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Dear Editors,
Acute myeloid leukemia (AML) can be classified into multiple

genetic subtypes based on recurrent pathogenic structural
variants (SVs), copy number abnormalities (CNAs), and single
nucleotide variants (SNVs) that inform prognostication and clinical
management [1, 2]. Karyotype analysis is considered mandatory in
the evaluation of AML. If karyotype analysis fails, fluorescence
in situ hybridization (FISH) can be used as an alternative technique
per ELN 2022 [2]. Recent reports have proposed whole genome
sequencing (WGS) as an alternative methodology to karyotyping
and FISH [3, 4]. MPseq is one example of a WGS technique
optimized for the detection of genome-wide SVs and CNAs [5].
However, previous studies have not directly assessed the
prognostic utility of WGS approaches in identifying genetic
abnormalities above gold-standard cytogenetic approaches within
an unbiased, prospective setting.
Here, we performed a prospective evaluation of MPseq in

comparison to karyotyping and FISH combined with panel
sequencing in the genetic characterization of 105 cases of AML
from the Mayo Clinic from August 2017 to December 2018 (Fig.
1A, Supplementary Figs, 1, 2, Supplementary materials and
methods). The median age of the cohort was 65 years (range
1–90) with 10 (9.5%) patients under the age of 30 years. Just over
half of the cases represented de novo AML (n= 55, 52%), 23 (22%)
had AML with myelodysplasia-related changes (AML-MRC), 21
(20%) had relapsed AML and 6 (6%) had therapy related AML
(Supplementary Tables 1, 2). The most prevalent cytogenetic result
based on all three methodologies was a normal karyotype (37
cases, 35%), followed by deletions of chromosomes 5q and/or 7q
(25 cases, 24%). Seven had a simple, non-complex karyotype with
non-subtype defining abnormalities, 6 had trisomy 8, 5 had a
complex karyotype without 5q or 7q deletions (atypical complex),
6 had a NUP98 (11p15.4) rearrangement and 7 had a KMT2A
(11q23.3) rearrangement with gene partner MLLT10 (10p12.31) in
3 cases, ELL (19p13.11) in one case, MLLT6 (17q12) in one case and
MLLT3 (9p21.3) in 2 cases. Four had t(15;17)(q24;q21), 3 had inv(3)
(q21.3q26.2) or t(3;3)(q21.3;q26.2) including a single case with
inv(3) with BCR::ABL1, 3 had inv(16)(p13.1q22) or t(16;16)
(p13.1;q22), and a single case each with either t(6;9)(p23;q34.1)
or KAT6A rearrangement involving 8p11.2 (Fig. 1B).
When evaluating cytogenetic results obtained by MPseq

compared to karyotype plus FISH, 100 of 105 cases were
concordant (95.2%) (Table 1, Fig. 1C, D). Of the 5 discordant
cases, MPseq missed 4 abnormalities that were identified by
karyotype and FISH. All 4 were found in a low level by FISH
including a KMT2A rearrangement detected in 17% of cells in a
case with t(11;17)(q23;q11.2). In 3 other cases, MPseq missed low-
level trisomy 8 found in 3–5% of cells by FISH and detected by

karyotype (Table 1, Fig. 1C, D). Since MPseq is validated to identify
SVs >10% and CNAs >25% of the tumor clone [5], the missed
KMT2Ar represents a false negative result. The final case of
discordance included an atypical 7q deletion identified by MPseq
that was missed by karyotype and FISH because it did not map
within the FISH probe utilized (Table 1).
When evaluating cytogenetic results obtained by each

