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Biallelic TP53 inactivation is the most important high-risk factor associated with poor survival in multiple myeloma. Classical biallelic
TP53 inactivation has been defined as simultaneous mutation and copy number loss in most studies; however, numerous studies
have demonstrated that other factors could lead to the inactivation of TP53. Here, we hypothesized that novel biallelic TP53
inactivated samples existed in the multiple myeloma population. A random forest regression model that exploited an expression
signature of 16 differentially expressed genes between classical biallelic TP53 and TP53 wild-type samples was subsequently
established and used to identify novel biallelic TP53 samples from monoallelic TP53 groups. The model reflected high accuracy and
robust performance in newly diagnosed relapsed and refractory populations. Patient survival of classical and novel biallelic TP53
samples was consistently much worse than those with mono-allelic or wild-type TP53 status. We also demonstrated that some
predicted biallelic TP53 samples simultaneously had copy number loss and aberrant splicing, resulting in overexpression of high-risk
transcript variants, leading to biallelic inactivation. We discovered that splice site mutation and overexpression of the splicing factor
MED18 were reasons for aberrant splicing. Taken together, our study unveiled the complex transcriptome of TP53, some of which
might benefit future studies targeting abnormal TP53.
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INTRODUCTION
Multiple myeloma is a heterogeneous disease characterized by
genomic markers that are used to delineate high-risk disease.
There are many algorithms to determine how to define high-risk
myeloma, and the genomic markers include t(4;14), t(14;16),
gain 1q21 (CKS1B), del 1p32 (CDKN2C), and del 17p13 (TP53)
[1–4]. Of these markers, TP53 is probably the most important
and is associated with rapid progression and poor overall
survival.
Deletion of 17p has been seen as a poor prognostic marker

since its discovery in MM [5]. Del 17p has been detected using
fluorescence in situ hybridization, and although detection of
deletion in as low as 10% of cells is associated with poor
outcome [6], the larger the proportion of cells with loss of 17p,
the stronger the effect on outcome [7, 8]. More recently, the
use of molecular technologies has highlighted the importance
of multi-hit or biallelic TP53 abnormalities in MM. We have
previously shown that biallelic abnormalities of TP53, compris-
ing deletion and/or mutation of both alleles, are associated
with outcome, whereas deletion alone is not [9]. The frequency
of biallelic loss of TP53 in MM increases with disease
progression, being rare in smoldering myeloma (1.2%) and
increasing through relapse (20%), indicating that it is a key
mechanism in the pathogenesis of the disease [10, 11]. Biallelic
loss of TP53 has also been shown to be responsible for poor
outcomes in myelodysplastic syndromes, myelofibrosis, and

acute myeloid leukemia, pointing to a consistent abnormality
in hematological malignancies [12, 13].
In addition to mutation and deletion of TP53, other mechanisms

are at play that result in loss of cellular function of p53, including
alternative splicing, promoter methylation, protein isoform usage,
and changes in expression of gene regulators [14, 15]. These
distinct mechanisms that result in the loss of functional p53 are
currently impossible to determine solely at the DNA level but
could be assessed by modeling the downstream transcriptomic
signature of biallelic TP53.
Here, we utilized 634 newly diagnosed (NDMM) and 66

relapsed/refractory multiple myeloma (RRMM) samples from the
MMRF CoMMpass dataset. By training a random forest regression
model with transcriptomic features from known biallelic and wild-
type samples, we predicted potential biallelic TP53 samples from
known monoallelic populations. Moreover, we demonstrated that
predicted biallelic samples underwent expression of high-risk
transcript variants and aberrant splicing but also investigated the
reasons that led to them.

