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efficacy and reduce side effects of bortezomib in multiple
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Dear Editor,
Multiple myeloma (MM) is the second most common hemato-

logical malignancy; in 2022, the National Cancer Institute indicated
about 34,470 new cases were diagnosed with MM, and about
12,640 deaths are estimated in the United States, with a 57.9%
5-year survival rate [1]. Understanding molecular mechanisms of
the cell-signaling pathway in MM cells and the interaction of MM
cells with their bone marrow (BM) microenvironment has led to
the development of novel therapies [2]. Despite introducing novel
therapies, more than 90% of MM patients relapse due to drug
resistance [3]. The BM microenvironment plays a crucial role in the
development of resistance to proteasome inhibitors (PIs) in MM, in
which direct and indirect interaction of MM cells with the BM
microenvironment induced resistance to PIs in MM [4].
The main limitation that hampers the treatment with PIs is the

lack of specificity of the pharmacological effect and therefore
causing dose-limiting off-target side effects (such as peripheral
neuropathy and hematological toxicities). Nanoparticle delivery
systems were shown to be capable of targeting large doses of
therapy into the target area while sparing healthy tissues,
overcoming the limitations of traditional therapies [5]. We have
previously shown that delivery of PIs, such as bortezomib (BTZ), in
CD38-targeted cross-linked-chitosan nanoparticles significantly
reduced the toxicity profile of BTZ in vivo; however, the limited
improvement of the therapeutic efficacy is most likely due to the
endothelial cell barrier [6]. More recently, we have developed
tumor-associated endothelial cells (TAECs)-targeted nanoparticles,
which improve efficacy and reduce the side effects of bortezomib
in multiple myeloma [7]. These lipid nanoparticles specifically
targeted TAECs rather than targeting tumor antigens. This strategy
showed that TAECs could be seen and used as a specific target for
nanoparticle-based therapies rather than a barrier that limits
nanoparticle delivery [7]. We have previously shown that
inhibiting the interaction between MM cells and the BM
microenvironment, especially endothelial cells (ECs) [4, 8–11],
using a pan-selectin inhibitor GMI-1070 enhances the sensitization
of MM cells to bortezomib in vitro and in vivo [4]. Similarly, we
demonstrated that E-selectin inhibition reduced tumor dissemina-
tion and enhanced the efficacy of both lenalidomide and
carfilzomib in MM [4, 8, 9]. This nominates E-selectin as a potential
antigen in TAECs in MM, which can be a potential target for
nanoparticle-based delivery of PIs in MM, for improved treatment
specificity.
In this study, we hypothesized that E-selectin is a unique

antigen with high expression in TAECs in MM, and that

incorporating E-selectin targeting moiety GMI-1930 (Lipo E-X) to
bortezomib-loaded lipid nanoparticles will improve the specificity
and efficacy and reduce the side effect of bortezomib.
To assess the feasibility of our hypothesis, we first investigated

the expression of E-selectin on ECs cultured alone or in co-culture
with MM1.S (MM cell line). We found that ECs had a low basal
expression of E-selectin; however, the expression of E-selectin was
robustly increased by more than two fold due to co-cultured with
MM cells (Fig. 1A). This validated our hypothesis that E-selectin is a
unique antigen on TAECs in MM.
Accordingly, we developed lipid nanoparticles targeted to

E-selectin on TAECs in MM by incorporating GMI-1930, an
E-selectin targeting molecule, into the lipid-bilayer of the lipid
nanoparticles (Lipo E-X), and we used the same composition of
the lipid nanoparticles without GMI-1930, as a non-targeted
control (Fig. 1B). To evaluate the binding of the lipid nanoparticles
to the TAECs, we used a 3D tissue engineered bone marrow
(3DTEBM) culture model [12], in which ECs were cultured alone or
in co-culture with MM1.S, as previously described [7]. Cultures
were treated with DiD-fluorescently labeled Lipo E-X targeted and
non-targeted lipid nanoparticles, and the level of binding of lipid
nanoparticles to ECs was evaluated qualitatively using Spark®Cyto
imaging system, or the cultures were digested, and binding was
evaluated quantitatively using flow cytometry. Quantitatively, the
binding of the non-targeted lipid nanoparticles to ECs was low
when cultured alone or when co-cultured with MM. In contrast,
Lipo E-X targeted lipid nanoparticles had higher binding to EC
alone, due to basal E-selectin expression; and the binding doubled
(two fold) when ECs were co-cultured with MM, due to E-selectin
over expression (Fig. 1C). Qualitatively, fluorescence imaging of
the cultures confirmed the binding patterns observed by flow
cytometry (Fig. 1D). Together, Fig. 1 implies that the TAECs in MM
have a high and specific expression of E-selectin, which was
successfully targeted by lipid nanoparticles with E-selectin binding
molecule GMI-1930 (Lipo E-X) in vitro.
We then examined the biodistribution of E-selectin-targeting

