robust in the high-risk group, while orange edges are more fragile, risk being defined by the
RNA-Seq-based clustering analysis. A: BUB1, B: MCM6, C: NOSTRIN, D: PAM, E: RNF115, F: SNCAIP, G:SPRR2A, H:WEE1. Higher resolution images are
available at www.github.com/aksimhal/mm-orc-subtypes.

A.K. Simhal et al.

7

Blood Cancer Journal          (2023) 13:175 

http://www.github.com/aksimhal/mm-orc-subtypes


Fig. 6 ‘Two-hop’ neighborhood of the eight genes identified as being predictive of PFS. Each line or edge represents the interaction
between a gene-pair in a network, comparing the median interactions observed in the high-risk group compared with those in the low-risk
group. Blue edges indicate that the connections are more robust in the high-risk group, while orange edges are more fragile, risk being
defined by the RNA-Seq-based clustering analysis. A: BUB1, B: MCM6, C: NOSTRIN, D: PAM, E: RNF115, F: SNCAIP, G: SPRR2A, H: WEE1. Higher
resolution images are available at www.github.com/aksimhal/mm-orc-subtypes.
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spectrum disorders [16, 17], we were able to demonstrate a new
way of characterizing MM genomic data.
Our results confirmed fidelity with known genomic risk factors

(i.e., t(4;14), gain 1q, TP53 aberration) as well as emerging factors
not yet in clinical use (i.e., APOBEC mutational activity and the
complex structural variant chromothripsis) [22, 23, 39]. While some
genomic subgroups were defined by a single event (i.e., 98% of
RNA-Seq cluster 4 harboring t(4;14)), the network analysis
approach produced other groups not previously described, with
a combination of genomic events defining prognostically sig-
nificant clusters. It is notable that the cluster having the shortest
PFS was defined not by ISS, R-ISS, hyperdiploidy or IgH
translocations but associated with the combination of gain/amp
1q and chromothripsis. Furthermore, this pattern was shown again
using a Cox’s proportional hazards model. Modeling for PFS, using
the ORC results as a high-risk label and known genomic MM
markers as covariates, we found chromothripsis to be the most
significant predictor, followed by the ORC defined high-risk labels.
These results are shown in Supplementary Fig. 8. This finding
supports the hypothesis that more comprehensive, global genomic
characterization is able to better define MM prognosis.
As ORC measures relative robustness between genes, GSEA

analysis comparing high-risk and low-risk groups as identified by
ORC analysis of RNA-Seq data allowed exploration of gene-pair
interaction changes in robustness associated with survival
differences between groups. GSEA located 118 differentially
expressed genes associated with six key biological pathways, five
of which were overexpressed in the group with the poor survival.
The underexpressed pathway, mitotic spindle assembly, has
previously been reported to be associated with poor prognosis
in MM [40], while the overexpressed pathways were all associated
with DNA damage response (DDR) and acute phase inflammation /
immune response. While del 17p is included in the R-ISS prognostic
score, and genomic complexity and instability are recognized
features of high-risk MM biology [41–44], there is not currently any
immune component to routine prognostication of NDMM patients.
Furthermore, there is likely a biological link between the pathways
we describe, with an inflammatory hypoxic microenvironment
potentially contributing to aberrant DDR [45], and functional high-
risk patients who relapse within 12months described to harbor
both mutations affecting the IL-6/JAK/STAT pathway and abnormal
gene expression associated with mitosis / DDR [46].
Univariate analysis of the 118 differentially expressed genes

identified 8 prognostic genes which are all associated with immune
function according to ImmunoSigDB. Network topology analysis
identified most of these 8 to be bridge genes, connecting to genes
known to have biological impact in MM (i.e., HDAC1, CDK1, PRKCA
and PTN). The near-neighbor and 2-hop gene topology networks
capture more global gene dysregulation, potentially missed in
single-gene expression analysis. Of the 8 genes, WEE1, a G2
checkpoint kinase, is under investigation as a potential therapeutic
target in several cancer types including ovarian cancer, gastric
adenocarcinoma, and squamous cell carcinoma [47–52]. Clinical
trials with WEE1 inhibitors are ongoing, in combination with
radiation, standard-of-care chemotherapy, and immunotherapy (i.e.
PD-L1 inhibition) [53]. Currently the therapeutic benefit of WEE1-
inhibition in MM, and the most synergistic agent to use in
combination, is unknown [36]. Furthermore, we looked at the 8
genes using the Cancer Dependency Map Portal (https://
depmap.org) and found that WEE1 is a potential dependency
across the board. There is further evidence of this in the literature,
including [36, 48]. Our results may also suggest a new set of
therapeutic targets to further investigate high-risk MM patients.
The ORC method for determining robustness within a network

highlights different prognostic genes than traditional methods do,
with our methodology highlighting gene interactions yet to be
uncovered by traditional methods. When clustering with all
patients; 98% of those in cluster 4 harbor t(4;14), and 81% of

those in cluster 6 have a translocation affecting MAF, MAFA or
MAFB, with 72% having increased APOBEC-mutational activity.
Clusters 1 and 5 are more heterogenous, with a combination of
hyperdiploidy, canonical translocations, gain/amp1q, TP53 aberra-
tion and chromothripsis. The other clusters (1 and 3) demonstrate
a longer PFS despite 29.2% being ISS III, and 34% harboring a risk
factor included in R-ISS / R2-ISS. Furthermore, the high-risk cluster
and low-risk cluster identified do not overlap significantly with
established R2 and R-ISS staging. In our low-risk clusters, we found
almost a third of subjects belonged to the R-ISS stage III.
Furthermore, none of the 118 genes identified in our analysis
show any overlap with the current R2-ISS staging system. It is
important to note that this analysis provides additional informa-
tion in the form of 118 genes associated with high-risk MM that
are not part of the R2-ISS diagnostic regime. Our results do not
detract from the value provided by measures defining complex
genomic change such as chromothripsis and APOBEC.
Considering possible limitations; while CoMMpass represents

the largest multi-site, international genomic MM dataset compiled
to date, it does contain patients who received drug regimens no
longer in common usage, and a low proportion of patients
receiving the most potent modern regimens. Ideally our methods
would be applied to datasets including daratumumab- based
induction therapy. Considering possible extension of our analytical
methods: while the choice of using the HPRD as the protein
interaction network is common in literature [54], other networks,
such as STRING [55], may provide complementary results. Finally,
no network analysis method represents the ‘gold standard’, and it
is plausible that other clustering and network analysis methods
may provide alternative results. A lack of comparable NDMM
datasets with RNA-seq and CNA information to validate these
results is a further limitation. Future studies may consider whether
or not the 118 genes associated with high-risk individuals are
dysregulated at precursor MM stages, and how the expression of
these genes is altered in response to treatment.
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