METHODS
Defining ‘known’ biallelic TP53 samples
Mutation and copy number variation calls were obtained from the MMRF
CoMMpass dataset web portal (version IA18). Identified somatic mutations
had agreements from at least three out of four mutation callers: Mutect2
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[16], Strelka2 [17], Octopus [18], and LANCET [19]. Copy number variations
(CNVs) were identified by GATK [20], where copy number amplification
(log2-fold change (Log2FC) ≥ 0.8), gain (0.2–0.8), deletion (−0.2 to −2.0),
and deep deletion (<−2.0) were defined.
B-allele frequency was estimated by GATK [20] and normalized to scale

(0 to 0.5), with 0.5 corresponding to the balanced copy number and 0
corresponding to the complete loss of heterozygosity (LOH) between the
major and minor alleles. We subsequently used <0.25 as the threshold to
determine LOH status.
‘Known’ biallelic inactivation of TP53 (‘known’ biallelic) samples were

defined as samples with either deep deletion, mutation plus deletion, or
mutation plus LOH. Monoallelic TP53 (‘known’ monoallelic) samples were
defined as samples with a TP53 mono-allelic mutation/CNV or LOH.
In total, 634 newly diagnosed multiple myeloma (NDMM) samples with

mutation and CNV annotations were utilized, including 23 (3.6%), 62
(9.8%), and 549 (86.5%) samples with known biallelic, monoallelic, and
wild-type status of TP53, respectively. Relapsed and refractory MM (RRMM)
patients who developed plasma cell leukemia at any relapsed stage were
excluded. This resulted in 66 RRMM samples, including 4, 15, and
47 samples with known biallelic, monoallelic, and wild-type status of TP53,
respectively.

Differentially expressed gene analysis
Gene expression of NDMM, RRMM, and 5 normal bone marrow plasma cell
(BMPC) samples was quantified by transcript-per-million (TPM) [21] using
Salmon [22] (Quasi-mode mapping, validate map mode) and Gencode V35
hg38 Gentrome (a combination of HG38 genome and Gencode HG38
transcriptome V35) as a reference. Expression profiles were rescaled with
Log2(TPM+ 1) transformation. Differentially expressed genes (DEGs) were
identified between known biallelic and wild-type TP53 samples using
LIMMA [23]. Significant DEGs were defined as FC > 1.4 or FC < 0.71,
FDR < 0.05, and Log2(TPM+ 1) > 1 in either group.

Determining proliferation (PR) Group from gene expression
The PR expression subgroup was previously described [24] (Supplementary
Fig. 1E), and in this dataset, a PR group of 26 samples was identified.

Transcript variant and protein domain inference
The Scallop pipeline (https://github.com/Kingsford-Group/scallop) was
used to identify and quantify novel transcript variants. Transcriptomes
were assembled by Scallop [25], while novel transcripts were identified
by Gffread and quantified by Salmon [22]. Corresponding transcripts
were extracted from the genome and translated to peptide sequences
using the Expasy database [26]. Conserved domains were identified
from predicted peptide sequences using the NCBI conserved domain
database [27].

Pathway analysis
Gene overrepresentation analysis (ORA) was conducted using WebGestalt
[28]. Pathway enrichment analysis was conducted using GSEA [29]. The
pathway knowledge bases ‘Kyoto Encyclopedia of Genes and Genomes’
(KEGG) [30] and Wikipathways [31] were used. Single-sample level pathway
analysis was conducted using GSVA [32] with a GSEA-defined hallmark
pathway set. Only significantly dysregulated (p < 0.05) pathways were
reported and plotted.

Model performance metrics
True positive rate, false positive rate, precision, and recall were calculated
and used to generate receiver operating characteristic (ROC) curves and
precision-recall curves (PRC). The area under the ROC curve (AUROC) and
area under the PRC (AUPRC) were subsequently generated to measure the
overall performance of the models.

Hyperparameter tuning
To obtain the optimal hyperparameters that resulted in the model with the
best performance, an exhaustive ‘grid search’ in the ‘scikit-learn’ [33]
package was conducted for the number of trees (n ∈ (1, Number of
Genes)), the minimum number of samples required to be a leaf node
(n∈ (0, 1)) and minimum weight fraction of the sum total of weights
required to be at a leaf node (n 2 (0, 1)) with an offset of 0.05. The model
with the highest AUPRC and AUROC > 0.8 was selected.

Survival analysis
The MMRF CoMMpass IA18 clinical annotation for 634 NDMM samples and
66 RRMM samples was utilized. The log-rank test and Cox regression tests
were used to examine the survival difference between groups. Kaplan‒
Meier curves were drawn to describe progression-free survival (PFS),
overall survival (OS), and after-relapse survival (ARS). In this study, ARS was
defined as the survival duration of patients after TP53 abnormality was
detected/predicted for the first time.

