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program in leukemia
Kinjal Shah1,2, Ahmad Nasimian1,2, Mehreen Ahmed 1,2, Lina Al Ashiri1,2, Linn Denison1,2, Wondossen Sime 1, Katerina Bendak3,
Iryna Kolosenko4, Valentina Siino5, Fredrik Levander 5,6, Caroline Palm-Apergi4, Ramin Massoumi1, Richard B. Lock3 and
Julhash U. Kazi 1,2✉

© The Author(s) 2023

The deregulation of BCL2 family proteins plays a crucial role in leukemia development. Therefore, pharmacological inhibition of this
family of proteins is becoming a prevalent treatment method. However, due to the emergence of primary and acquired resistance,
efficacy is compromised in clinical or preclinical settings. We developed a drug sensitivity prediction model utilizing a deep tabular
learning algorithm for the assessment of venetoclax sensitivity in T-cell acute lymphoblastic leukemia (T-ALL) patient samples.
Through analysis of predicted venetoclax-sensitive and resistant samples, PLK1 was identified as a cooperating partner for the
BCL2-mediated antiapoptotic program. This finding was substantiated by additional data obtained through phosphoproteomics
and high-throughput kinase screening. Concurrent treatment using venetoclax with PLK1-specific inhibitors and PLK1 knockdown
demonstrated a greater therapeutic effect on T-ALL cell lines, patient-derived xenografts, and engrafted mice compared with using
each treatment separately. Mechanistically, the attenuation of PLK1 enhanced BCL2 inhibitor sensitivity through upregulation of
BCL2L13 and PMAIP1 expression. Collectively, these findings underscore the dependency of T-ALL on PLK1 and postulate a
plausible regulatory mechanism.
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INTRODUCTION
Despite its prevalent use in scientific research, machine learning
exhibits considerable promise for predicting the efficacy of
pharmacological responses with considerably high accuracy. This
potential is achieved via the expeditious and precise identification
of putative therapeutic targets and the development of patient-
specific treatment approaches [1]. By implementing sophisticated
computational algorithms, machine learning frameworks can
proficiently analyze extensive quantities of multi-omics data,
encompassing genomics, transcriptomics, proteomics, and meta-
bolomics, to decipher complex patterns and associations [2].
These insights may be utilized to predict drug responses in
individual patients, thereby fostering the advancement of preci-
sion medicine. Moreover, advanced deep learning approaches,
including convolutional neural networks and recurrent neural
networks, have considerably enhanced the predictive precision of
pharmacological responsiveness models [3]. These cutting-edge
methodologies can handle high-dimensional and complex data
structures, effectively deciphering the nonlinear relationships
between molecular features and pharmacological responses.
Furthermore, machine learning models can determine the most
relevant biomarkers and molecular pathways contributing to drug
sensitivity by incorporating data integration and feature selection

methods. This knowledge assists in designing novel targeted
therapies and repurposing existing drugs for new indications.
Despite the significant advancements in predicting drug

sensitivity using deep learning, several limitations and challenges
persist. These challenges must be addressed to fully exploit
potentials of deep learning algorithms in clinical applications [4, 5].
For example, data scarcity and heterogeneity represent major
challenges of deep learning. High-quality, large-scale datasets are
vital for training deep learning models; however, existing datasets
often exhibit limited size, batch effects, and variability due to
discrepancies in experimental conditions and platforms. Such
heterogeneity may impede the application of models across
diverse patient demographics and disease contexts.
Integrating multi-omics data, including genomics, transcrip-