methodology individually, the concordance between MPseq
and FISH was 93.3%, between FISH and karyotype was 85.7%
and between MPseq and karyotype was 82.9% (Fig. 1D). FISH
missed 4 abnormalities identified by MPseq involving deletions of
5q in 1 case and 7q in 3 cases because the deletions did not map
within the FISH probe utilized (Table 1, Supplementary Fig. 3).
Karyotype analysis failed to detect 11 abnormalities that were
identified by FISH or MPseq (Table 1). These included 6 cases with
a NUP98 rearrangement, 2 cases with a TP53 deletion, and one
case each with a KMT2A::MLLT10 fusion and an inv(8) resulting in
a KAT6A rearrangement, and a 7q deletion. Additionally,
karyotype analysis detected 4 cases with a 17p deletion, which
presumptively included loss of the TP53 locus, that were not
identified by FISH or MPseq. There was 100% concordance for
some AML-associated rearrangements with consistent and
cytogenetically detectable breakpoints including t(9;22)
(q34.1;q11.2), t(6;9)(p23.3;q34.1), inv(16)(p13.1q22), inv(3)
(q21.3q26.2), and t(15;17)(q24;q21) (Fig. 1C) demonstrating that
karyotype, FISH, and MPseq are similarly reliable methodologies
to identify these recurrent rearrangements. However, as
expected, all NUP98 rearrangements observed in this study were
cryptic by karyotype and detected by both FISH and MPseq
(Fig. 1E). Reduced concordance between karyotype and MPseq
was also observed for 17p/TP53 deletions (57%), KMT2A
rearrangements (75%) and trisomy 8 (81%) (Fig. 1E). FISH and
MPseq have a higher sensitivity in comparison to karyotype
analysis in detecting NUP98 and KMT2A rearrangements and TP53
deletions. For low-level abnormalities (<25%), FISH has increased
sensitivity compared to MPseq if the abnormality is targetable by
the available FISH probe.
Of the 5 cases with discordant results between MPseq

compared to karyotype plus FISH (Table 1), the ELN risk
stratification remained unchanged (Supplementary Table 3). No
additional cryptic, prognostically defining genetic abnormalities
per ELN 2022 were identified by MPseq in the remaining samples,
including those with a normal or simple karyotype (Fig. 1C). Thus,
MPseq did not alter the ELN risk stratification above information
provided by karyotype combined with FISH demonstrating that by
using the current risk stratification guidelines, karyotype in
combination with FISH analysis remains a robust laboratory
approach in the evaluation of AML.
We next evaluated whether MPseq could uncover AML-

associated abnormalities not currently incorporated into the ELN
guidelines. Using a list of 109 genes implicated in AML or MDS [6],
we identified an average of 7.5 individual gene aberrations per
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case including an average of 3.9 losses, 3.1 gains or amplifications
and 0.5 SVs (Supplementary Fig. 4). Overall, MPseq identified
additional aberrations in 43 cases (40.1%) involving AML genes
undetected by karyotyping (Supplementary Table 4). The most
frequently deleted genes included KMT2C, CUX1, and EZH2,
located on 7q and the most frequently gained genes included

