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Sample average treatment effect on the treated (SATT) analysis
using counterfactual explanation identifies BMT and SARS-CoV-
2 vaccination as protective risk factors associated with COVID-
19 severity and survival in patients with multiple myeloma
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Patients with multiple myeloma (MM), an age-dependent neoplasm of antibody-producing plasma cells, have compromised immune
systems and might be at increased risk for severe COVID-19 outcomes. This study characterizes risk factors associated with clinical
indicators of COVID-19 severity and all-cause mortality in myeloma patients utilizing NCATS’ National COVID Cohort Collaborative (N3C)
database. The N3C consortium is a large, centralized data resource representing the largest multi-center cohort of COVID-19 cases and
controls nationwide (>16 million total patients, and >6 million confirmed COVID-19+ cases to date). Our cohort included myeloma
patients (both inpatients and outpatients) within the N3C consortium who have been diagnosed with COVID-19 based on positive PCR or
antigen tests or ICD-10-CM diagnosis code. The outcomes of interest include all-cause mortality (including discharge to hospice) during
the index encounter and clinical indicators of severity (i.e., hospitalization/emergency department/ED visit, use of mechanical ventilation,
or extracorporeal membrane oxygenation (ECMO)). Finally, causal inference analysis was performed using the Coarsened Exact Matching
(CEM) and Propensity Score Matching (PSM) methods. As of 05/16/2022, the N3C consortium included 1,061,748 cancer patients, out of
which 26,064 were MM patients (8,588 were COVID-19 positive). The mean age at COVID-19 diagnosis was 65.89 years, 46.8% were
females, and 20.2% were of black race. 4.47% of patients died within 30 days of COVID-19 hospitalization. Overall, the survival probability
was 90.7% across the course of the study. Multivariate logistic regression analysis showed histories of pulmonary and renal disease,
dexamethasone, proteasome inhibitor/PI, immunomodulatory/IMiD therapies, and severe Charlson Comorbidity Index/CCI were
significantly associated with higher risks of severe COVID-19 outcomes. Protective associations were observed with blood-or-marrow
transplant/BMT and COVID-19 vaccination. Further, multivariate Cox proportional hazard analysis showed that high and moderate CCI
levels, International Staging System (ISS) moderate or severe stage, and PI therapy were associated with worse survival, while BMT and
COVID-19 vaccination were associated with lower risk of death. Finally, matched sample average treatment effect on the treated (SATT)
confirmed the causal effect of BMT and vaccination status as top protective factors associated with COVID-19 risk among US patients
suffering frommultiple myeloma. To the best of our knowledge, this is the largest nationwide study on myeloma patients with COVID-19.
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INTRODUCTION
The coronavirus disease 19 (COVID-19) caused by Severe Acute
Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has resulted in
unprecedented consequences across the world in terms of
mortality and quality of life [1]. Declared a pandemic by the
WHO on March 11th, 2020, COVID-19 has accounted for >1% of

deaths globally in >180 countries, with several notable rapid surges
(pandemic waves) across the world (https://covid19.who.int/) and
multiple variant strains, notably B.1.1.7 (Alpha), B.1.351 (Beta),
B.1.1.28 (P.1, Gamma) and B.1.617.2 (Delta) (https://www.cdc.gov/
coronavirus/2019-ncov/variants/variant-classifications.html). The
highly transmissible Omicron (B.1.1.529) variant that emerged in
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late 2021 spread in >75 countries and posed another serious threat
to the already-dismal circumstances. Furthermore, multiple muta-
tions in strain sublineages (including the most recent surge driven
by the BF.7 strain of the Omicron variant in late 2022) are a serious
concern owing to their ability to surpass immunity (antibody
evasion) and the degree of infectivity [2].
Cancer still remains one of the major causes of death worldwide,

with a rapid increase in incidence, prevalence, and mortality over
the recent decades (https://seer.cancer.gov/about/). Recent studies
have shown that vulnerable cancer patients infected with COVID-
19 present with more severe complications compared to healthy
people living in the community [3]. Furthermore, several previous
studies, including ours, have reported that the risk of death is also
significantly higher in cancer patients [4]. Therefore, COVID-19-
related deaths in cancer patients are highly challenging, more so
because of the competing and unknown risks associated with
active oncologic treatment as well as with delivering patient care.
Multiple myeloma (MM) is the second-most common hemato-