tomics, proteomics, and metabolomics, can augment drug
sensitivity predictions [6]. Nevertheless, effectively assimilating
these heterogeneous data sources remains challenging, necessi-
tating the development of innovative algorithms and techniques
to derive meaningful information and capture the complex
relationships between data types. In addition, developing deep
learning models capable of accounting for factors such as genetic
background, tumor heterogeneity, and comorbidities and stratify-
ing patients based on their predicted drug responses remains
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challenging [7]. Therefore, addressing these gaps through
developing novel algorithms, generating high-quality datasets,
and establishing standardized evaluation frameworks is crucial for
advancing the application of deep learning in drug sensitivity
prediction and promoting its integration into clinical practice. We
applied TabNet as the core algorithm. TabNet is a deep learning
model based on attention mechanisms, which has the potential to
overcome several limitations associated with drug sensitivity
prediction in clinical applications, including data scarcity, hetero-
geneity, and integration of multi-omics data [8]. It offers a
potential solution for data scarcity and heterogeneity through its
ability to learn meaningful representations even from small and
noisy datasets. By leveraging attention mechanisms, the algorithm
identifies and focuses on the most relevant features, mitigating
the effects of batch variability and experimental discrepancies.
This property enables TabNet to be applied across diverse patient
demographics and disease contexts, making it suitable for clinical
applications.
In this study, the model to predict venetoclax sensitivity was

applied in T-cell acute lymphoblastic leukemia (T-ALL). T-ALL is
one of the most aggressive forms of acute leukemia developing
from immature lymphoid cells [9], and it accounts for ~15–25% of
acute lymphoblastic leukemia (ALL) cases in children and adults,
respectively [10]. In addition, it exhibits several distinctive
genomic features that alter core signaling pathways, such as the
deregulated expression of transcription factors, aberrant activation
of notch signaling, loss of function mutations and deletions of
tumor suppressors, activation of several kinase and cytokine
signaling pathways, and cell cycle regulation [9]. Currently, the
majority of T-ALL patients are treated with cytotoxic chemother-
apy [11, 12]. Although the overall survival rate has increased in
children due to improved risk assessment and chemotherapy
combinations, T-ALL is highly refractory to chemotherapy upon
relapse and has minimal therapeutic options [13]. Therefore, new
treatments are required for this group of patients.
Residue cancer cells often act as a reservoir for refractory

diseases [14]. They comprise a small fraction of cancer cells that
resist programmed cell death (apoptosis) during drug treatment.
The mechanisms of intrinsic and extrinsic apoptotic pathways
have been studied in detail in the past decades. The BCL2 protein
family tightly regulates the intrinsic apoptosis pathway by
balancing the proapoptotic and antiapoptotic members [15].
Proapoptotic members act as sequesters (BAD, NOXA, etc.) of
antiapoptotic members (BCL2, BCL-XL, MCL1, etc.) or as activators
(BID, BIM, and PUMA) of mitochondrial pore-forming members
(BAX, BAK, and BOK). Therefore, they facilitate mitochondrial outer
membrane permeabilization (MOMP) and cytochrome C release.
The upregulation of antiapoptotic members, such as BCL2, occurs
in various cancers, including ALL, leading to resistance to therapy-
induced apoptosis. Therefore, the inhibition of BCL2 has been
considered to be a viable approach to eradicating residual
cancer cells.
During the normal development of T-cells, BCL2 expression is

biphasic; BLC2 expression is high in double-negative hematopoie-
tic stem cells, low in most double-positive thymocytes, and high
again in mature single-positive thymocytes [16, 17]. Similarly, BCL2
expression varies in T-ALL, with early T-cell progenitor ALL (ETP-
ALL) displaying a higher level of BCL2 expression than non-ETP T-
ALL [18]. Therefore, the ETP-ALL subtype shows a considerably
higher response to BCL2 inhibition [19]. Numerous studies have
shown that sensitivity to the BCL2-specific inhibitor venetoclax is
dependent on a high BCL2 expression level [20–23]. However, the
BCL2 expression levels do not always enable the prediction of
treatment outcomes. For example, cells expressing lower levels of
BCL2 also display venetoclax sensitivity [22, 23], while cells
expressing a higher level of BCL2 can maintain significant
venetoclax resistance [18–24]. Apart from the BCL2 expression
level, it has been demonstrated that the expression of BCL-XL or

MCL1 can determine BCL2 inhibitor sensitivity. Cells expressing
higher BCL-XL or MCL1 show resistance to venetoclax; thus, an
inhibitor targeting BCL2 and BCL-XL or MCL1 displays better
efficacy in those cells [18, 25, 26]. However, this type of inhibition
seems to have strong side effects [27, 28]. Therefore, besides those
noteworthy developments, a better understanding of BCL2
inhibitor resistance is required to develop effective, safer
treatments.
The present study devised an advanced tabular deep learning

technique to autonomously fine-tune model parameters. We
applied the model to predict venetoclax sensitivity, and by
combining venetoclax sensitivity data with phosphoproteomics
and high throughput drug screening, we ascertained that Polo-like
kinase 1 (PLK1) assists in conferring venetoclax resistance.

