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Dear Editor,

While the development of SARS-CoV-2 vaccines offers substantial
protection against COVID-19 illness in the general population,
impaired antibody responses are present in patients with mature
B-cell neoplasms, including chronic lymphocytic leukemia (CLL) [1].
This is the case regardless of treatment status, although B-cell
targeting agents, such as anti-CD20 mAb and BTK inhibitor therapy,
further inhibit antibody responses [2, 3]. Despite this, antibody
responses may improve with repeated vaccinations [4, 5]. By contrast,
data regarding T-cell responses in these patients is less clear. Vaccine-
induced memory T cells are essential for providing help to B cells for
antibody production, as well as aiding in viral clearance upon
subsequent exposure. Several studies of vaccinated patients with
hematologic malignancies have reported the presence of virus-
specific T cells, even in the absence of a humoral response [6-8].
Such T cells harbor or secrete IFN-y and, similar to antibodies, T-cell
responses may be boosted with repeated vaccinations [4, 5, 8, 9].

Little is known about the cellular features that differentiate a
successful antibody response from one that is deficient in patients
with lymphoid malignancies. Here, we used high-dimensional single-
cell profiling coupled with machine learning to define the cellular
landscape before and after SARS-CoV-2 mRNA vaccine booster (dose
3) in patients with CLL.

As a first step, antibody responses were analyzed between 12
and 50 days post-vaccine booster in 56 patients with non-
Hodgkin lymphoma (NHL), most of whom received a homo-
logous vaccination series with BNT162b2 (n = 26, 46%) or mRNA-
1273 (n =25, 45%) (Table S1). Hematologic diagnoses included
CLL (45%), mantle cell lymphoma (MCL, 20%), diffuse large B-cell
lymphoma (DLBCL, 9%), follicular lymphoma (FL, 9%), marginal
zone lymphoma (MZL, 9%) and Waldenstrom macroglobulinemia
(WM, 9%). Treatments included anti-CD20 monoclonal antibodies
in 9 (16%), BTK inhibitors in 11 (20%), and other treatments in 12
(21%). Twenty-five patients (45%) were not currently receiving
therapy, and most were treatment-naive. NHL patients were
similar in age and received similar frequencies of COVID-19
vaccines as compared to a healthy reference cohort (Table S2).
IgG antibody responses to SARS-CoV-2 spike RBD (S-RBD) were
lower in NHL patients versus healthy controls at all time points
(pre-booster, and at ~3 weeks and ~6 months post-booster) (Fig.
1A). Moreover, in contrast with healthy controls, antibody levels
did not significantly increase after vaccine booster in NHL
patients (p = 0.16 versus p < 0.001). Almost half of patients (48%)
were considered antibody responders on the basis of post-
booster IgG levels to S-RBD > 1 ug/mL and were more likely than
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non-responders to be treatment-naive (44% vs 14%, p = 0.02)
(Table S1). Among patients on anti-CD20 and BTKi therapy,
responder rates were 33% and 36%, respectively. Interestingly,
whereas all subjects with MZL responded, none with FL
responded (Fig. 1B), despite similar treatment types and median
time from last treatment dose (Table S1 and data not shown).
Levels of anti-S-RBD IgG at ~3 weeks and ~6 months post-
booster were markedly higher in patients who had higher
antibody levels (>1 pg/mL) prior to booster versus those with
lower levels (Fig. 1C).

Next, we assessed cellular responses in relation to vaccine-
induced antibodies in a subset of 12 patients who had CLL, and
who were selected based on sufficient sample size for high-
dimensional single-cell analyses to compare responders and non-
responders to vaccine booster (n=6 per group) (Table S3).
Among non-responders, 3 were on BTKi treatment (2 Ibrutinib, 1
acalabrutinib) and 3 were treatment-naive, whereas all responders
were treatment-naive. To assess the global immune landscape, a
31-marker panel (Table S4) was used to analyze the signatures of
major cell types in the blood by spectral flow cytometry. As
expected, initial inspection of total lymphocytes by manual gating
of flow cytometry data revealed higher percentages of B cells in
patients with CLL versus healthy controls (Fig. S1). High-
dimensional analysis of compiled single-cell data corresponding
to pre- and post-booster specimens revealed a marked decrease
in a discrete population of naive B cells in CLL (cluster #7 — HLA-
DRTIgDTCD19"CD21+CD45RATCD1c'°CD38', p =0.021), and its
profound loss in non-responders (Figs. 1D, E, S2-4). Notably, the
percentage of cells in cluster #7 existing pre-booster correlated
with IgG antibodies to S-RBD post-booster (Fig. 1F). This finding
echoed a previous report wherein numbers of CD197IgDTCD27
naive B cells correlated with vaccine-induced antibodies in
immunocompromised subjects [10]. Moreover, in patients with
CLL, multiple B-cell clusters, most of which co-expressed IgD and
CD27, and were defined by differential expression of CD21, CD27,
CD25, IgD, CD45RA, and CD11c, were markedly expanded as
compared with healthy subjects (Fig. 1D, E, S3). Although lack of
CD5 in our marker panel precluded labeling these clusters as
neoplastic, their relative absence in healthy subjects and different
distributions across CLL patients (Fig. S3C) strongly suggest it.
These perturbations were accompanied by decreases in percen-
tages of a prominent CD4™ transitional memory subset (cluster #4:
CD45RA'°CD27+CCR7'°CD28*, p = 0.009) and naive CD8" T cells
(cluster #8: CD45RATCCR77CD27%, p=0.019), as well as other
immune cell types (clusters #28, #29, & #30, p < 0.03) (Figs. 1D, E,
S2 and S4).