MYC and/or CCDC26, RAD21, and TRPS1, located on chromosome
8. MECOM was the most frequently rearranged gene in our AML
cohort (Supplementary Figs 4–5). MPseq identified 11 cases
(10.5%) with significant regions of gain that are not currently
prognostic per the current ELN guidelines including a case (NK-34)
of a KMT2A partial tandem duplication (Supplementary Fig. 6A), a
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Fig. 1 Genetic characterization and abnormal distribution of AML cohort. A 105 cases from patients with a diagnosis of AML. Karyotype, FISH,
and MPseq was performed to identify the structural variation (SV) including copy number abnormality (CNA), results were tabulated, and cases were
divided into the following subtypes based on karyotype, FISH, or MPseq results. NGS-based panel sequencing was also performed to identify
pathogenic or likely pathogenic single nucleotide variants (SNVs). B Pie chart displaying the relative distribution for each cytogenetic subtype in 105
AML cases. Normal Karyotype (NK, 35%), 5q deletion (5q del) and/or 7q deletion (7q del) (24%), simple karyotype (7%), Trisomy 8 (6%), NUP98
rearrangement (NUP98r, 6%), KMT2A rearrangement excluding t(9;11)(p22;q23) (5%), atypical complex karyotype (CK) (5%), t(15;17)(q24;q21) (4%),
inv(3)(q21.3q26.2) (3%), inv(16)(p13.1q22) (3%), t(9;11)(p22;q23) (2%), t(6;9)(p23;q34.1) (1%) and KAT6A rearrangement (1%). The t(9;11) rearrangements
are separated from other KMT2A rearrangements due to their differential influence on outcome. C Distribution of discrepant cases are indicated in the
boxes. No karyotype data are indicated in light grey. Abnormalities detected by FISH, karyotype and MPseq are indicated in dark grey, abnormalities
detected by FISH and MPseq but not karyotype are indicated in purple, abnormalities detected by karyotype but not FISH or MPseq are indicated in
red, abnormalities detected by karyotype and MPseq but not FISH are indicated in green, abnormalities detected by FISH and karyotype, but not
MPseq are indicated in yellow and abnormalities detected by MPseq, but not FISH and karyotype are indicated in blue. Abnormalities not detected by
karyotype, FISH and MPseq are indicated in white. Blast by flow cytometry or morphology are indicated. D Percentage of concordance between
MPseq vs. karyotype + FISH, MPseq vs. FISH, FISH vs. karyotype and MPseq vs. karyotype for AML-related genomic events described in
C. E Percentage of concordance between each MPseq vs. karyotype + FISH, MPseq vs. FISH, FISH vs. karyotype, and MPseq vs. karyotype for
individual genomic events.

Table 1. Cases with discrepancies between karyotype, FISH and MPseq.

Case ID Abnormality Karyotype FISH MPseq Concordance
between MPseq vs.
FISH+Karyotype