Alternative splicing analysis
rMATS [34] was used to identify AS events in TP53 regions between each
MM patient and 5 normal bone marrow plasma cell (BMPC) samples.
Percent-of-Spliced-In (PSI) was used to measure the splicing level per
sample, while deltaPSI (dPSI) was used to measure average splicing
differences between the two groups. The retention intron (RI) events were
observed from Sashimi plots, and PSI and dPSI were calculated as follows:

PSI ¼ reads on the intron
Junction reads þ reads on the intron

dPSI ¼ PSI�normal � PSI�tumor

RESULTS
Model training and validation
Although biallelic TP53 is currently defined by DNA methodolo-
gies, which identify mutation and copy number loss, other
mechanisms of inactivation can occur, including loss of expres-
sion, alternative splicing, and generation of rare protein isoforms.
These additional mechanisms could be difficult to identify but
may be inferred from modeling downstream expression
signatures.
Using 634 NDMM samples with mutation and copy number

annotations, we determined biallelic, monoallelic, and wild-type
TP53 status. Differentially expressed gene (DEG) analysis was
conducted between existing known biallelic TP53 (n= 23) and WT
samples (n= 549) to identify a biallelic TP53 expression signature,
and samples were split into training and validation sets in a 7:3
ratio (Fig. 1A). DEGs that were either significantly (FDR < 0.05) up-
or downregulated in biallelic TP53 were defined based on the fold-
change (FC), namely, ‘FC1.5’, ‘FC2’, ‘FC2.5’ and ‘FC3’ (Supplemen-
tary Fig. 1A). Random forest regression models were proposed to
predict biallelic TP53 samples from TP53 wild-type (WT) samples
using their expression profiles, and fivefold cross-validation was
subsequently performed to measure the robustness of the
established models (Fig. 1A).
The random forest regression models were established using

each set of DEGs as features and compared by their area under
precision-recall curves (AUPRCs) and area under receiver operative
characteristics curves (AUROCs). A hyperparameter tuning method
was conducted to identify the parameter set corresponding to the
optimal performance. Given that the dataset is highly imbalanced
(4.1% biallelic TP53 samples in the population), precision-recall
curves are more informative and accurate when measuring model
performance [35, 36]. Hence, models with different parameters
were prioritized by AUPRC first and subsequently by a high
AUROC threshold (>0.8). Curves indicated models with the best
performance after hyperparameter tuning (Fig. 1B, C). The optimal
model was derived from the FC > 2 DEG set and reflected not only
the highest AUPRC among all but also consistently high
performance in 5-fold cross-validation (AUROC ∈ (0.82,1)). This
model was subsequently selected for further analysis (Fig. 1D).
The final model consisted of 25 trees, comprising 16 genes

(Fig. 2A) out of 100 DEGs in the ‘FC2’ set (Supplementary Fig. 1B).
Among the 16 genes, 14 were connected in a protein‒protein
interaction (PPI) network (Supplementary Fig. 1C). Five genes were
directly involved in the cell cycle, and related pathways (Fig. 2B).
Of the other two genes, NDC80 (previously known as Hec1) is a
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key regulator of G2/M phase [37] and is often overexpressed in
human cancers, including MM [38]. High expression of PHF19 has
been reported [39] to be associated with high-risk disease in
myeloma. Most of the significantly dysregulated pathways from 16
genes were related to the cell cycle (Fig. 2B), which is in line with
the previously reported roles of TP53 [40]. Individual-level pathway
analysis was also conducted for all samples using GSVA and
hallmark cancer pathway sets defined by the GSEA database. The
top dysregulated pathways between known biallelic and WT
samples included MYC targets, cell cycle, DNA repair, and
oxidative phosphorylation, and these pathways were consistently
upregulated between known and predicted biallelic samples
(Supplementary Fig. 1D).