Use of the T-REX algorithm [11] to analyze B-cell dynamics over
time within individual patients with CLL revealed that B-cell cluster
#7 remained unchanged in responders, and was consistently lacking
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Next, to assess whether virus-specific T cells were induced by
MRNA vaccine in CLL patients, T cells responding to pooled
peptides of SARS-CoV-2 spike protein (S) and nucleoprotein
were analyzed by Activation Induced Marker (AIM) assay [12].
S-specific CD4™" T cells were detected in all CLL samples but one

in non-responder patients on BTKi therapy (Fig. 1G, Fig. S5). By
contrast, expansion of discrete naive (IgD") and memory (CD27%)
B-cell clusters was a prominent feature of 3 non-responders on BTKi
therapy, indicating ongoing perturbations in the B-cell compartment
(Fig. 1G, Fig. S5).
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Fig. 1 Antibody responses to SARS-CoV-2 vaccine booster and the B-cell landscape in patients with chronic B-cell neoplasms. A Levels of
serum IgG to S-RBD in NHL patients (n = 56) and a healthy cohort (n = 28) measured by ImmunoCAP assay [15]. B Levels of IgG stratified by NHL
diagnosis and treatment status. Numbers for treated (Rx) and non-treated (No Rx) subjects, respectively, were as follows: CLL: 11 and 14; DLBCL: 4
and 1; FL: 2 and 3; MCL: 9 and 2; MZL: 3 and 2; WM: 2 and 3. Error bars are shown only for more than 3 data points. No Rx patients includes patients
not on therapy at time of vaccination. C Levels of IgG to S-RBD in NHL patients stratified by response prior to vaccine booster. Numbers for negative
and positive subgroups were 28 and 20, respectively. Negative (Neg.) subgroups included subjects who had <1 pg/ml IgG to S-RBD at the pre-
booster time point. D Visualization of high-dimensional flow cytometry data by Uniform Manifold Approximation and Projection (UMAP). Data is
shown for total leukocytes in pooled samples (pre- and post-vaccine booster) from healthy subjects (n = 3), CLL responders (CLL R, n=6), and CLL
non-responders (CLL NR, n = 6) analyzed by spectral flow cytometry using a 31-marker panel. Samples from subjects #50 and #159 (pre), and #50,
#59, #60, and #64 (post) were excluded owing to low cell viability. E FlowSOM analysis of cell clusters for pooled samples from all 3 subject groups.
Cell types within major islands are annotated to aid in interpretation. Discrete molecular signatures with corresponding number labels are denoted
by colors within the UMAP and cluster key (see also Fig. S2). F Correlation between levels of IgG to S-RBD post-booster and percentages of cells in
B-cell cluster #7 existing before booster. Black and magenta symbols denote responders and non-responder patients with CLL, respectively. Zero
values were set to 0.01. G Analysis of cell dynamics over time using the T-REX algorithm. Representative data is shown for 3 subjects. Values in
parentheses related to disease and treatment are for duration of disease and time on current treatment, respectively. Enrichment (red shading) and
depletion (blue shading) of discrete cell clusters is depicted according to the percentage change for each cluster. Signatures of cell clusters were
assigned by marker enrichment modeling, which scores each marker on a scale of 1-10 based on its enrichment within each cluster.
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Fig. 2 Functional virus-specific CD4" and CD8" T cells are present in CCL subjects after vaccine booster. A Frequencies of SARS-CoV-2-
specific CD4" T cells (OX40"CD137") and CD8" T cells (CD697CD137") detected by AIM assay after 24 h. in vitro stimulation with pooled
peptides of spike protein and nucleoprotein. Percentages were derived by subtracting background values for unstimulated cultures. Data is
shown for healthy subjects (H, green), CLL responders (R, black), and CLL non-responders (NR, magenta). Treated (BTKi) and untreated subjects
are denoted by squares and circles, respectively. T cells were analyzed for available time points before and after vaccine booster. B Heatmap
showing z-scaled cytokine levels (pg/ml) in AIM assay supernatants harvested after stimulation with pooled peptides of spike protein. Each
row corresponds to data for one sample. C Correlation between percentages of CD4*1 Spike-specific T cells detected by AIM assay and
cytokine levels in assay supernatants. AIM assay data was obtained by subtracting values for unstimulated cultures from antigen-stimulated
cultures. Data is shown for pre- and post-booster samples from CLL responders (black), CLL non-responders (magenta), and healthy subjects
(green). Samples from subjects #50 and #159 (pre), and #50, #59, #60, and #64 (post) were excluded owing to low cell viability. Data for 3 pre-
booster samples (#172, #59, and #61) were excluded from analysis of cytokine data for technical reasons.
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(subject #17, pre-booster sample), and at frequencies ranging
from 0.08% to 4.05% of total CD4" T cells (Figs. 2A and S6).
Notably, there was no difference between antibody responder
and non-responder groups, and frequencies in CLL patients
were similar or else higher as compared to healthy controls.
After vaccine booster, frequencies of S-specific T cells were
generally increased, including in 2 patients who were non-
responders receiving BTKi treatment. By contrast, nucleoprotein-
specific CD4" T cells were detected in only a single subject and
at one time point, indicating that subjects were likely never
infected with SARS-CoV-2 and that S-specific T cells detected
were vaccine-induced. Similar findings were observed for
S-specific CD8" T cells (Figs. 2A and S6). Subsets of both
S-specific CD41 and CD8" T cells expressed the lung-homing
chemokine receptor CCR5 (Fig. S7). Moreover, the memory
signatures of these cells were similar for patients with CLL and
controls, and akin to those targeting common pathogens (see
CEFX response in Fig. S7B); however, their phenotype was
distinct from PHA-stimulated T cells. No relationships were
identified between percentages of virus-specific T cells after
vaccine booster and the timing of sample collections or
antibody levels (data not shown). Together, these findings
demonstrated successful induction of T cells after vaccine
booster despite ongoing B-cell perturbations in CLL, and their
similar features to those likely induced prior to illness against
other microbial antigens.