poietic malignancy in the United States [5]. MM is an age-
dependent plasma cell neoplasm characterized by clonal expan-
sion of malignant antibody-producing post-germinal-center B cell-
derived plasma cells within the bone marrow [5]. Therefore,
patients with hematological malignancies, particularly multiple
myeloma, have compromised immune systems due to multiple
factors, including comorbidities associated with the mean age of
diagnosis at ~65yo, loss of functional immunoglobulins, low
CD4+ T-cell count, suppression of normal B-cell development, as
well as immunosuppression through immunomodulatory drugs/
IMiDs [6]. This may increase the risk of severe SARS-CoV-2/COVID-
19 infection and post-acute sequelae of SARS-CoV-2/PASC/long-
COVID. Moreover, myeloma patients also present with a sub-
stantial multifactorial burden of cardiovascular disease, renal
impairment, lymphopenia, neutropenia, and increased risk for
venous thromboembolism/VTE that may be aggravated by pre-
existing conditions, disease complications, and drug toxicities
which are reported as risk factors among COVID-19 patients with a
potentially fatal outcome [7, 8]. In fact, an earlier study showed
that myeloma patients experience 34% higher inpatient mortality
due to COVID-19 [9]. Although there are a handful of studies
investigating how the incidence of COVID-19, its treatment and
the interaction between COVID-19 and anti-myeloma therapies
affect outcomes [9, 10], there is a significant lack of studies that
include substantially large datasets (>10,000 myeloma patients).
In this study, we aim to expand the previous findings on the risk

factors associated with COVID-19 severity and death and the
impact of anti-myeloma therapy using a very large, naturally-
representative cohort of cancer patients available through the
National COVID Cohort Collaborative (N3C) initiative. The NCATS’
National COVID Cohort Collaborative/N3C is a centralized data
resource representing the largest multi-center cohort of COVID-19
cases and controls nationwide [11].
The NCATS’s N3C is the largest cancer cohort registry of COVID-

19-tested patients nationwide that includes Electronic Health
Record (EHR) data with at least one clinical encounter after
January 1st, 2020 [12]. As of July 1st, 2023, N3C houses centralized
data on 19,800,785 patients from 79 contributing sites. This
included 7,703,019 patients who tested positive for COVID-19. Our
cohort study includes 26,064 myeloma patients, out of which
8,588 were confirmed COVID-19-positive. We used this large
national-level clinical registry of myeloma patients with COVID-19
to identify predisposing and treatment-related factors associated
with severity and all-cause mortality within our cohort.

METHODS
Study cohort
Our N3C myeloma cohort included patients (both inpatients and
outpatients) from contributing sites who have been diagnosed with

COVID-19 between January 1st, 2020, till our cut-off date May 16th, 2022,
2022 (N3C release v76). All myeloma patients without COVID-19
encountered during this time period at the contributing sites were also
included initially to build the overall myeloma cohort. Historical patient
data from January 1st, 2018, were included for each patient from the same
health system, wherever available.

Indicator variables
The N3C clinical data set is a limited dataset that includes protected health
information that may include dates of service and patient ZIP code. Details
regarding data quality and harmonization checks, cohort definitions, and
Malignant Neoplastic Disease standard (SNOMED) concept codes used for
primary cancer diagnosis have been published earlier. Briefly, Cancer
patients within the N3C registry were identified using the SNOMED Code
3633460000 by the Observational Health Data Sciences and the
Informatics Atlas tool. For COVID-19 status, we used N3C positive
phenotyping guidelines based on concept definitions and logic provided
in Supplementary Tables 1A and 1B. For the purpose of this study, we
limited our analysis to 30 days before the COVID-19 diagnosis to 30 days
after the start of the index encounter. Further, we used available data to
calculate indicator variables on the Charlson Comorbidity Index (CCI)
adjusted for cancer diagnosis, primary cancer diagnosis, and cancer
therapies.

Myeloma diagnosis
International Staging System (ISS) for Multiple Myeloma stage was
calculated using the revised guidelines provided by the International
Myeloma Foundation (https://www.myeloma.org/international-staging-
system-iss-reivised-iss-r-iss) as Stage 1: Alb ≥ 3.5, B2M < 3.5; Stage 2:
Everything else (B2M 3.5–5.5, Albumin any); Stage 3: B2M > 5.5 [13].

Myeloma therapies
A list of currently approved and used anti-myeloma therapies was derived
from previously published clinical literature. Treatment with standard anti-
myeloma chemotherapeutic regimens for each myeloma patient was
assessed using a string search of each cancer therapy in the concept name
and manually reviewed for correctness. Bone marrow transplantation/BMT
(Hematopoietic Stem Cell Transplantation) was identified using SNOMED
code 5960049, which included the vocabulary descendants of the
SNOMED codes 42537745 (Bone Marrow Transplant present) and
23719005 (Transplantation of Bone Marrow).

Severity and outcome measures
For the purpose of this myeloma patient cohort study, the outcomes of
interest were: all-cause mortality (including discharge to hospice) during
the index encounter, as well as clinical indicators of severity requiring
hospitalization (inpatient/emergency room/intensive care unit/ICU or
intensive coronary care unit/ICCU visit), or use of mechanical ventilation
(N3C Procedure Concept Set ID 179437741) or extracorporeal membrane
oxygenation (ECMO; N3C Procedure Concept Set ID 415149730).