Characteristics of predicted novel biallelic samples in NDMM
Samples in the validation dataset were given a predicted score
(Fig. 2A). To reach the maximum sensitivity, a cutoff of the
predicted score was set until the last known biallelic sample
was included, resulting in 100% sensitivity and 71.4% specifi-
city. We noted the enrichment of several genomic markers in
the predicted biallelic TP53 samples, including biallelic TENT5C
(N= 6; p= 0.03, chi-square test), suggesting a similar regulation
of gene expression between biallelic TENT5C and TP53 altera-
tions. There was also enrichment for the PR subgroup
expression signature [24] (N= 6; p= 0.002, chi-square test) in
the predicted biallelic TP53 samples, indicating a similarity
between the PR signature and the biallelic TP53 signature,
suggesting similar mechanisms at action.

Novel biallelic TP53 samples have a similar expression profile
and are associated with a poor outcome
We hypothesize that there will be more novel biallelic TP53
samples in those that are already monoallelic defined by mutation
or deletion. The established model was therefore used to predict
novel biallelic samples from known monoallelic samples, referred
to as the discovery set (Table 1). The same cutoff score was
applied to the discovery set of known monoallelic TP53 samples
(N= 62), leading to the identification of 26 (42%) predicted
biallelic samples. At the gene level, 26 samples were expressing
TP53 (Log2(TPM+ 1) > 1). Differential expression analysis between
the 26 predicted and 23 known biallelic samples identified no
significantly dysregulated genes, indicating parity between the
two sets. In contrast, 939 significant DEGs were identified between
the 26 predicted biallelic and 36 confirmed monoallelic samples
from the discovery set. Subsequent GSEA analysis identified
significantly upregulated KEGG pathways covering the cell cycle/
DNA replication, DNA damage repair, and p53 signaling (Supple-
mentary Fig. 2A). These upregulated categories were consistently
observed from the same GSEA between the 23 known biallelic and
36 predicted monoallelic samples (Supplementary Fig. 2B).
Additionally, we compared the number of SV events in known

biallelic, predicted biallelic, predicted monoallelic, and WT groups
(Supplementary Fig. 2C). No significant difference was found
between the known and predicted groups (median 48 vs. 31,
p= 0.23, Mann‒Whitney U test), while both groups contained
significantly more events than the WT group (median 48 vs. 31 vs.
22, p= 0.0002 and p= 0.04). This fact still held when both groups
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Fig. 1 A random forest model for predicting biallelic TP53 samples from gene expression profile. A Data composition for model training
and validation. B Receiver operating characteristic (ROC) curves. C Precision–recall curves. D Fivefold cross-validation results measure the
performance of the models with various sets of differentially expressed genes.
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were compared against the predicted monoallelic group (median
48 vs. 31 vs. 28, p= 0.01 and p= 0.07).
Patient survival was compared between the 23 known biallelic,

26 predicted biallelic, 36 confirmed monoallelic, and 549 wild-type
samples. As expected, the previously defined monoallelic group
(N= 62) was not associated with a different outcome compared to
WT samples, while known biallelic samples (N= 23) were
associated with significantly worse survival than both groups in
PFS (median survival (days): 478 vs. 900 vs. 1176, p= 0.17 and
p= 0.02, log-rank test) and OS (median survival (days): 1094 vs.
2256 vs. 2859, p= 0.02 and p= 0.003, Supplementary Fig. 2D, E).
However, using the new categorization, the predicted biallelic
samples were associated with a significantly worse outcome than
the predicted monoallelic and WT samples with PFS (median
survival (days): 623 vs. 1832 vs. 1176, p= 0.002 and p= 0.0006)
and OS (median survival (days): 1794 vs. not reached vs. 2859,
p= 0.09 and p= 0.04) (Fig. 2C, D). Moreover, the survival

difference between the confirmed monoallelic group and WT
was not significant for PFS (p= 0.2) and OS (p= 0.6) (Fig. 2C, D).
Conversely, the predicted biallelic group showed no significant
survival difference compared to the known biallelic group for PFS
and OS, indicating a similar patient outcome between known and
predicted biallelic samples. When known biallelic and predicted
biallelic samples were combined in one group (N= 49), their
survival remained significantly worse than the confirmed mono-
allelic and WT samples for PFS (median survival (days): 610 vs.
1176 vs. 1832, p= 0.002 and p= 0.0001) and OS (median survival
(days): 1340 vs. not-reached vs. 2859, p= 0.01 and p= 0.0002,
Supplementary Fig. 2F, G).