5q/7q-85 5q del Y Y Y Y

7q del Y Y Y Y

TP53 del Predicted del N N Y

5q/7q-87 5q del Y Y Y Y

7q del Y Missed Y Y

5q/7q-89 5q del Y Y Y Y

7q del Y Y Y Y

TP53 del Predicted del N N Y

5q/7q-95 5q del Y Y Y Y

7q del Y Y Y Y

TP53 del Missed Y Y Y

KMT2Ar-112 KMT2Ar Y Y Y Y

TP53del Missed Y Y Y

KMT2Ar-115 KMT2Ar Missed Y Y Y

KAT6Ar-128 KAT6Ar Missed Y Y Y

NUP98/KDM5A-122 NUP98r Missed Y Y Y

NUP98/KDM5A-123 NUP98r Missed Y Y Y

NUP98/KDM5A-124 NUP98r Missed Y Y Y

NUP98/KDM5A-125 NUP98r Missed Y Y Y

NUP98/NSD1-126 NUP98r Missed Y Y Y

NUP98/NSD1-127 NUP98r Missed Y Y Y

5q-65 5qdel Y Y Y Y

KMT2Ar Y Y Missed N

Trisomy 8-138 Trisomy 8 Y Y Missed N

Trisomy 8-140 Trisomy 8 Y Y Missed N

7q-58 7q del Y Y Y Y

Trisomy 8 Y Y Missed N

5q-147 5q del Y Y Y Y

7q del Missed Missed Y N

TP53 del Predicted del N N Y

5q-148 5q del Y Missed Y Y

7q del Y Missed Y Y

TP53 del Predicted del N N Y

All cases with evidence of discordance between FISH, karyotype and MPseq. A direct comparison of concordance between data obtained from FISH along with
karyotype vs. MPseq. Data from karyotype and FISH are combined to indicate the complementary testing approaches. Note: Y for yes; N for No.
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case (Simple K-129) with 1–28 double minute chromosomes
(extrachromosomal circular DNA fragments) with amplification of
the MYC gene and 3 cases (NK-11, NK-19, 7q-55) with focal gains
identified by MPseq of 8q24 involving MYC and/or the nearby long
noncoding RNA CCDC26. The partial gain of CCDC26 in 7q-55 was
also associated with a cryptic ins(14;8)(q32.2;24.21) resulting in an
insertion between BCL11B into the CCDC26. We also observed 2
cases with iAMP21 by MPseq (case 5q-65 and 5q-147) (Supple-
mentary Fig. 6B). Finally, 2 cases (5q/7q-94 and 5q/7q-96) had
amplifications of both MECOM (with a rearrangement) and KRAS.
Rare or novel SVs were identified in 20 cases (19.0%) including
case KAT6Ar-128, which was found to have a cryptic inv(8)
resulting in a KAT6A::SORBS3 fusion. A single case (simple K-132)
had a ZMYND11::MBTD1 fusion. SVs disrupting NF1 were found in 2
cases (Atypical CK-146, 5q/7q-92), RUNX1 in 2 cases (5q-147, 5q/
7q-85), non-GATA2 MECOM rearrangements in 6 cases (7q-56, 5q-
148, 5q/7q-84, 5q/7q-94, 5q/7q-96, KMT2A-112) and an ASXL1
rearrangement resulting in a partial deletion of the gene in one
case (5q/7q-87). Finally, MPseq characterized each of 6 NUP98
rearrangements revealing KMD5A partner gene in 3 cases and
NSD1 partner in 3 cases. Recurrent focal deletions of AML
associated genes not appreciated by karyotyping were common
(Supplementary Figs 4, 5). Excluding genes located on chromo-
somes 5 and 7 and TP53, the most frequently deleted gene was
NF1 in 9 cases.
In summary, we identified five cases (4.8%) of discordance

between MPseq compared to karyotype with FISH when evaluat-
ing recurrent AML-associated genetic abnormalities. Greater
discordance was identified when comparing karyotype to FISH
(14.3%) or karyotype to MPseq (17.1%) individually. These findings
contrast previous studies which have reported limited value of
FISH in AML when an adequate karyotype is available [7, 8]. Six of
our discordant cases included NUP98 rearrangements, which are
often cryptic and not evaluated in previous studies. Thus, for
specific aberrations that are difficult to detect karyotypically such
as TP53 deletions and NUP98 rearrangements, the added value of
MPseq is not strong if a comprehensive FISH panel including
probes targeting NUP98 (especially in pediatric AML), TP53 and
KMT2A are used. Alterations in TP53 are associated with
significantly inferior outcomes and treatment responses in AML
and biallelic alteration in TP53 AML confers the worse outcomes
among CK AMLs [9]. Therefore, accurate characterization of the
TP53 locus is important for prognostication and may soon impact
clinical management.
Although we demonstrate that MPseq does not currently add

additional prognostic value above FISH when compared to a
comprehensive AML FISH panel, risk stratification guidelines will
likely evolve to include novel abnormalities of prognostic
significance detected by NGS. For example, growing evidence
suggests NUP98 rearrangements are associated with poor
outcome [10], but NUP98 rearrangements have not yet been
incorporated into ELN guidelines. Similarly, KMT2A partial
tandem duplications have been reported in 10% of AML and
MDS and are associated with poor outcome [11]. Other rare
abnormalities not incorporated into ELN guidelines identified
here include MYC amplification, associated with a CK and poor
outcome [12], BCL11B::MYC rearrangements reported as a driver
in ambiguous leukemia [13], ZMYND11::MBTD1 fusion [14] and
iAMP21 AML [15].
We demonstrate that karyotype analysis when combined

with FISH remains a robust laboratory approach in the
evaluation of AML. While the use of MPseq did not add
significant value above FISH using current ELN guidelines, NGS
technologies such as WGS will continue to identify novel high-
risk AML subgroups, which will likely enhance future risk
stratification guidelines.
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