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Dear Editor,
AML is a heterogenous disease characterized by distinct clinical

courses and prognoses based on genomic, epigenomic and
transcriptomic profiles [1, 2]. Therefore, molecular classification
and risk stratification are essential for clinical decision. Although
cytogenetics is one of the most powerful prognostic indicators in
AML, more than 50% of AML patients have normal karyotypes. In
the past decade, advances in sequencing technology enabled
incorporation of somatic mutations into molecular classification
and risk stratification in AML [3, 4]. Additionally, recent studies
demonstrated that gene expression profiles in leukemia stem cells
and maturation state of AML cells also carry independent
prognostic significance [5, 6]. Furthermore, DNA methylation
patterns may provide additional prognostic values in AML [7, 8].
Although multi-omics profiles have been used to define AML
molecular subtypes with distinct prognoses, they have not been
systematically integrated to define integrative subtypes (iSub-
types) of AML. Therefore, there is a great clinical interest to
identify AML iSubtypes and the patterns across multi-omics
profiles that could be used for prognosis and targeted therapy.
In this study, we performed an integrative clustering (iCluster)

[9, 10] analysis of the TCGA [1] multi-omics data including somatic
mutation, DNA copy number, DNA methylation and transcriptomic
data for 160 de novo adult AML samples and identified the multi-
omics signatures that drove molecular classification of AML
(Supplementary methods). Based on the common subtype-driver
methylation and transcription signatures, we derived a 571-gene
panel for classification of AML when transcriptomic data are
available. Using three independent transcriptomic datasets,
namely BEAT [11] (n= 671), GSE6891 [12] (n= 461) and
GSE106291 [13] (n= 250), we demonstrated the prognostic power
of the 571-gene panel in classifying AML into clinically relevant
subtypes.
We identified 4 AML iSubtypes featuring distinct multi-omics

signatures (Fig. 1A, B). In terms of overall survival (OS), the
iSubtypes 3 was the best, the iSubtype 2 was the middle, and the
iSubtypes 1 and 4 were the worst (p= 0.039) (Fig. 1C). At the DNA
level (Fig. 1A, somatic mutation and DNA copy number), the
iSubtype 1 was characterized by complex karyotypes (CK) and
high-frequency mutation of TP53 (30%) and RUNX1 (27%); the
iSubtype 2 was characterized by CK and high-frequency mutation
of CEBPA (20%); while the iSubtypes 3 and 4 were characterized
by normal karyotype (NK), deficiency of TP53/CEBPA/RUNX1
mutations, and abundance of FLT3/NPM1/DNMT3A mutations,
with the iSubtype 4 having higher mutation rates in the three
genes than the iSubtype 3 (FLT3: 41% vs. 34%; NPM1: 57% vs.
37%; DNMT3A: 41% vs. 20%). At the epigenomic level (Fig. 1A,
DNA methylation), the iSubtypes 1, 3, and 4 were generally
characterized by hypomethylation of subtype-driver genes,
while the iSubtypes 2 were generally characterized by

hypermethylation of subtype-driver genes. These driver genes
formed three major methylation clusters (m1-3) in which the
major groups of genes were related to regulation of protein
kinase activity, immune response, regulation of cell activation,
leukocyte differentiation/migration and cell morphogenesis, etc.
(Fig. 1D). At transcriptomic level (Fig. 1A, mRNA), the 4 iSubtypes
were characterized by 3 driver gene clusters (g1-3) in which the
top enriched biological processes were involved in immune
process, angiogenesis, cell migration, extracellular matrix/struc-
ture organization, regulation of immune processes, etc. (Fig. 1E).
In comparison to the ELN2022 classification [2], 85% (28/33) of