Statistical analysis and data visualization
All the analyses were performed on the Palantir platform on the N3C data
enclave. Summary statistics of descriptive analyses have been represented
as counts and percentages of categorical variables. The risk of severe and
mild outcomes was calculated using multivariate logistic regression
analysis. The models were controlled for age group, gender, race and
ethnicity, smoking status, vaccination status, treatment, BMT, and CCI
variables. Adjusted odds ratios were estimated with 95% Confidence
intervals for potential risk factors. All tests were two-sided. Finally, Cox
proportional hazard models with time to death from COVID-19 infection
were used to calculate the risk of death, adjusted for age group, gender,
race and ethnicity, smoking status, vaccination status, treatment, BMT, and
CCI for variables. As per N3C policy, counts of <20 were not reported for
privacy.

Causal effect analysis
In this study, we performed matched sample analysis to compute the
sample average treatment effect on the treated (SATT) as the measure of
the causal effect of the top associated risk factors. Regression models are
associative in nature and not causal. As an illustrative example, patients
who did not receive BMT may have higher associated risk factors such as
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higher age, diabetes, high-risk cytogenetics, etc. Therefore, it is possible
that patients who did not receive BMT are characterized by an inherently
higher risk of mortality. While the multivariate regression models control
for many covariates of significance, yet, a full causal argument is not
possible due to the potential endogenous relationship between mortality
risk and BMT status. The same can be stated for many other risk factors in
our analysis. Therefore, it is suggested that a comparison be made across
‘matched’ samples, i.e., patients with similar characteristics other than the
risk factor of interest. Accordingly, for every risk factor of interest (for
example, BMT Status, Vaccination, etc.), we divided the sample into two
subsamples, namely, (i) individuals with higher levels of a risk factor, and
(ii) individuals with a relatively lower level of the risk factor. Examples
include subsamples where individuals received BMT versus did not receive
BMT, or individuals who did not receive vaccination, versus individuals who
received vaccination. Note that for each risk factor, we did this
subsampling separately. For each individual in the high-risk factor group,
we used ‘coarsened exact matching (CEM)’ (using cem package in R, please
refer to Iacus et al., 2009 [14]) to match them to individuals in the low-risk
group. The matching was performed on all covariates except the risk factor
of interest. For example, for the BMT status variable, we matched
individuals who did not receive BMT with individuals who received BMT
on all variables except BMT. In this manner, the effect of other covariates
on the outcome variable (mortality) is minimized. Also, please note that in
CEM, the categorical covariates are exactly matched, and the continuous
covariates are approximately matched on the rough estimate of the
quantiles of the continuous covariates. Therefore, each individual in the
high-risk group will be matched with a small number (minimum one) of
low-risk individuals on all but the risk factor of interest. Then, based on this
matched sample, we computed the average difference in mortality rates
between the two groups to estimate the Sample Average Treatment Effect
(SATT) as explained in the paper. We also used a propensity score-based
matching to check for the robustness of our results. The propensity score
uses a logistics regression fit on the risk factor of interest to estimate the
probability of each individual being in high or low levels of a risk factor. As
an illustration, for BMT status, we first estimated a logistic regression model
on all covariates to estimate the probability of an individual to receive BMT
treatment. Then we grouped the patients on the propensity (probability) to
receive BMT or not and compared the mortality within groups of patients
with similar propensities. The results of the propensity score are very
similar (not reported) to those of the CEM-matched sample analysis.
The design and development of the SATT method are non-trivial and

mathematically involved. For details, please refer to Athey and Imbens
2016 [15]. Briefly, let us consider patients i who received treatment T (for
example, BMT or vaccination). Let yi denote the response (for example,
probability of death from COVID-19, referred to as “mortality or discharge
to hospice”, adhering to the spirit of using sensitive language around

Covid-related mortality) of patient i. The causal effect of the treatment is
defined as the difference in the response measure under the condition
that the patient received the treatment from the response measure had
the patient not received the treatment. Therefore, the causal effect of the
treatment on the treated αi is defined as

αi ¼ yi T ¼ 1ð Þ � yi T ¼ 0ð Þ:

However, in observational data that is not experimentally generated, it
is often not possible to observe both the response measures under
treatment and no-treatment conditions. For example, for a patient in the
dataset that received BMT, we only observe the response under
treatment yi T ¼ 1ð Þ, but we do not observe the response under no-
treatment yi T ¼ 0ð Þ. Let X i denote covariates (such as patient character-
istics, disease conditions, etc.) that determine the patients’ likelihood of
receiving the treatment. In experimental data, treatments are usually
randomized across observation units. However, in observational data,
treatments are not usually randomized; rather, treatments are decided
based on the covariates that determine both the treatment assignment
and the response outcomes. Under the assumption that the treatment
assignment is independent of the outcomes given the covariates [15],
that is

