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Minor GPI(-) granulocyte populations in aplastic anemia and
healthy individuals derived from a few PIGA-mutated
hematopoietic stem progenitor cells
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Dear Editor,

Glycosylphosphatidylinositol-anchored protein-deficient granu-
locytes (GPI[-] Gs) are often detected in the peripheral blood (PB)
of patients with acquired aplastic anemia (AA) and are thought to
represent immune pathophysiology of bone marrow failure [1-3].
Among these GPI(-) Gs, small paroxysmal nocturnal
hemoglobinuria-type granulocyte (PNH-G) populations that
account for 0.003%-1% of the total granulocytes, which we refer
to as small-PNH-G populations in this manuscript, may differ from
the larger (=1.0%) PNH-G populations in terms of the clonal
diversity and proliferative capacity of the X-linked phosphatidy-
linositol glycan class A gene (PIGA)-mutated cells that PNH-G
populations originate from, because their percentages usually
remain low for a long period of time [2]. In addition, a previous
study demonstrated that GPI(-) Gs isolated from AA patients were
a polyclonal population that had diverse mutations in the PIGA
gene [4]. Conversely, some recent studies using deep next
generation sequencing of the PIGA gene revealed that PNH-G
populations >1.0% isolated from AA patients had a few different
distinct PIGA-mutated sequences, suggesting that small-PNH-G
populations may also be oligoclonal [5, 6]. However, the inability
to precisely sequence PIGA in the small-PNH-G populations has
hampered the evaluation of clonality.

Healthy individuals (HIs) are negative for small-PNH-G popula-
tions except in a few cases [7], but GPI(-) Gs <0.003%, which in this
article are referred to as miniscule-PNH-G populations, may be
detected in most His [8, 9]. Several studies demonstrated that
GPI(-) Gs detected in HIs are short-lived polyclonal populations
derived from PIGA-mutated committed progenitor cells rather
than from hematopoietic stem and progenitor cells (HSPCs) with
PIGA mutations [8, 9]. However, we previously identified two Hls
with 0.01%-0.8% GPI(-) Gs that persisted several years at similar
percentages, suggesting that miniscule-PNH-G populations in Hls
might also be derived from long-lived HSPCs [7].

To address these issues, we first analyzed PIGA gene sequences
in small-PNH-G populations isolated from five AA patients
possessing 0.029%-0.810% GPI(-) Gs and three HIs who had been
found to have 0.006%-0.059% GPI(-) Gs during a screening of more
than 200 Hls for small-PNH-G populations [7], using PIGA deep
amplicon sequencing (AmpliSeq) of GPI(-) Gs that were enriched
with magnetic microbeads followed by flow cytometric cell sorting
(Tables S1 and S2, Figs. S1 and S2). Genomic DNA from each sorted
GPI(-) Gs and GPI(+) Gs was amplified using primers covering all
PIGA exons and subjected to PIGA-AmpliSeq (Table S3). Details of
materials and methods are provided in the Supplemental Data.

Our enrichment method that was developed by Araten et al. [8]
enabled the detection of only 1-3 different PIGA mutations in all
five AA patients (AA 1-5) (Table 1). Limited PIGA mutations were
also detected in the three Hls (HI 1-3) (Fig. 1A, Table 1). A second
PIGA-AmpliSeq performed one year after the first sequencing for
HI 2 and HI 3 revealed that the same PIGA mutations persisted at
similar allele frequencies (AFs) in each of the Hls (Fig. 1B, Table S4).
For HI 1 and HI 2, the AFs of predominant PIGA-mutated
sequences were longitudinally measured using whole-blood
DNA samples with droplet digital PCR, which showed no apparent
changes in the AF, 0.020%-0.027% for HI 1 and 0.012%-0.025% for
HI 2 over three and six years, respectively (Fig. S3, Table S5).

The presence of mono or oligoclonal GPI(-) Gs in the three Hls
prompted us to study 30 HIs (male, n = 17, female, n = 13; median
age, 37 [range, 27-65] years) and eight cord blood (CB) samples
who had been judged to be negative (0%-0.002%) for small-PNH-
G populations by a high-sensitivity flow cytometry [10]. The
enrichment method identified a clear miniscule-PNH-G popula-
tions, which we defined as 10 or more CD11b™9"FLAER dots that
formed a tight cluster, in 24 (80%) of the 30 Hls (Fig. 1C, D). The
median number of GPI(-) Gs derived from 7ml of PB from
miniscule-PNH-G population(+) patients was 35 (range, 10-136)
cells. Sufficient amounts of DNA for PIGA-AmpliSeq were obtained
from sorted GPI(-) Gs of six out of 24 Hls. PIGA-AmpliSeq revealed
1-3 different PIGA mutations in four of the six subjects (Table 1). A
second PIGA-AmpliSeq performed 10 and 7 months after the first
sequencing for HI 4 and HI 6, respectively, detected the same
nonsense mutation in miniscule-PNH-G populations of HI 4 that
was detected by the first PIGA-AmpliSeq (Fig. 1E, Table S6). The
examination of CB also revealed miniscule-PNH-G populations in
four of eight different CB samples. PIGA-AmpliSeq of 87 GPI(-) Gs
obtained from one male CB sample (CB 1) showed a sole PIGA
mutation (Fig. 1F, Table 1).