The model predicts novel biallelic TP53 samples from relapsed
or refractory multiple myeloma (RRMM)
To explore the prediction power further, the model was applied to
66 RRMM samples (Table 1). Four known biallelic samples existed
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in the validation set (Fig. 3A), and their corresponding NDMM
samples from the same patients were also biallelic. The model
resulted in a 76% AUROC and 42% AUPRC from the validation set
of four known biallelic and 47 wild-type samples, indicating
consistently good performance. With the same threshold applied
as in the NDMM population, 75% sensitivity (3/4) and 47%
specificity (22/47) were achieved. The model predicted seven
biallelic samples that corresponded to 5 patients from 15
monoallelic samples in the discovery set (Fig. 3A). Among them,
four monoallelic samples from two patients were consistently
predicted as biallelic samples. All seven samples were expressing
TP53 (Log2(TPM+ 1) > 1).
After-relapse survival analysis conducted between the five

predicted biallelic and the eight remaining monoallelic patients in
the discovery set showed that the patients with predicted biallelic
TP53 had a significantly inferior after-relapse survival (p= 0.04,

log-rank test) compared to the other eight monoallelic TP53
patients (Fig. 3B). Meanwhile, the duration before such relapse
was not significantly different (Supplementary Fig. 3). Taken
together, this observation is in line with the inferior survival of
patients once biallelic TP53 inactivation was detected.

Aberrant splicing and transcript variant expression were
found in predicted biallelic TP53 samples
TP53 has numerous transcripts, some of which encode isoforms
that deviate from the original tumor suppressor role and offer
unique functions under different contexts [41]. Previous studies
identified three major TP53 protein isoforms (α, β, and γ), each of
which had four different lengths (full length (TA), Δ40, Δ133, and
Δ160) [15, 41]. In MM, patients with high expression of
TAp53β and TAp53γ isoforms were associated with significantly
worse survival than patients without [15]. Conversely, high

Table 1. Number of samples and their TP53 abnormalities.

State Set Group TP53 abnormalities (N=)

Mutation CNV LOH Total

NDMM (N= 634) Training Known biallelic 16 15 1 16

Known WT 377

Validation Known biallelic 7 7 0 7
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predicted not 0

Known WT 165

predicted as biallelic 48

predicted not 117

Discovery Known mono-allelic 8 42 12 62

predicted as biallelic 4 18 4 26

predicted not 4 24 8 36

RRMM (N= 66) Validation Known biallelic 4 4 0 4

predicted as biallelic 4

predicted not 0

Known WT 47

predicted as biallelic 25

predicted not 22
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predicted as biallelic 2 5 0 7
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expression of Δ133 and Δ160 was associated with a good
prognosis [15]. We speculated that there was an expression of
adverse TP53 transcripts that, along with mutations or copy
number alterations, led to its complete loss of function and would
identify additional biallelic TP53 samples that would not be
detected by DNA techniques alone.
Based on established studies [15] and databases [42], we

annotated all protein-coding transcript variants of TP53 listed in
the Gencode [43] hg38 V35 genome annotation (Fig. 4A). In
cancers, the expression of α; β and γ isoforms is frequently
switched [44]. Inclusion of the cryptic exon(s) between exons 9
and 10 results in a switch to the β and γ isoforms (Fig. 4A). Among
all predicted biallelic samples, we observed several that under-
went dramatic splicing changes of the cryptic exon (Fig. 4B),
leading to the dominant expression of β=γ over α. For instance,
inclusion of the cryptic exon (dPSI=−0.54, versus normal) was
observed in sample MMRF_1922 (Fig. 4C), indicating the dominant
expression of β=γ transcripts over α (Fig. 4B). We further measured
the expression levels of different transcript variants (α, β and γ)
and transcript variants with different lengths (full length (TA), Δ40,
Δ133 and Δ160) (Supplementary Fig. 4A-C). We confirmed that
aberrant inclusion of the cryptic exon resulted in the predominant
expression of TAp53β, which further led to the imbalanced
expression of TAp53β=γ over TAp53α. Such an imbalance was
reported as a major predictor of poor prognosis in MM [15]. Given
that MMRF_1922 had copy number-neutral LOH and a high level
of imbalanced expression of TAp53β=γ over TAp53α (ratio= 1.95),
it could be reasonably speculated that both alleles underwent