T i ? yi T i ¼ 1ð Þ; yi T i ¼ 0ð Þð ÞjX i

It can be assumed that the response outcome of the patients in the
control group can reasonably approximate the response outcome of the
patients in the treatment group, given that the patients are matched on
the covariates. Therefore, the treatment effect on the treated can be
estimated as

αi ¼ yi T ¼ 1ð Þ � yj T ¼ 0ð ÞjXi � Xj :

The sample average treatment effect on the treated is then estimated as

SATT ¼ 1
n

X
αi

Where n is the number of patients who received treatment in the empirical
estimation sample, we used a propensity score-based matching. First, we
estimated a logistic regression model with the treatment status as the
response and the covariates such as age, sex, disease stage and all other
relevant variables as explanatory to predict the likelihood of patients
receiving the treatment. Then we matched the treatment group with the
control group patients by choosing the closest predicted likelihood of
receiving the treatment. The SATT is then estimated as the sample average
of the difference in the response of the treatment and the control groups.

N3C Pa�ents 
(N3C data release v76),

N = 13,227,011

Carcinoma 
Cohort

Malignant Neoplasm
Concept Code: 

363346000

N = 12,165,263

Exclude Benign Concepts 
and non-cancer Condi�ons

N = 1,061,748 
COVID = 254,308

Non-COVID = 807,440
N = 1,035,684

N = 26,064

String search for 
‘myeloma’ in cancer site

Exclude non-myeloma 
pa�ents

• MGUS: 45
• SMM: 225

Fig. 1 Consort diagram. Step 1: Use row-level patient data in the N3C Data Enclave, to construct a cohort of patients with myeloma. Step 2:
Analysis of risk factors associated with COVID-19 severity and survival.
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Table 1. Preadmission characteristics including demographic, clinical features, co-morbidities, ISS staging, and COVID-19 vaccination status.

Multiple Myeloma Non-COVID COVID Total

17476 8588 26064

COVID variant % %

Alpha 2553 29.73

Delta 2085 24.28

Omicron 1487 17.31

Unknown 2463

Median age 67.65 65.89

Gender

FEMALE 7942 45.45 4017 46.77 11959

MALE 9533 54.55 4570 53.21 14103

Unknown <20 <20

Age group

0–17 21 0.12 <20

18–29 66 0.38 39 0.45 105

30–49 1096 6.27 700 8.15 1796

50–64 5253 30.06 2897 33.73 8150

65+ 11040 63.17 4938 57.50 15978

Race

Asian 331 1.89 177 2.06 508

Black 4030 23.06 1739 20.25 5769

Other 1742 9.97 1074 12.51 2816

White 11290 64.60 5538 64.49 16828

Unknown 83 60 0.70

ISS staging

Stage I 5900 33.76 3023 35.20 8923

Stage II 953 5.45 497 5.79 1450

Stage III 1004 5.75 419 4.88 1423

Unknown 11580 5252

Smoking status

Current or Former 4560 26.09 2144 24.97 6704

Non-Smoker 12878 73.69 6425 74.81 19303

Unknown 38 <20

BMI

Normal weight 3329 19.05 1611 18.76 4940

Obese 4699 26.89 2243 26.12 6942

Overweight 4228 24.19 2081 24.23 6309

Underweight 307 1.76 139 1.62 446

Unknown 4913 2514

Renal disease No 10826 61.95 6269 73.00 17095

Yes 6612 37.83 2295 26.72 8907

Unknown 38 24

Pulmonary disease

No 12521 71.65 6867 79.96 19388

Yes 4917 28.14 1697 19.76 6614

Unknown 38 24 0.28

CCI score level

Mild 4449 25.46 2194 25.55 6643

Moderate 2907 16.63 1111 12.94 4018

Severe 6979 39.93 2365 27.54 9344

Unknown 3141 2918

A.K. Mitra et al.
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Table 1. continued

Multiple Myeloma Non-COVID COVID Total

17476 8588 26064

Diabetes

No 11233 64.28 6235 72.60 17468

Yes 6185 35.39 2320 27.01 8505

Unknown 58 33 0.38

PVD (Peripheral Vascular Disease)

No 13834 79.16 7528 87.66 21362

Yes 3584 20.51 1027 11.96 4611

Unknown 58 33 0.38

COVID-19 vaccination No 12829 73.41 5760 67.07 18589

Yes 4647 26.59 2828 32.93 7475

Vaccination type

JANSSEN 130 0.74 68 0.79 198

MODERNA 1574 9.01 734 8.55 2308

PFIZER_BIONTECH 2922 16.72 1334 15.53 4256

OTHER 21 <20

NONE 12829 5760 67.07 18589

Table 2. A: Summary of severity indicator variables with severity types. B: Summary of survival indicator variables with survival days.