Several studies demonstrated that unlike GPI(-) Gs from patients
with florid PNH, small-PNH-G populations detected in AA patients
consisted of cells with multiple PIGA mutations and postulated
that some of the PIGA-mutated HSPCs were selected to grow due
to secondary genetic changes, leading to hemolytic PNH [4, 5].
Although this hypothesis seems plausible, no evidence of such
polyclonality in small-PNH-G populations has been demonstrated
using the current sequencing technology. This study is the first to
demonstrate that all PNH-G populations <1.0% in AA patients
consist of one or a few PIGA-mutated clones. Our longitudinal PIGA
analysis also clearly demonstrates that small-PNH-G populations in
AA patients are derived from a limited number of PIGA-mutated
HSPCs, a finding consistent with a previous report showing the
larger (=1.0%) PNH-G populations of AA patients arose from a few
hematopoietic stem cells (HSCs) [11]. These findings suggest that
the selection of PIGA-mutated HSCs by immune mechanisms, such
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Mutation (coding)

Table 1. Somatic PIGA mutations identified in AA patients and healthy individuals.
Case Gender % of PNH-Gs at Type of Mutation Region
sampling

AA 1 F 0.087 Frameshift Exon 6
deletion

AA 2 F 0.23 Missense Exon 2
Frameshift Exon 2
deletion
Frameshift Exon 6
deletion

AA 3 F 0.029 Missense Exon 4

AA 4 F 0.089 Frameshift Exon 2
insertion
Splice site Intron 4
mutation

AA 5 F 0.810 Missense Exon 2
Frameshift Exon 2
deletion
Nonsense Exon 6

HI 1 M 0.051 Nonsense Exon 3
Frameshift Exon 2
insertion

HI 2 F 0.059 Frameshift Exon 6
deletion

HI 3 M 0.006 Missense Exon 2
Non-frameshift Exon 5
deletion
Frameshift Exon 2
deletion

HI 4 M 0.000 Missense Exon 2
Nonsense Exon 4

HI 6 M 0.001 Missense Exon 2
Missense Exon 2

HI 11 F 0.001 Splice site
mutation
Splice site
mutation
Nonsense

HI 18 M 0.000 Missense Exon 2
Nonsense Exon 2
Splice site
mutation

CB 1 M 0.000 Missense Exon 2

Mutation (protein)

Variant Allele
Frequency (%)

c.1265delC P422Qfs*1 49.4
c.C44G p-A15G 11.4
c.154delC p.H52Tfs*8 5.1
¢.1306_1307del p.F436Pfs*15 14.9
c.469G > C p.A157P 423
c.196dupA p.V67Gfs*62 39.5
c.487-2A>G 4.1
c.A154T p.-T172S 28.5
c.523_526del p.L175Ffs*18 13.2
c.G1331A p.W444X 2.2
c718T>A p.L271X 95.4
c.274dupT p.L92Ffs*37 2.2
c.1280delT p.1427Tfs*15 59.9
c.C44G p.A15G 85.7
c.1021_1032del p.P341_L344del 4.4
c.154delC p.H52Tfs*15 2.0
c353G>A p.C183T 171
c979C>T p-Q327X 99.6
C119A>T p.D40V 14.7
c.214C>T p.H72Y 44.8
c.487-1G>A 16.3
c.849-1G>A 35
C.1099A>T p-K367X 3.2
c.143G>A p.G48D 13.0
c.270T>G p-Y90X 14.0
c751+1G>A 38.7
c.242G>A p.C81Y 953

PNH paroxysmal nocturnal hemoglobinuria, AA aplastic anemia, HI healthy individual, CB cord blood, F Female, M Male.

as GPI-specific T cells [12], may occur at the time of early onset of
AA, not in the transition from AA to PNH.