cryptic exon inclusion, which further led to dominant expression
of high-risk transcripts, which was equivalent to complete
inactivation of TP53.
Similarly, a few predicted biallelic samples with copy number loss

also underwent aberrant cryptic exon inclusion. MMRF_1085_3 had
copy number loss (CNV=−0.9) on one allele and cryptic exon
inclusion on the other allele (dPSI=−0.29, vs. normal, Fig. 4B, C).
Some other predicted biallelic samples had a mutation or copy
number loss while having a very low expression of all TP53
transcripts. For instance, MMRF_1450, which was a predicted biallelic
sample with copy number loss, had low TP53 total gene expression
(Log2(TPM+ 1)= 1.01, log2FC=−0.89, vs. normal) as well as low
α transcript expression (Log2(TPM+ 1)= 0.41, log2FC=−1.59, vs.
normal, Fig. 4B, C). This indicated that biallelic TP53 inactivation
could also be defined by copy number loss on one allele and
insufficient expression on the remaining allele.
Novel aberrant splicing sites other than the cryptic exon were

also observed in predicted biallelic samples. For instance, in
sample MMRF_2816 with copy number loss, we observed two
novel retained introns between exons 6 and 8 (Fig. 4D). Since the
intron retention event was novel, a novel transcript variant
assembly and subsequent functional analysis were conducted.
Three novel transcript variants with coding potential were inferred
(Fig. 4D). Among them, ‘TP53-v4’ was predicted to have direct
readthrough of exons 6–8, and the resulting protein would
terminate within intron 6, resulting in a truncated DNA-binding
domain and loss of the tetramerization domain (Fig. 4D and
Supplementary Fig. 4D) and protein function [45]. We found that

Genomic 7,686,0007,684,0007,682,0007,680,0007,678,000 7,676,000 7,674,000 7,672,0007,670,000 7,668,0007,666,0007,664,0007,662,000

ENST00000269305

ENST00000445888

ENST00000413465

ENST00000359597

ENST00000420246

ENST00000455263

ENST00000508793

ENST00000514944

ENST00000604348

ENST00000503591

ENST00000620739

ENST00000610292

ENST00000619485

ENST00000610538

ENST00000622645

ENST00000504937

ENST00000619186

ENST00000618944

ENST00000504290

ENST00000510385

ENST00000509690

ENST00000610623

P53_TAD P53 transactivation motif

TAD2 Transactivation domain 2

P53 P53 DNA-binding domain

other zinc binding site [ion binding ]

other dimerization site [polypeptide binding ]

TAp53
TAp53

TAp53
TAp53

40p53
40p53
40p53

40p53
40p53

p53

p53

p53

TP53-201
TP53-205
TP53-203
TP53-202

TP53-204
TP53-206
TP53-211
TP53-214
TP53-218

TP53-207

TP53-225
TP53-219
TP53-224
TP53-220
TP53-226

TP53-209
TP53-223
TP53-222
TP53-208
TP53-213

TP53-212

TP53-221

p53

p53

p53

Transactivation domain
Transactivation domain 2
DNA-binding domain
Tetramerisation domain

0

30

60

90

TP53-204
TP53-206

A C
dPSI=-0.54

TP53-201

D

exon 9cryptic exonexon 10

exon 6 exon 7 exon 8 exon 9
cryptic
 exon exon 10

60

40

20

0

Normal

0

MMRF_1450

40

20

MMRF_1922

TAp53(ß+γ)/TAp53α ratio

splicing (dPSI>10%) N=9

TAp53(ß+γ)/TAp53α ratio (>2) N=5

α expression (TPM<1) N=2

others N=49

0

4 0

8 0

MMRF_2816

Normal

0

2 0

4 0

6 0

TP53-201

TP53-201
TP53-v2

TP53-v4
TP53-v3

exon 6exon 7exon 8

TADTAD2DBD

Log2(TPM+1)