METHODS
Apoptosis assay
MOLT-16, LOUCY, and ALL-SIL cells were treated with DMSO and the EC50
(nM) of venetoclax, volasertib, and a combination in 6-well plates for 24,
48, and 72 h. Then, JURKAT, DND-41, CML-T1, TALL-1, and RPMI-8402 were
treated in 6-well plates for 72 h with DMSO, venetoclax (50, 100, and
500 nM), and the respective concentrations of volasertib for each cell line
along with the combination treatment. After each incubation period, the
cells were processed, and the apoptotic cells were quantified using the
FITC-Annexin-V/7-AAD kit (BD Biosciences, USA) according to the
manufacturer’s protocol. Finally, the data were analyzed with the FlowJo
software.

Cell cycle analysis
MOLT-16, LOUCY, and ALL-SIL cells were treated with DMSO and the EC50
(nM) of venetoclax, volasertib, and combination in 6-well plates for 24, 48,
and 72 h. Following incubation, cells were fixed with pre-chilled 70%
ethanol, and the samples were stored at −20 °C. Then, the cells were
treated with 100 µg/mL RNaseA and stained 50 µg/mL propidium iodide.
After that, a flow cytometer was used to acquire signals from different cell
populations. Finally, the cell cycle data were analyzed using the FlowJo
software.

Mouse xenograft studies
Five to seven-week-old nonobese diabetic or severe combined
immunodeficient γ (NSG) mice (housed by the Laboratory Animal
Facilities at Medicon Village, Lund University) were injected with 100 μL
phosphate-buffered saline containing 2.5 million iRFP-positive DND-
41 cells (also expressing luciferase, pHIV-iRFP720-E2A-Luc plasmid [29]
was used, which was obtained from Addgene) through the tail vein.
Bioluminescence imaging was used to follow the engraftment of cells.
Two weeks after injection, mice were randomly divided into four groups
(DMSO control, venetoclax, volasertib, and combination) based on the
intensity of the bioluminescent signal, and the treatments were initiated.
Both venetoclax and volasertib were formulated in the following order:
5% DMSO, 40% polyethylene glycol 300, 5% Tween-80, and 50% saline.
The mice received 20 mg venetoclax per kg body weight and 5 mg
volasertib per kg body weight via intraperitoneal injection every other
day. The treatment for all four groups continued until the mice reached
their endpoint (ruffled fur, lethargy, improper gait) or reached 20 drug
injections. The mice were euthanized when they reached the endpoint.
Furthermore, mice that survived 1 week after the last drug injection were
considered alive when used in survival curves. All the animal
experiments were performed under an ethical permit from the Swedish
Animal Welfare Authority, and the mice were maintained following
regulations approved by Lund University.

Gene set enrichment analysis (GSEA)
Gene expression data of venetoclax-resistant and venetoclax-sensitive T-
ALL cells were used to run a GSEA using the GSEA software (Broad
Institute, USA). The Molecular Signatures Database was used to identify
pathways enriched in predicted venetoclax-sensitive against venetoclax-
resistant samples within those datasets. Moreover, GSEA was also used to
identify pathways enriched in patient-derived xenografts (PDXs) that
showed good or no synergy with venetoclax and volasertib.
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Statistical analysis
Statistical analysis was performed using the GraphPad Prism 5.0 (La Jolla,
CA, USA) software, where data were expressed as mean ± SE. The unpaired
Student’s t test and one-way ANOVA with Bonferroni’s post-test were used
where applicable. Significance was set at p ≤ 0.05.