A

Non-COVID COVID Total

AKI in hospital

No 14701 7536 22237

Yes 2775 1047 3822

Invasive ventilation

No 16852 8308 25160

Yes 624 275 899

Inpatient or ED

FALSE 5503 3778 9281

TRUE 11935 4786 16721

B

Survival days %

COVID-19 severity_Type

Unaffected 4522 52.65%

Mild 1530 17.82%

Mild_ED 315 3.67%

Moderate 1570 18.28%

Severe 77 0.90%

Mortality or discharge to hospice 574 6.68%

Survival days (COVID-19+ patients)

0–10 166 1.93%

11–20 137 1.60%

21–30 81 0.94%

31+ 362 4.22%

Died (Non COVID+ ) 53 0.62%

Survived 7789 90.7%

10-Day survival 166 98.07%

30-Day survival 384 95.53%
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The role of the institutional review board
Prior institutional review board approvals were obtained from respective
institutions to access the N3C data. Further, all the authors who had access
to N3C data in the Enclave and performed analyses were approved by the
N3C data Use Request committee to access the limited use dataset (Level 3).

RESULTS
As of N3C data release v76 (date 05/06/2022), the N3C database
consisted of 1,061,748 cancer patients, out of which 26,064 were
myeloma patients (Resource Download Request ID: DRR-
DCAB2E1). Among these, 8,588 myeloma patients were COVID-
19 positive (Fig. 1: Consort diagram). In addition, 225 patients had
smoldering multiple myeloma (condition: 4184985), while 45 were
Monoclonal gammopathy of undetermined significance (MGUS)
(conditions: 40297097, 45566693, Observations: 4149022,
37312312, 42511601). We excluded these two subgroups from
our analysis. Table 1 provides detailed patient pre-admission
characteristics of our study cohort, including demographic, clinical
features, ISS staging, as well as COVID-19 vaccination history.
According to N3C guidelines, cell sizes <20 were suppressed using
a small cell size indicator (<20) to protect person privacy. To avoid
cell sizes being computed from the marginal totals in cases where
there is only one small cell in a row or column, we deleted the
marginal total for the row or column having four or less elements
and retained the small cell size indicator (<20). The mean age at
diagnosis of COVID-19-positive patients was 65.89 years. 46.7%
were females, and 20.2% were individuals who self-report as Black.
5.79% and 4.88% of myeloma patients were of ISS stages II and III,
respectively. 25.56% had a Charlson Comorbidity Index (CCI) score
of 0, 12.94% had a score of 1 and 27.54% had a score of 2 or more.
Among those with a diagnosis of COVID-19, 3.20% required

invasive ventilation, and 55.73% required an inpatient or ED visit.

12.19% of patients underwent Acute kidney injury (AKI) during
hospitalization (Table 2A). Overall, the survival probability was
90.7% across the course of the study. A total of 1.93% of N3C-
myeloma COVID-19-positive patients died within the first 10 days,
while 4.47% died in their initial 30 days of COVID-19 hospitaliza-
tion (Table 2B). Table 3 provides a summary of anti-myeloma
medications, including prior bone marrow transplantation. Of the
patients with available data, 26.595% had a prior history of blood
or marrow transplant (BMT).
Results of univariate analyses are shown in Table 4A. Categories

from Table 1 with <20 patients were subgrouped for logistic
regression analysis to obscure/suppress small cell sizes to protect
person privacy. At a p-value threshold <0.05 and Odd ratio >1.5,
prior history of hypertension (OR= 1.90; 95%CI: 1.62–2.23), PVD
(OR= 1.78; 95%CI: 1.45–2.219), renal disease (OR= 2.39; 95%CI:
2.05–2.279), pulmonary disease (OR= 2.27; 95%CI: 1.92–2.68) and
diabetes (OR= 2.08; 95%CI: 1.78–2.44) were significantly corre-
lated with higher COVID-19 severity. Further, CCI score of 2 or
more (OR= 2.79: 2.30–3.39) and BMI code of ‘underweight’
( < 18.5) (OR= 2.22: 1.31–3.78) were also associated with higher
levels of severity. Race (Black vs. white-p < e-99) was highly
correlated with severity. On the other hand, vaccination status (OR
0.36: 0.29–0.44) and history of BMT (OR= 0.45: 0.37–0.54) showed
a protective association with COVID-19 severity. Multivariate
logistic regression analysis confirmed the following were found
to be associated with higher rates of severity (Table 4A): history of
pulmonary disease (OR 1.53) and renal disease (OR 1.54),
associated with higher risks of severe outcomes. Further, a severe
Charlson Comorbidity Index (CCI) score level (OR 1.78) was also
associated with an increased risk of COVID-19 severity. Multi-
variate logistic regression analysis confirmed a negative/protective
association between COVID-19 severity with BMT (Adjusted Odds
Ratio or AOR 0.79) and COVID-19 vaccination (AOR 0.28).
Treatment history of Dexamethasone (AOR 2.23), PI (AOR 1.5),
and IMiD (AOR 1.4) therapy was found significantly correlated with
an increase in the risk of COVID-19 severity.
Table 4B provides a summary of multivariate Cox proportional