1.55

0.92
0
0

STOP

47

0

40

80

120
dPSI=-0.29

MMRF_1085_3

TP53 log2FC=-0.89
TAα log2FC=-1.59

B

Y

α expression (TPM)

co
py

 n
um

be
r v

ar
ia

tio
ns

0
2
4
6
8

10
12
43

predicted biallelic N=33
known biallelic N=27
normal BMPCs N=5

Abnormal types of
predicted samples

MMRF_2816

MMRF_1450

MMRF_1085_3

MMRF_1922

Fig. 4 High-risk TP53 transcript variants due to aberrant splicing are found in predicted biallelic TP53 samples. A TP53 transcript variants
translated to isoforms of various types (α, β, γ) and variant lengths (full length (TA), Δ40, Δ133, Δ160). B Genomic and transcriptomic
abnormalities of known and predicted TP53 samples for NDMM and RRMM. C Three predicted biallelic samples with copy number deletion
have either high expression β or low expression α. D Retained introns detected in a predicted biallelic sample led to a novel transcript variant
with protein-coding potential. TA transactivation, dPSI delta percent spliced in, DBD DNA binding domain, TAD transactivation domain.

E. Liu et al.

6

Blood Cancer Journal          (2023) 13:144 



this transcript was expressed in MMRF_2816 (Log2(TPM+ 1)=
0.92) and minimally expressed in normal BMPCs (Supplementary
Fig. 4E).

Splice site mutations result in aberrant intron splicing
After identifying aberrant splicing as a possible source that
contributes to biallelic inactivation, we next tried to identify the
reasons that lead to such abnormality. Previous research indicated
that splice site mutations could lead to alternative splicing [46].
We subsequently examined samples with splice site mutations in
the population. Out of six samples with TP53 splice site mutations,
three were found to have aberrant splicing (Fig. 5A–C), while the
other three were not due to low VAF of the splice site mutations
(average VAF= 0.1), and VAF was positively correlated with
aberrant splicing levels (Supplementary Fig. 5A–C).
A C > T substitution (rs1131691042, g.7675052C>T) was found

at the 3’ splice site of exon 5 in MMRF_1641 (Fig. 5A). Another
C > T substitution (rs1555525367, g.7673838C>T) was found at the
5’ splice site of exon 8 in MMRF_2194 (Fig. 5B). Both single
nucleotide variations had high variant allele frequencies (VAF=
0.83 and 0.72), leading to aberrant intron retention (Fig. 5A, B). A
T > C substitution (rs1555526335, g.7675235T>C, VAF= 0.26) was
found at the 5’ end of exon 10 in MMRF_1915, resulting in a novel
alternative 3’ splice site event (Fig. 5C). This novel splice site
shared a similar splicing pattern with the previously reported
TP53Ψ, of which the aberrant splice site was on the 3’ between
exon 6 and 7 [47].

Additional mechanisms controlling cryptic splicing of TP53
Interestingly, the inclusion of the cryptic exons described above
was not related to splice site mutations and was likely governed
by various factors, such as splicing factors [48] and miRNAs [49],
each of which may be involved in regulating the exclusion/
inclusion of exons and introns. Most likely, the inclusion of cryptic
exons is regulated by the combinational effects of these factors.
To potentially identify a master regulator that further controls
exon inclusion in MM, we conducted a correlation analysis
between gene expression and cryptic exon splicing levels.
MED18 expression had the highest correlation (Fig. 5D) with dPSI

in TP53 cryptic splicing (ρ ¼ �0:57, Spearman correlation). Among
411 MM samples with more retained cryptic exons (dPSI < 0),
MED18 expression was significantly higher than that in normal
BMPCs (FC= 1.3, p= 0.04, Mann‒Whitney U test, Fig. 5E). MED18
encodes a component of the mediator complex that binds to
DNA, activating transcription via RNA polymerase II (RNAPII) [50],
of which the carboxy-terminal domain (CTD) regulates exon in-/
exclusion via transcription elongation [51]. Inhibition of RNAPII
elongation has been shown to result in more exon inclusion in
vitro and vice versa [52]. Our observation suggested that the
downregulation of MED18 may lead to more cryptic exon
inclusion, possibly via the downregulation of RNAPII activity.