According to Dingli's hypothesis, granulocytes derived from
committed progenitor cells persist for up to 120 days [13]. A
previous study identified miniscule-PNH-G populations with PIGA
mutations at frequencies up to 0.005% in most Hls, which became
undetectable two months later, except for one clone in a HI, which
persisted for up to 164 days [8], suggesting that the vast majority
of GPI(-) G populations <0.005% detected in Hls may be derived
from PIGA-mutated committed myeloid progenitor cells rather
than HSPCs. Hu et al. also concluded that PNH-G populations in
His are all derived from committed progenitor cells by demon-
strating that PIGA-mutated sequences in myeloid cells generated
from proaerolysin-resistant colony-forming cells were highly
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diverse [9]. However, our study demonstrated that the same
PIGA-mutated sequences detected in the minor PNH-G popula-
tions persisted for more than ten months. Therefore, the minor
GPI(-) G populations possessed by Hls are thought to be clonal
populations derived from a limited number of PIGA-mutated
HSPCs. However, given that the persistence of the PIGA-mutated
sequence was demonstrated only in one HI and the rest of the
mutated sequences in the two miniscule-PNH-G samples obtained
over 6 months apart from the same HI varied greatly, it is possible
that PIGA mutation was sometimes in a bona fide stem cell and
sometimes in a more downstream progenitor cells. As several
X-linked genes, such as GPA and XK, share similarities with PIGA in
that mutant phenotypes result in loss of specific proteins, which
can be detected by flowcytometry [14, 15], analysis of the
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Fig. 1 Detection of PNH-type granulocytes and PIGA mutations in AA patients and healthy individuals. A Representative flow cytometry
plots of glycosylphosphatidylinositol-anchored protein-deficient granulocytes (GPI[-] Gs) in a patient with aplastic anemia (AA) after magnetic
enrichment and a phosphatidylinositol glycan class A (PIGA) mutation in these GPI(-) Gs. 0.087% of GPI(-) Gs were enriched to 84.4% with the
magnetic negative selection. A sufficient amount of DNA for PIGA amplicon sequencing (AmpliSeq) was obtained from sorted GPI(-) Gs.
Integrative Genomics Viewer (IGV) showed a deletion mutation in GPI(-) Gs (circled in red). B Longitudinal analysis of PIGA mutations using
PIGA-AmpliSeq of GPI(-) Gs in two healthy individuals (HIs) (HI 2 and HI 3). IGV showed three individual PIGA mutations in HI 2 and HI 3 at
different time points (circled in red). C Representative flow cytometry plots of GPI(-) Gs after magnetic enrichment in Hls who had been
judged to be negative for the presence of GPI(-) Gs by a high-sensitivity flow cytometry method. HI 5 was judged to be positive for miniscule
paroxysmal nocturnal hemoglobinuria-type granulocyte (miniscule-PNH-G) populations and HI 19 was negative. D Proportions of HIs who
possessed miniscule-PNH-G populations. Miniscule-PNH-G populations were detected in 24 (80%) of the 30 Hls. E Longitudinal analysis of PIGA
mutations using PIGA-AmpliSeq of miniscule-PNH-G populations in HI 4. IGV showed the same PIGA nonsense mutation continuously detected
at different time points (circled in red). F Flow cytometry plots of GPI(-) Gs in a cord blood (CB) sample (CB 1) and a PIGA mutation in these
GPI(-) Gs. PIGA-AmpliSeq of GPI(-) Gs in CB 1 revealed a sole PIGA mutation (circled in red).

mutations in those genes using enriched mutant cells may help us
to further understand mutation frequencies and the origin of

whole genome sequencing and revealed that HSPCs acquired
around 40 somatic mutations by 18 weeks after conception [16].

mutant cells in Hls.

This study also identified miniscule-PNH-G populations in CB
samples that were negative for small-PNH-G populations and
single PIGA mutation in miniscule-PNH-G populations of one CB
sample. Spencer et al. analyzed HSPCs in healthy fetuses using
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Wong et al. analyzed somatic mutations associated with myeloid
malignancies in 31 CB samples using error-corrected DNA
sequencing and identified that 18% of CBs harbored somatic
mutations with AFs of 0.2%-0.6% [17]. Our findings indicate that
some HSPCs acquire somatic PIGA mutations during fetal
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development and that contribute  to
hematopoiesis.

This study has several limitations that need to be considered.
First, as PIGA mutations were determined using a small amount of
DNA extracted from isolated GPI(-) Gs, false-positive mutations
might have occurred due to replication errors during amplification
of the PIGA gene. Although a minimum cut-off value of 2% was
used for variant allele calling in order to avoid false-positive
mutation calling, we could not completely exclude false-positive
results. Second, in contrast with false-positive mutations, some
PIGA mutations with low AFs might be misclassified as negative
and the number of PIGA mutations in miniscule-PNH-G popula-
tions could be underestimated. Nevertheless, our results clearly
demonstrate that GPI(-) Gs of HIs have limited PIGA mutations with
high AFs and some of GPI(-) Gs with the same PIGA mutations
were continuously detected at different time points.

In conclusion, minor GPI(-) Gs detectable in AA patients and Hls
are derived from a few PIGA-mutated HSPCs, not from committed
myeloid progenitor cells, suggesting that the selection of PIGA-
mutated HSPCs by immune mechanisms may occur at the time of
early onset of AA, not in the transition from AA to PNH. Very small
numbers of clonal GPI(-) Gs are present more frequently in Hlis
than previously thought and might also be derived from a few
HSPCs with somatic PIGA mutations that occur during the
fetal stage.

they  minimally
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