PDX models and ex-vivo studies
The T-ALL PDX models have been described elsewhere [30]. Briefly, PDX
cells were injected into immunodeficient NOD SCID gamma (NSG) mice via
tail vein injection. Engraftments were assessed by blood sampling; mice
were sacrificed when the proportion of CD45+ cells reached over 50%.
Cells were collected from the spleen, bone marrow, and blood samples. For
ex-vivo drug treatment, cells were seeded in 96-well plates using Stemline
II Hematopoietic Stem Cell Expansion Medium (Sigma–Aldrich) supple-
mented with 10 ng/mL FLT3 ligand. Then, PDX cells were treated with
different concentrations of venetoclax, volasertib, and combination for
48 h. Cell viability was measured using CellTiter-Glo (Promega) following
the manufacturer’s instructions.

Deep learning model and data
The binary classification models were developed as described previously
[31–33], and pharmacogenomic data for venetoclax were retrieved from
public databases. The IC50 value for venetoclax was used to define
sensitivity, while cells with IC50values < 500 nM were classified as sensitive.
Pharmacogenomic data were collected from BeatAML [34], scDEAL [35],
and two more studies [36, 37].

Additional methods
In supplementary methods.

RESULTS
An autonomously fine-tuned deep tabular data learning
model to predict drug sensitivity
In order to establish the drug sensitivity prediction model, we
employed genes with significant variability derived from T-ALL
patients’ data from the Therapeutically Applicable Research to
Generate Effective Treatments (TARGET) database as the chosen
attributes. Pharmacogenomic information, called annotated data,
was acquired from studies such as scDEAL [35], BeatAML [34],
GSE123883 [38], and GSE148715 [39]. In addition, non-annotated
data (data lacking drug response information) were sourced from
the BeatAML, The Cancer Genome Atlas Program, and TARGET
repositories. Both annotated and non-annotated data with chosen
attributes underwent a process of min-max normalization.
Furthermore, the normalized annotated data were input directly
into the sampling module for cross-validation assessment or
segregated into test and training data subsets. Subsequently, the
training data subset was transmitted to the sampling module.
A tripartite sampling strategy was implemented, encompassing

unaltered samples, over sampling via the imbalanced-learn library,
and under sampling through the same library. In every instance,
test samples remained unaltered, ensuring that artificially
generated data did not influence the predictive outcomes
(Fig. 1A). Hyperparameter optimization was exclusively applied
to the training dataset using three distinct methodologies:
BayesSearchCV, GridSearchCV, and Optuna (Supplementary meth-
ods). Additionally, a pre-defined approach incorporating hard-
coded hyperparameters was integrated, informed by previous
experience or recommendations. A superior search option that
utilized all four techniques was also implemented, yielding the
optimal method based on a metric termed Negative Log2 Root
Mean Square Loss (NegLog2RMSL). Finally, scoring was performed
using combined Cohen’s Kappa-Matthews Correlation Coefficient
(Cohen-MCC) metric.
Upon the optimization of hyperparameters, the TabNet

pretraining algorithm was initially employed on unannotated
data to construct an unsupervised model (Fig. 1B). Subsequently,
the supervised TabNet model was developed by combining

training samples with the weights obtained from the unsuper-
vised model. After the establishment of the model, various
evaluation metrics were employed for assessment. We employed a
comprehensive suite of evaluation metrics, including Accuracy,
Area Under the Curve (AUC), Average Precision, Cohen’s Kappa,
Brier Score, F1 Score, Jaccard, MCC, Negative Predictive Value
(NPV), Precision, Sensitivity, Specificity and NegLog2RMSL for
testing the model. This multi-metric approach provides a more
holistic evaluation of the model’s performance, given that
different metrics address different aspects of a model’s predictive
ability. By incorporating all these metrics, we can ensure a more
robust and comprehensive assessment of our model, encompass-
ing all critical aspects of its performance. Moreover, the option to
generate repeated k-fold cross-validation models and evaluate
them using the Receiver Operating Characteristic-Area Under the
Curve and accuracy distribution was provided. For comparative
analysis of model performance, an array of widely utilized
machine learning models was integrated. The entire pipeline
can be initiated via a single command line within a Jupyter
Notebook environment, and by modifying the input data file, the
model can be adapted for drug sensitivity prediction across
diverse drug and cancer types.