the iSubtype 1 samples were in the adverse group; 74% (25/34) of
the iSubtype 3 samples were in the favorable; 89% (41/46) of the
iSubtype 4 samples were in the favorable or intermediate; while
the iSubtype 2 samples were almost evenly distributed in the 3
ELN2022 groups (Fig. 1F). Compared to the cytogenetic risk
groups, 97% (32/33) of the iSubtype 1 samples belonged to the
intermediate or poor group, 57% (25/44) of the iSubtype 2 samples
belonged to the intermediate, 97% (31/32) of the iSubtype
3 samples belonged to the good or intermediate, and 85% (39/46)
of the iSubtype 4 samples belonged to the intermediate (Fig. 1G).
Compared to the FAB classification, the iSubtype 1 samples were
distributed in various subtypes (M0, M1, M2, M4, M6 and M7);
while 89% (39/44) of the iSubtype 2 samples were distributed in
the M0, M1 or M2; 100% of the iSubtype 3 samples were
distributed in the M1, M2 or M3; 78% (36/46) of the iSubtype
4 samples were distributed in the M4 or M5 (Fig. 1H).
There were 571 common genes identified as the subtype-

drivers in the methylation and transcriptomic datasets and these
genes formed three major clusters c1-3 and their overall
expression patterns were negatively correlated (Fig. 2A, B). For
example, the genes in cluster c3 were hypomethylated and
upregulated in the iSubtype 1 and the top enriched biological
processes included axon development, blood circulation, regula-
tion of leukocyte activation and cell-cell adhesion, angiogenesis,
etc. (Fig. 2C); the genes in cluster c2 were hypomethylated and
upregulated in the iSubtype 4 and the top enriched biological
processes included negative regulation of cytokine production,
mononuclear cell differentiation, adaptive immune response, etc.
(Fig. 2C). Using the mRNA expression signature of the 571 genes in
the TCGA dataset as the template, the AML samples in the 3
independent transcriptomic datasets were classified into 4
transcriptomic subtypes (tSubtypes) with similar gene expression
patterns (Fig. 2D–F). The OS of the 4 subtypes in these three
cohorts also had similar trends in which the subtypes 2 and 3 had
a better OS, compared to the subtypes 1 and 4 (Fig. 2G–I).
In summary, iCluster analysis generated an integrative mole-

cular portrait of AML and revealed the correlations among multi-
omics profiles that determined the molecular classification of AML,
which was not revealed previously by individual-omics data
analysis. For example, based on the copy number data, AML could
be divided into CK-AML (iSubtype 1+ 2) and NK-AML (iSubtype
3+ 4). However, the OS was not significantly different between
iSubtype 1+ 2 and iSubtype 3+ 4 (p= 0.7), implying that using
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Fig. 1 Integrative subtypes (iSubtypes) of AML. A Heatmaps of the characteristic multi-omics features of the 4 iSubtypes. Somatic mutation:
mutation is indicated by black bar. Copy number: copy number loss, normal and gain are indicated by blue, white and red, respectively.
Methylation: low, middle and high methylation are represented by blue, white and red, respectively; subtype-driver genes form three
methylation clusters m1-m3 (more details in Supplementary Table 1). mRNA expression: low, middle and high expression are represented by
blue, white and red, respectively; subtype-driver genes form three mRNA expression clusters g1-g3 (more details in Supplementary Table 2).
B TCGA AML samples visualized in the 2-dimentional TSNE coordinates reduced from the 3-dimensional principal component spaces of
iCluster. C Overall survival of the 4 iSubtypes. D, E Top 10 biological processes (GO terms) in each of the methylation clusters m1-m3 and the
gene expression clusters g1-g3 (more details in Supplementary Tables 1 and 2); Adj.p is log10 adjusted p-value; Adj.p < –1.3 is considered
statistically significant. F–H Contingency tables comparing the iSubtypes with the ELN2022 classification (F), the cytogenetic classification (G),
and the FAB classification (H).
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Fig. 2 Prognostic power of the iSubtype-driver gene expression signatures. A Heatmaps of 571 common genes in the TCGA methylation
and gene expression datasets that form 3 major gene clusters c1-c3 (more details in Supplementary Table 3). B Pearson correlation coefficients
of gene methylation and expression (genes are arranged in the same order as those on Fig. 2A). Negative and positive correlations are
represented by green and red, respectively. C Top 10 most enriched biological processes (GO terms) in each of the gene clusters c1-c3 (more
details in Supplementary Table 3); Adj.p is log10 adjusted p-value; Adj.p < –1.3 is considered statistically significant. D–F Heatmaps of gene
expression in the BEAT, GSE106291 and GSE6891 cohorts. The samples were classified using the mRNA signature of Fig. 2A and 5-nearest
neighbor method. G–I Overall survival of the 4 transcriptomic subtypes (tSubtypes) in the BEAT, GSE106291, and GSE6891 cohorts.
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copy number data alone is not sufficient to stratify AML into
clinically meaningful subgroups. By integrating the other omics
data, iCluster further divided the CK-AML into iSubtypes 1 and 2,
and the NK-AML into iSubtypes 3 and 4, respectively. The iSubtype
1 had an inferior OS than the iSubtype 2, which might be due to
its much higher mutation rate of TP53 (30% in 1 vs. 4% in 2). These
observations are consistent with the reports that a subgroup of
CK-AML/MDS (myelodysplastic syndromes) with mutated TP53
(mTP53) had a worse prognosis than the subgroup with CK alone
[14, 15]. Gene set enrichment analysis of the Hallmark pathways
showed that a wide range of pathways were significantly elevated
in the iSubtupe 1, compared to the iSubtype 2 (Supplementary
Fig. 1A). These elevated pathways were mainly involved in cancer
development (e.g., epithelial mesenchymal transition, angiogen-
esis), DNA damage response (e.g., UV response downregulated
genes), immune response (e.g., complement, coagulation, inflam-
matory response, allograft rejection), and signaling (e.g., WNT beta
catenin, TGF beta, KRAS, NOTCH, hedgehog, IL2_STAT5), and
cellular component organization (e.g., apical junction, apical
surface). Additionally, CTLA4 and PDL1 had a significantly higher
expression in the iSubtype 1 compared to the other iSubtypes,
which could be potential targets for anti-CTLA4 and anti-PDL1
therapies (Supplementary Fig. 2).
It is still a challenge to classify NK-AML into subgroups for