DISCUSSION
Historically, deletion of the short arm of chromosome 17p, as
detected by cytogenetics and FISH, has been associated with poor
outcomes in MM, and the gene of interest on 17p is TP53 [7, 53].
As technologies have evolved, we have learned that deletion of
TP53 alone may not be associated with poor outcomes. Instead,
biallelic inactivation of both copies, through deletion or mutation,
is truly associated with poor outcome, and deletion alone is not
[9]. This situation has been identified not only in MM but also in
myelodysplastic syndromes, myelofibrosis, and acute myeloid
leukemia [12].
Given that biallelic inactivation of genes can arise not only

through deletion and mutation but also by a variety of other
means, it stands to reason that there may be additional patients
with biallelic inactivation of TP53 who are not identified with
current DNA tests. However, the downstream signature of biallelic
inactivation may be detectable through expression profiling,
which can give a more complete picture of the cellular response.
In this study, we demonstrated that biallelic TP53 samples in

MM could be accurately predicted by the transcriptomic signature.
This signature predicted biallelic samples from newly diagnosed
and relapsed populations with consistently high accuracy. As a
result, 26 newly diagnosed and 5 relapsed samples with confirmed
monoallelic TP53 status were predicted as biallelic TP53 patients.
Their survival showed no significant difference from known
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biallelic patients but was significantly worse than that of
confirmed monoallelic or wild-type patients. This is in line with
previous reports in which patients with monoallelic TP53 copy
number loss or mutation were also associated with inferior
survival [54], which could be partly accounted for by an
underestimation of the population of biallelic inactivation.
From the predicted subgroup, we identified the enrichment of

samples with overexpressed high-risk TP53 transcript variants,
which is in line with previous reports [15] and may work in concert
with existing monoallelic abnormalities such as copy number loss,
resulting in loss of function of both alleles of TP53. Such high-risk
TP53 transcript variants were derived from aberrant exon inclusion
or intron retention. Moreover, different mechanisms of biallelic
inactivation were observed. For instance, low expression of TP53
was found in a few predicted biallelic samples with existing copy
number loss, even though the reason for such low expression
requires further investigation. These samples could be potentially
biallelic, while the second hit might not be detected due to
various reasons, including DNA methylation of the TP53 promoter,
cryptic rearrangements that are difficult to resolve with short-read
sequencing, or germline variants that are masked by somatic
analysis. However, the second hit was unlikely to be caused by
germline TP53 pathogenic mutations due to its ultra-low
frequency (<0.2%) in the CoMMpass MM population [55].
Previous studies indicated that splice site mutations in TP53

resulted in aberrant splicing in colorectal cancer [46]. Here, we
confirmed that such mutations not only led to aberrant splicing
but also generated high-risk transcript variants, some of which
were not previously documented. This indicated that even though
TP53 has been extensively studied, the complete TP53 landscape is
highly heterogeneous among MM patients, illustrating a need for
further investigation. Moreover, aberrant splicing may work in
concert with genomic variations to cause biallelic status, indicat-
ing a future need to combine genomic and transcriptomic
features to confirm the biallelic status of TP53 in the clinical
setting.
TP53 splicing is a complex process and possibly regulated by

multiple factors simultaneously [48]. Most likely, the splicing level
is determined by a combination of factors. Nonetheless, we
demonstrated that MED18 may serve as a master regulator to
control the cryptic exon splicing level of TP53. Numerous reports
have suggested regulatory roles of mediator complex members in
RNA splicing [56]. The strong correlation between MED18
expression and cryptic exon splicing levels indicated that by
targeting the mediator complex, the ‘hazardous’ TP53 isoforms
could potentially be turned into tumor-suppressing isoforms,
which may offer an alternative approach for targeting aberrant
TP53 in MM. However, as an essential component in the mediator
complex, MED18 most likely controls numerous splicing events
other than TP53 cryptic exons.
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