TabNet model predicting venetoclax sensitivity in T-ALL
Initially, a comparative analysis of TabNet models employing
distinct sampling techniques and hyperparameter optimization
strategies was conducted. Although there were minor discrepan-
cies in the overall performance of some models as gauged by the
NegLog2RMSL score (Fig. 2A), the variations in performance
between the three sampling methods and hyperparameter
optimization approaches were negligible (Fig. 2B and Supple-
mentary Fig. 1A, B). The model achieved over 80% accuracy, AUC,
average precision, F1 score, Jaccard index, NPV, precision,
sensitivity, and specificity (Fig. 2C). The model’s predictions failed
to identify 22 resistant cases (out of 191 samples) and 14 sensitive
cases (out of 140 samples) (Supplementary Fig. 1C). Employing a
five-fold cross-validation process with 20 repeated measurements
yielded an average AUC of 0.895 (Fig. 2D) and an average accuracy
of 0.897 (Fig. 2E), indicating the model’s resilience when applied to
various sample subsets. TabNet model displayed comparable
predictive performance to several other machine learning models
(Fig. 2F).

Venetoclax-resistant T-ALL displays enrichment in the PLK1
pathway
The sensitivity of T-ALL to venetoclax was determined by
employing the predictive model. Utilizing the TARGET dataset,
comprising 264 samples, the model classified 118 samples as
venetoclax-sensitive and 146 samples as venetoclax-resistant.
After that, predicted samples were analyzed for pathway
enrichment using Gene Set Enrichment Analysis (GSEA), and
significant enrichment of cell cycle-associated pathways was
detected, including the PLK1 pathway (Fig. 3A and Supplementary
Tables 1–4).
Moreover, from an extensive panel of 378 kinase inhibitors, it

was discovered that multiple PLK1-targeting inhibitors effectively
potentiated the negative regulation of BCL2 inhibitor-induced cell
viability (Fig. 3B). Additionally, a quantitative phosphoproteomic
comparison of T-ALL PDXs treated with a BCL2 inhibitor or vehicle
control revealed several proteins (Fig. 3C), such as Nucleolin (NCL)
and Intraflagellar Transport 81 (IFT81, also known as ICE1), which
have been reported as PLK1 substrates [40–43]. Moreover, the
upregulation of PLK1 phosphorylation in venetoclax-treated cells
was observed (Fig. 3D, E), suggesting that PLK1 may participate in
the modulation of venetoclax sensitivity and targeted inhibition of
PLK1 could potentially augment BCL2 inhibitor efficacy.
The PLK family is composed of five members: PLK1, PLK2, and

PLK3, which share structural similarities, while PLK4 and PLK5 are
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considered distantly related [44]. Consequently, PLK1-specific
inhibitors impede PLK2 and PLK3 function but exhibit limited
efficacy in inhibiting PLK4 and PLK5 [45]. T-ALL cells predomi-
nantly express PLK1, whereas the expression of other PLK family
members appears to be relatively low, except for some cells
displaying notably elevated PLK4 expression (Fig. 3F). Most T-ALL
cell lines assessed demonstrated heightened sensitivity (EC50
below 100 nM) to the PLK1 inhibitor volasertib, except for TALL-1,
which exhibited a poor response (Fig. 3G, H). PLK1 protein
expression varied among the cell lines (Fig. 3I) and exhibited a
weak correlation with PLK1 inhibitor sensitivity. Additionally, T-ALL
PDXs displayed a heterogeneous response to the inhibitor, with

certain PDXs being highly sensitive (EC50: approximately 25 nM),
while others were less sensitive (EC50: ~120 and 350 nM) (Fig. 3J).
The findings indicate that venetoclax-resistant T-ALL demon-
strates PLK1 pathway enrichment and sensitivity to PLK1
inhibition, while venetoclax treatment promotes PLK1
phosphorylation.