prognosis and target therapy. By iCluster analysis, the NK-AML
iSubtypes 3 and 4 were distinguished by FLT3/NPM1/DNMT3A
mutation, methylation and gene expression levels. Compared to
the iSubtype 3, the most significantly elevated Hallmark pathways
in the iSubtype 4 were mainly involved in immune response (e.g.,
interferon gamma/alpha response, inflammatory response, com-
plement, allograft rejection, IL6_JAK_STAT3 signaling, coagulation),
signaling (e.g., TNFA signaling via NFkB, KRAS, IL2_STAT5),
proliferation (e.g., P53 pathway) and metabolism (e.g., xenobiotics
metabolism) (Supplementary Fig. 1B). Furthermore, a cluster of
genes involved in negative regulation immune system process
(e.g., negative regulation of T cell proliferation: CD86, GPNMB,
CEBPB, CLEC4G, VSIG4); negative regulation of T cell receptor
signaling: LGALS3, PTPRJ, LAPTM5) had an elevated expression in
the iSubtype 4 (Supplementary Fig. 3), which are potential targets
for immunotherapy. When only transcriptomic data were avail-
able, we demonstrated that the 571-gene panel derived from the
driver methylation and transcriptomic signatures had an excellent
prognostic power in classifying AML into transcriptomic subtypes
with similar OS in the 3 independent cohorts. Notably, the
expression patterns of the genes involved in negative regulation
of immune system process in the TCGA mRNA data were
confirmed in the 3 independent cohorts (Supplementary Fig. 3).
Currently, diagnosis and management of AML are heavily

dependent on genetics-based risk classification such as ELN2022.
Overall, the risk classifications of AML by iCluster, ELN2022 and
cytogenetics were comparable (Supplementary Fig. 4). Remark-
ably, 88% of the adverse group of ELN2022 and 82% of the poor
group of cytogenetics were CK-AML (iSubtype 1 or 2), indicating a
high concordance of classification for CK-AML by iCluster and
genetics-based approaches. By integrating methylation and gene
expression data that were not routinely incorporated in clinical
practice, we demonstrated that they were useful in classifying
AML into clinically meaningful groups. For example, although 89%
of the NK-AML iSubtype 4 samples belonged to the favorable or
intermediate group of ELN2022 and cytogenetics, it had an OS as
poor as the CK-AML iSubtype 1. The gene expression signatures
may be further explored for prognosis and target therapy for
NK-AML.
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