regression analysis in the myeloma-COVID-19-positive cohort. CCI
score high (Cox Hazards’ ratio/ HR 5.1; 95%CI: 2.55–10.36), CCI
score moderate (HR 3.34; 95%CI: 1.68–6.65) ISS moderate or severe
stage (HR 1.55; 95%CI: 0.98–2.5), history of PVD (OR 1.62; 95%
1.12–2.34) were highly significantly correlated with poorer patient
survival. In addition, proteasome inhibitor treatment (HR 1.6; 95%
CI: 1.1–2.5) was also significantly associated. Diabetes was
correlated with better patient survival, although not significant.
On the other hand, BMT (HR 0.65; 95%CI: 0.42–1) and COVID-19
vaccination (HR 0.302; 95%CI: 0.19–0.47) were associated with a
significantly lower risk of death and higher survival following
COVID-19 infection in myeloma patients.
Finally, we performed causal estimation using matched sample

SATT method as detailed in the Methods section. A matched
sample analysis follows two steps [15]. In the first step, for every
individual patient in the treatment group (for example, patients
who received BMT and/or vaccination), a sub-sample of patients
from the control group (for example, patients who did not receive
either BMT or vaccination) who are similar to the treatment group
patient in every aspect other than the treatment (BMT or
vaccination). The difference in the survival probability or duration
(or any other relevant response measure) between the patient in
the treatment group and the matched patient in the control group
is the treatment effect. The average difference in the response
measure between the patients in the treatment group and the
control group is the SATT. Our causal effect analysis confirmed
that BMT and vaccination status were associated with decreased
risk of COVID-19-related death in myeloma patients, while the
history of pulmonary disease, renal disease, as well as IMiD and PI
therapy was significantly correlated with a high risk of death. The
SATT of BMT as treatment and probability of survival status

Table 3. Medication history of COVID-19-positive myeloma patients.

#

Lenalidomide/Revlimid

No 7154

Yes 1410

Bortezomib

No 8020

Yes 544

Pomalidomide

No 8079

Yes 485

Carfilzomib

No 8362

Yes 202

Ixazomib

No 8374

Yes 190

Daratumumab

No 7902

Yes 662

Dexamethasone No 3358

Yes 144

BMT (Bone marrow transplant)

No 6304

Yes 2284

Exposure within −/+ 60 days from COVID index date.
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Table 4. A: Multivariate logistic regression analysis results (association with severity). B: Multivariate Cox regression analysis results (association with
survival).

A

Unadjusted analysis Adjusted analysis

Odds
Ratio

95% CI P-value Adjusted
odds
ratio

Pr(>|z | )

Age 1.033 1.03 1.04 1.031 1.09E-11 ***

Sex MALE 1.092 0.94 1.27 2.57E-01 0.891 2.35E-01

COVID_Vaccination Vaccinated 0.356 0.29 0.44 <2.00e-16 0.283 <2.00e-16 ***

BMI Obese 1.075 0.84 1.37 5.61E-01 0.801 1.52E-01

Overweight 1.068 0.84 1.37 6.00E-01 1.004 9.78E-01

Underweight 2.221 1.31 3.78 3.25E-03 1.313 4.04E-01

Race Black 1.362 0.66 2.80 4.02E-01 1.496 3.11E-01

Asian 0.846 0.39 1.82 6.69E-01 1.321 5.16E-01

Pacific_Islander 0.779 0.37 1.63 5.08E-01 1.787 1.57E-01

Smoking_status Smoker 0.858 0.73 1.02 7.42E-02 0.804 5.30E-02 .

CCI_Level MODERATE 1.418 1.12 1.79 3.38E-03 1.345 6.03E-02 .