Venetoclax displays synergy with PLK1 inhibitor in T-ALL
Owing to the observed differential response of T-ALL cell lines and
PDXs to volasertib, this study sought to investigate the potential
of venetoclax to augment the effects of the PLK1 inhibitor.
Previous research demonstrated synergism between PLK1 and
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BCL2 inhibitors in double-hit lymphoma [46]. Therefore, the
synergistic effects were assessed by employing a broad spectrum
of concentrations, and it was observed that T-ALL cell lines
exhibited synergy upon combining venetoclax with volasertib (Fig. 4A
and Supplementary Fig. 2A). Analogous to the cell lines, the PDXs
T-ALL-27 and T-ALL-44 (exhibiting low sensitivity to the PLK1
inhibitor) displayed increased synergy as determined by both the
BLISS score and combination index (Fig. 4B). In contrast, T-ALL-42
and T-ALL-46, which displayed high sensitivity to PLK1 inhibitors,
demonstrated no synergistic effect. In addition, the non-specific
PLK1 inhibitor rigosertib and SBE13, as well as the PLK4 inhibitor
CFI-400945, exhibited no synergy, while the specific PLK1 inhibitor
NMS-1286937 (Onvansertib) demonstrated synergy (Fig. 4C and
Supplementary Fig. 2B). Moreover, the knockdown of PLK1 using
inducible short hairpin RNAs (Supplementary Fig. 3A) or small
interfering RNA (Supplementary Fig. 3B) displayed synergy with
venetoclax (Fig. 4D, E), suggesting that PLK1 inhibition is essential
for the synergistic interaction between venetoclax and volasertib.

Combined use of venetoclax and PLK1 inhibitor enhances
apoptosis and survival of mice injected with T-ALL cells
Upon observing the synergistic reduction of cell viability, we
subsequently investigated whether the concurrent inhibition of
PLK1 and administration of venetoclax could potentiate apoptosis.
A synergistic enhancement of apoptosis was observed in ALL-SIL,
DND-41, MOLT-16, and TALL-1 cells; however, this effect was not
detected in the CML-T1, JURKAT, and RPMI-8402 cell lines (Fig. 5A,
B). While BCL2 expression remained unaltered, PLK1 stabilization
occurred in response to volasertib treatment (Fig. 5C). Cell cycle
analyses revealed an increased Sub G1 population in cells treated
with venetoclax and volasertib (Fig. 5D). Additionally, NSG mice
engrafted with luciferase-expressing DND-41 cells exhibited
reduced luciferase intensity and improved survival when veneto-
clax was administered with volasertib, compared with other

treatment groups (Fig. 5E, F, G). These findings indicate that
venetoclax synergizes with the PLK1 inhibitor in selected cells,
particularly those with moderate sensitivity to PLK1 inhibition.

PLK1 inhibition induces BCL2L13 and PMAIP1 expression
Subsequently, this study investigated the potential underlying
mechanism driving the synergistic interaction between venetoclax
and volasertib. Initially, the impact of PLK1 inhibition on the
transcriptional regulation of BCL2 family members was assessed.
The expression levels of 21 BCL2 family genes were quantified
utilizing RT-qPCR. Among these, seven genes exhibited low
expression in T-ALL cells and were excluded from further analysis.
Furthermore, the expression of several other BCL2 family genes
remained unaltered following PLK1 inhibition. Notably, an
upregulation in the expression of BCL2L13 (BCL-Rambo) and
PMAIP1 (NOXA) was detected upon PLK1 inhibition (Fig. 6A). This
finding was validated in T-ALL PDXs at the mRNA (Fig. 6B) and
protein levels (Fig. 6C). BCL2L13, known to not cooperate with
other family members, can induce apoptosis by interacting with
mitochondrial permeability transition pore (MPTP) [47]. Conver-
sely, PMAIP1 has been reported to augment venetoclax sensitivity
[48, 49].