Cytokine profiles in AIM assay supernatants were highly
variable, regardless of disease or vaccine responder status, with
highest mediator levels detected post-booster in 2 responder
CLL patients (#30 and #52) and one non-responder CLL patient
(#55), supporting T-cell function (Fig. 2B). However, the lowest
levels of mediators were also produced in CLL patients,
regardless of vaccine response, although PHA responses
indicated that T cells remained functional (Fig. S8). Analysis
of individual mediators produced in response to stimulation
with peptides of spike protein revealed no significant
differences across groups, after adjusting for multiple compar-
isons; however, an overall time-effect was observed for
increases in the T-cell chemoattractant ITAC/CXCL11
(p=0.043; data not shown). Finally, frequencies of S-specific
CD4™ T cells, correlated with levels of multiple cytokines with
the strongest relationships identified for TNF-a and IFN-y
(r>0.80, p<0.0001) (Fig. 2C). By contrast, frequencies of
S-specific CD8" T cells correlated only with TNF-a, IL-12p70,
and MIP-13 (r = 0.49, p < 0.05). Together, these results confirm
vaccine-induced virus-specific CD4" and CD8" T cells in CLL,
regardless of antibody production, and their link to anti-viral
type 1 responses.

Limitations of our study included the lack of assessment of
neutralizing activity of antibodies, and antibodies to SARS-CoV-2
nucleoprotein. Additionally, T-cell responses were not compared at
the same time points after vaccine booster owing to variable
sampling across patients. Nonetheless, time windows generally
exceeded those for peak effector T-cell responses, and frequencies
of virus-specific T cells are reported to be stable for several months
after vaccination [13, 14]. It was also not possible to calculate
absolute numbers of virus-specific T cells, since blood counts were
not clinically indicated at the time of sample collection.

In summary, our findings provide new insight into the nature
of humoral and T-cell responses to SARS-CoV-2 vaccine booster
and in vivo cellular dynamics in patients who have chronic
B-cell neoplasms. The results support the usefulness of
vaccination in patients with CLL to boost anti-viral T cells, even
in the absence of antibody responses, and shed new light on
the determinants and variability of vaccine response. The
differences in vaccine response between disease types warrant
further investigation of the biology of adaptive responses in
patients with distinct B-cell malignancies.
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