SEVERE 2.793 2.30 3.39 <2.00e-16 1.775 9.34E-04 ***

ISS_staging Moderate_Severe 1.342 1.07 1.68 1.03E-02 1.516 4.14E-03 **

Medical history Pulmonary 2.267 1.92 2.68 <2.00e-16 1.528 1.43E-04 ***

Hypertension 1.901 1.62 2.23 3.11E-15 0.922 4.93E-01

PVD 1.784 1.45 2.19 3.00E-08 1.030 8.26E-01

Diabetes 2.081 1.78 2.44 <2.00e-16 1.060 6.02E-01

Renal 2.391 2.05 2.79 <2.00e-16 1.537 3.25E-04 ***

Treatment IMiDs 1.046 0.87 1.25 6.28E-01 1.437 2.81E-03 **

PI 1.000 0.80 1.26 9.98E-01 1.503 1.07E-02 *

BMT 0.448 0.37 0.54 4.44E-16 0.790 6.68E-02 .

Daratumumab 0.955 0.73 1.26 7.43E-01 1.090 6.37E-01

Dexamethasone 0.477 0.06 4.05 4.97E-01 2.231 5.78E-05 ***

B

Adjusted Hazards Ratio (coef) lower 0.95 upper 0.95 Pr(>|z|)

Age 1.040 1.02 1.06 3.98E-07 ***

Sex MALE 0.793 0.57 1.09 1.58E-01

COVID vaccination Vaccinated 0.302 0.19 0.47 1.02E-07 ***

BMI Obese 1.045 0.67 1.64 8.48E-01

Overweight 1.287 0.84 1.97 2.44E-01

Underweight 0.808 0.28 2.31 6.90E-01

Race Black 2.630 0.36 19.21 3.41E-01

Asian 2.192 0.27 17.72 4.62E-01

Pacific_Islander 2.847 0.38 21.24 3.08E-01

Smoking status Smoker 0.918 0.65 1.30 6.27E-01

CCI Level MODERATE 3.340 1.68 6.65 6.05E-04 ***

SEVERE 5.138 2.55 10.36 4.84E-06 ***

ISS staging Moderate_Severe 1.549 0.98 2.45 6.22E-02 .

Medical history Pulmonary 1.009 0.71 1.43 9.62E-01

Hypertension 0.961 0.64 1.45 8.49E-01

PVD 1.619 1.12 2.34 1.05E-02 *

Diabetes 0.737 0.52 1.04 8.29E-02 .

Renal 1.080 0.75 1.55 6.80E-01

Treatment IMiDs 1.257 0.87 1.82 2.28E-01

PI 1.623 1.06 2.48 2.46E-02 *

BMT 0.653 0.42 1 5.49E-02 .

Daratumumab 1.291 0.80 2.09 2.97E-01
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(death= 1) as the response is −0.025 (-0.031, -0.020). This
indicates that MM patients who received BMT treatment are
significantly less likely to die from COVID-19 as compared to those
MM patients who did not receive BMT. Similarly, and not
surprisingly, SATT for vaccination status is -0.123 (-0.127, -0.118)
with a Welch t-Statistic of −55.186 (p-Value < 2.2e-16) (Supple-
mentary Table 2). This indicates that MM patients who received
vaccination are significantly less likely to die from COVID-19 than
patients who did not receive the vaccination. Interestingly, the
pre-existence of pulmonary and renal complications significantly
increases the chances of death from COVID-19.

DISCUSSION
We have used the N3C patient cohort that currently includes >8
million COVID-tested patients with at least 1 clinical encounter at
>75 US medical centers to construct a cohort of COVID-19 patients
with multiple myeloma. To the best of our knowledge, this is the
largest nationwide study on multiple myeloma patients with
COVID-19 infection.
We identified several known and so-far unknown characteristics

as potential risk factors for severity and death in multiple
myeloma. For example, several groups, including us, have earlier
established the impact of male gender and existing comorbidities
as risk factors associated with COVID-19.
The impact of race on COVID-19-associated mortality/severity

has been controversial. Although some studies have shown racial
disparities to be significantly associated with mortality risk, several
others did not find any significant effect on the rate of
hospitalization or mortality. We observed significantly higher risk
associated with severity in non-white ethnic groups compared to
whites. These results require further in-depth analysis exploring
social determinants of health, socioeconomic parameters, and
access to timely and appropriate healthcare.
Furthermore, interestingly, age was not found to be significantly

associated with either severity or death in our N3C-myeloma cohort.
This was probably since the median age of diagnosis was already
above 65 years, which has been shown as the at-risk age earlier.
We showed that vaccination with two doses of Pfizer or