DISCUSSION
This study aimed to establish a drug sensitivity prediction model
for T-ALL patients, using genes with significant variability derived
from the TARGET database. For example, pharmacogenomic data
for venetoclax showed that samples predicted by the model are
useful for downstream analysis and identifying effective drug
combinations.
A tripartite sampling strategy was implemented, and four

hyperparameter optimization methods were applied to identify
the best parameters for developing a deep tabular data learning
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model. Model performance was assessed using combined Cohen-
MCC metric and NegLog2RMSL was used for optimizing the
parameter for the best model. The TabNet algorithm was used as
the core classification model for this study as it offers several
advantages over conventional deep learning models [8]. First,
TabNet automatically selects the most relevant features for the
task. Then, it uses an attention mechanism to identify the most
important variables and eliminate the need for manual feature
engineering. The algorithm is designed to handle large datasets
efficiently. Finally, unlike other deep learning algorithms, TabNet
architecture is accessible for interpretation.

Model performance was assessed using various evaluation
metrics and compared with other widely utilized machine learning
models. The analysis revealed that although there were minor
discrepancies in the overall performance of some models as
gauged by the NegLog2RMSL score, the variations in performance
between the three separate sampling methods and hyperpara-
meter optimization approaches were negligible. Various perfor-
mance metrics achieved a score of over 80%, including Accuracy,
AUC, Average Precision, F1 score, Jaccard index, NPV, Precision,
Sensitivity, and Specificity. Employing a five-fold cross-validation
process with 20 repeated measurements demonstrated the
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model’s resilience when applied to various sample subsets.
Comparatively, TabNet displayed comparable performances with
the other machine learning models examined.
The sensitivity of T-ALL to venetoclax was determined using this

study’s predictive model, and samples were classified as
venetoclax-sensitive or venetoclax-resistant. Pathway enrichment
analysis using GSEA revealed significant enrichment of cell cycle-
associated pathways, including the PLK1 pathway. It was
discovered that multiple PLK1-targeting inhibitors effectively
enhanced the negative regulation of BCL2 inhibitor-induced cell
viability. Furthermore, a quantitative phosphoproteomic compar-
ison revealed several proteins, such as NCL and IFT81, reported as
PLK1 substrates, which promote the upregulation of PLK1
phosphorylation in venetoclax-treated cells. This suggests that
PLK1 may be involved in modulating venetoclax sensitivity and
that targeted inhibition of PLK1 could potentially augment BCL2
inhibitor efficacy.
Intrinsic apoptosis pathways are tightly regulated by BCL2

family members. Antiapoptotic BCL2 members such as BCL2,
BCL2L1, and MCL1 prevent apoptosis by sequestering proapopto-
tic BAK1, BAX, and BOK. When these proapoptotic components
are released from their antiapoptotic partners, they facilitate
MOMP. The deregulated expression of those antiapoptotic
members is often associated with therapy resistance, and
inhibiting them provides means for overcoming chemo- and
immunotherapy resistance [50].
In clinical and preclinical settings, the highly specific BCL2

inhibitor venetoclax has been used for several hematological
malignancies, including AML, CLL, B-ALL, and T-ALL. Due to the
dynamic regulation of BCL2 expression during T-cell development,
expression patterns vary in T-ALL; as a result, the response to
venetoclax varies widely. As a result of high levels of BCL2
expression during the early development of T-cells, ETP-ALL
displays a higher level of BCL2 and is highly responsive to
venetoclax. In contrast, the response in non-ETP T-ALL remains
inconclusive. This study demonstrates that venetoclax response
can be regulated by pharmacological interference from PLK1
activity.
Even the most potent drug might be unable to remove a small

portion of cancer cells, leading to minimal residual disease, which
is the key player in acquired resistance. During drug therapy, these
cells acquire genetic and non-genetic modifications that help
them escape drug-induced apoptosis. Recent studies suggest that
the cells driving drug resistance can be present even at the initial
stages of the disease, and the genetic and non-genetic mechan-
isms of resistance development are not mutually exclusive.
Likewise, resistance to venetoclax can emerge during treatment
or be present at the beginning of treatment. Initially, it was
suggested that venetoclax resistance is mediated by the
differential expression of BCL2 and BCL2L1 proteins [18]. However,
recent studies have demonstrated the involvement of several
signaling proteins and pathways [51]. For example, AML resistance

can be acquired through the upregulation of BCL2A1 and CLEC7A,
mutations in PTPN11 and KRAS [52], upregulation of the
mitochondrial chaperonin CLPB [53], and inactivation of TP53,
BAX, and PMAIP1 genes [54]. Mechanistically, the inactivation of
TP53 leads to the activation of the Ras/Raf/MEK/ERK pathway and,
therefore, the inactivation of GSK3, preventing phosphorylation-
dependent degradation of MCL1 in AML [55]. Several mechanisms,
including AKT-mediated phosphorylation on serine nine, can
inactivate GSK3. In aggressive B-cell lymphoma, venetoclax
resistance is mediated by the abnormal activation of the PI3K/
AKT pathway due to the compromised expression of PTEN; the
inhibitors targeting this pathway display synthetic lethality [56].
This is probably also mediated by MCL1 stabilization through the
inactivation of GSK3 by AKT. Several cellular regulatory processes,
such as the modulation of lymphoid transcription and the AMPK/
PKA axis, cellular energy metabolism, and overexpression of MCL1,
contribute to venetoclax resistance in chronic lymphocytic
leukemia [57]. MCL1 seems to be a key protein that mediates
BCL2 inhibitor resistance, although several other proteins and
pathways also contribute.
While studies suggest that ETP-ALL predominantly expresses

high levels of BCL2, some non-ETP T-ALL patients also carry high
levels of BCL2. Therefore, it is likely that this group of patients
would show a clinical response to venetoclax. However, veneto-
clax response is not only determined by BCL2 expression. As
discussed above, examples from other hematological malignan-
cies suggest the involvement of several complicated cellular
processes [52–57]. Therefore, improved biomarker-driven drug
sensitivity prediction would be helpful in patient selection. This
study developed a drug sensitivity prediction model using
pharmacogenomic data for venetoclax and a deep learning
model. The model allowed the prediction of venetoclax sensitivity
using transcriptomic data that facilitated the identification of PLK1
as a possible mediator of venetoclax resistance. PLK1 is a well-
studied serine-threonine kinase known for its function in mitosis
and its role in cancer [58]. In T-ALL, PLK1 seems to be the
dominant isoform, and an inhibitor targeting PLK1 displayed
considerable inhibitory potential against cultured cell lines, ex-
vivo treatments of PDXs, and a mouse xenograft model. The data
are consistent with a previous study that discovered PLK1
expression and phosphorylation of its threonine 210 was
considerably higher in T-ALL patients than in normal bone
marrow mononuclear cells. In addition, shRNA mediated the
knockdown of PLK1-induced apoptosis [59].
PLK1 mediates serine-threonine phosphorylation of the protein

panel that regulates mitosis and modulates chromosome
dynamics, apoptosis, and transcription [58]. PLK1 also holds the
ability to modulate transcriptional programs positively and
negatively. While PLK1-mediated phosphorylation of Forkhead
Box M1 (FOXM1) regulates a transcriptional program required for
G2/M transition [60], FOXO1- and FOXO3a-dependent transcrip-
tion programs are repressed by PLK1-mediated phosphorylation
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[61, 62]. The transcription of several BCL2 family genes, including
BCL2L11, PMAIP1, and BCL2L13, is regulated by FOXOs [47, 63, 64].
It was observed that PLK1 inhibition induces the expression of
BCL2L13 and PMAIP1, suggesting that PLK1 mediates T-ALL cell
survival by suppressing BCL2L13 and PMAIP1 expression, probably
through FOXOs. PMAIP1 cooperates with BCL2 inhibition by
sequestering BCL2L1 and MCL1, and BCL2L13 can directly induce
mitochondrial apoptosis [47, 49]. The data in this study suggest
that synergy between the BCL2 and PLK1 inhibitors is mediated by
transcriptional regulation of BCL2–family proteins.
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