Moderna vaccine or a single dose of J&J vaccine showed a
protective effect in the N3C-myeloma cohort. Vaccinated mye-
loma patients were at >350% less risk of severe outcomes and
331% less risk of death following COVID-19 infection compared to
unvaccinated myeloma patients. An earlier study demonstrated
that 2/3rd of vaccinated myeloma patients show some response
to mRNA vaccines, although vaccination may only provide partial
protection from infection, while 1/3rd failed to respond based on
background IgG levels of 50IU/ml [16]. However, the threshold/
cut-offs were primarily probabilistic, with no clinical follow-up
correlating relevant anti-spike IgG levels with protection in
vaccinated patients. A recent study that measured vaccine-
induced neutralizing antibodies (nAbs) in myeloma patients
receiving SARS CoV-2 vaccination found that, although >80% of
patients showed serological response to vaccines, several patients
lack detectable virus-neutralizing activity for protection from
COVID-19 which was affected by race, disease state, treatment,
etc. Therefore, for a reliable evaluation of immunogenicity of
COVID-19 vaccines in myeloma patients, regular management and
monitoring of nAbs titer and SARS CoV-2 is crucial [17, 18].
Next, we found that bone marrow transplant (BMT) has >1.5

folds protective effect on both severity and death. On the other
hand, an earlier study showed that patients with COVID-19
(including 90 patients with multiple myeloma with a prior history
of autologous and allogeneic hematopoietic stem-cell transplan-
tation (HSCT) have poor overall survival [19]). Interestingly, a
recent study by Romano et al. (2022) showed that absolute
monocyte count prior to SARS-CoV-2 infection is predictive of the
risk of overall survival in patients with heme malignancies [20].

Next, we focused on drug classes commonly used as anti-
myeloma therapies. Proteasome inhibitors (PIs) are standard-of-care/
primary chemotherapeutic agents for myeloma [21–25]. Bortezomib
(Bz/Velcade) was the first proteasome inhibitor to be approved by
the US Food and Drug Administration (FDA) for clinical application in
2003 for the treatment of relapsed and refractory myeloma
[5, 26, 27]. Other FDA-approved second-generation proteasome
inhibitors used as anti-myeloma drugs include carfilzomib (Cz/
Kyprolis) and the oral medication ixazomib (Ix /Ninlaro/MLN9708)
[26–28]. PIs are effective anti-MM drugs when used alone or in
combination with other anti-cancer agents like immunomodulatory
drugs (IMiDs), alkylating agents, topoisomerase inhibitors, corticos-
teroids, and histone deacetylase inhibitors (HDACis) [5, 22]. More
recent improvements in anti-myeloma therapeutic regimens include
the monoclonal antibody Daratumumab (targeting CD-38) and
chimeric antigen receptor or CAR-T-cell therapy.
Very interestingly, both our univariate and multivariate analysis

showed that treatment with Immunomodulatory agents (Lenali-
domide, Revlimid and Pomalidomide) was significantly associated
with severe outcomes and all-cause mortality. The risk of severe
outcomes was two-fold in IMiDs, while the risk of death was >2.5
folds in myeloma patients on IMiDs compared to the patients who
were not on IMiDs during the study period.
Finally, anti-myeloma monoclonal antibody therapy was found to

be highly protective in COVID-19-affected myeloma patients. The
risk of severity was 50% lower in patients treated with daratumu-
mab compared to patients being administered other ant-myeloma
therapies. The correlation between daratumumab and IMiD-based
systemic therapy, resultant immunoparesis or compromised
immune system, and severe/adverse COVID-19 outcomes have so
far been conflicting [29, 30]. However, most of these studies were
not powered enough. Therefore, we suggest careful clinical
monitoring and treatment for the management of myeloma
patients with COVID-19 for immune system dysregulation during
disease progression and/or immunomodulatory therapies.
Since causal effect analysis models demonstrate the ‘cause’ from

a statistical standpoint, the determination of the actual biological
causes needs further clinical research that compares each of these
risk factors. Furthermore, a biomarker analysis, including character-
ization of immune and inflammatory cell populations as well as
pro-inflammatory cytokines in patients with MM, will be necessary.
Nevertheless, our analysis method may serve as a template for

identifying major risk factors associated with death and severity in
future pandemic scenarios using large-scale patient-centered
databases.
We have earlier elaborated on the strengths of the N3C

database, its comparability with the manually extracted registry
data from the CCC19 cohort, as well as our mechanisms to
perform strict data QC, as well as the weaknesses related to the
heterogeneity in data collection and reporting processes at
various hospital systems, data portability, and data missingness
[12]. With progressive changes within the N3C cohort and the
development of more and better quality tools to extract and
harmonize data, we have been able to create a robust dataset of
COVID-19 patients, and non-COVID-19 controls in our database.
Overall, through the creation of the N3C-myeloma dataset, the

largest COVID-19 and multiple myeloma cohort in the United States
reported so far, this article summarizes the risk of severe outcomes
and death/all-cause mortality associated with COVID-19 patients in
multiple myeloma. Our cohort provides us with several options to
perform large-scale observational studies comparing various vaccina-
tion schedules, as well as differences between severity and survival
between COVID-19 variants of concern, like delta vs. Omicron.
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