Lipo E-X and non-targeted lipid nanoparticles in vivo. We injected
the lipid nanoparticles intravenously (iv) into MM-bearing NCG
mice (Charles River, Wilmington, MA) previously inoculated with
2 × 106 MM1.S-GFP-Luc cell/mouse, and MM progression in mice
was confirmed by bioluminescent imaging (BLI). Twenty-four
hours post nanoparticles injection, mice were sacrificed and their
BM, kidney, and liver were harvested. Then, we analyzed the
binding of the lipid nanoparticles to mononuclear cells (MNCs)
and quantified the levels of MM-GFP+ cells, in each organ. We
found a significantly higher accumulation of the Lipo E-X lipid
nanoparticles in the BM and kidney, compared to the non-
targeted lipid nanoparticles (Fig. 2A). We also found a high non-
specific accumulation of both targeted and non-targeted particles
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in the liver. Liver accumulation is expected, as lipid nanoparticles
are known to accumulate in the liver due to their lipidic nature
and their capture by Kupffer cells. Although BTZ-loaded lipid
nanoparticles may have side effect in the lever; however, we
expect these to be mild due to the lower activity of proteasomes
in the liver compared to MM cells. Moreover, we examined the
correlation between the presence of MM in the organs and the
specificity of the accumulation of lipid nanoparticles; we
determined the specific accumulation as the ratio of the binding
of targeted / non-targeted lipid nanoparticles and the presence of
MM was expressed as the % of MM-GFP+ in MNCs in each organ.
We found a direct linear correlation between the presence of
MM1 cells and the specific accumulation of targeted lipid
nanoparticles in each organ (Fig. 2B). Each quantified value is
presented as mean ± standard deviation from four biological
replicates, and we used an unpaired Student’s t-test (*p < 0.05) for
statistical significance.
BTZ is a gold-standard treatment for MM; however, its efficacy is

limited by off-target dose-limiting side effects. Therefore, we
loaded BTZ into the highly specific Lipo E-X lipid nanoparticles, as
previously described [7], and tested its effect on tumor progres-
sion and side effects in vivo. Immunocompromised NCG mice
were inoculated with MM.1S-GFP-Luc cells and tumor engraftment
confirmation at two weeks using BLI. Mice were then randomized

into five treatment groups that received weekly iv injections of (i)
empty non-targeted lipid nanoparticles, (ii) empty Lipo E-X
targeted lipid nanoparticles, (iii) BTZ-loaded non-targeted lipid
nanoparticles, (iv) BTZ-loaded Lipo E-X targeted lipid nanoparti-
cles, and (v) BTZ as a free drug. Mice were imaged using BLI
weekly for tumor progression, and their weight was monitored
daily. We found that the groups treated with control empty non-
targeted, and Lipo E-X targeted formulations showed fast and
comparable tumor growth. When BTZ was administered as a free
drug or formulated in non-targeted lipid nanoparticles, both
induced similar reduction of tumor growth by about 50%
compared to empty formulations. On contrast, BTZ-loaded Lipo
E-X lipid nanoparticles reduced tumor progression by 70%
compared to empty formulations and significantly lower than
the free drug and non-targeted formulations (Fig. 2C). Weight loss
was previously described as the most common off-target side
effects of BTZ in mice [13], confirmed by our group [7, 14], due to
painful neuropathy that limits the mice’s movement and their
ability to reach food [15]. Weight loss was observed when BTZ was
delivered as a free drug, in which it induced severe weight loss in
the animals (16%), while no weight loss or a slight weight gain was
observed in the lipid nanoparticle groups (empty or loaded with
BTZ) (Fig. 2D). Then, we developed a “therapeutic index -TI”
calculation to demonstrate both the increase of therapeutic

Fig. 1 E-selectin is highly expressed on tumor-associated endothelial cells in MM, which was specifically targeted by E-selectin-targeting
Lipo E-X lipid nanoparticles in vitro. E-selectin expression on ECs alone or ECs co-cultured with MM1.S cells using the 3D-Tissue Engineered
Bone Marrow (3DTEBM) model (A). A schematic of non-targeted and Lipo E-X targeted lipid nanoparticles (B). Quantitative analysis of the
binding of DiD-labeled non-targeted and Lipo E-X targeted lipid nanoparticles to ECs cultured with and without MM1.S in the 3DTEBM,
demonstrated as RMFI of DiD detected using flow cytometry (C) or qualitative analysis by using Spark® Cyto imaging system (D). We used an
unpaired Student’s t-test (*p < 0.05) for statistical significance.
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efficacy and the decrease of side effects; we defined this index as
(safety score/efficacy score). The “efficacy score” was determined
as the normalized BLI of each group to the empty-non-targeted
nanoparticles group, and the “toxicity score” was defined based
on the criteria to sac animals, in which a loss of 25% of the initial
animal weight was considered a score of 0 and weight changes

were subtracted from this value and normalized to empty-non-
targeted nanoparticles group. Therefore, the empty-non-targeted
nanoparticles group gets a TI of 1/1= 1, because both toxicities
and efficacy scores were normalized to this group. Due to the lack
of therapeutic efficacy and side effects, the TI of the empty-Lipo-E-
X targeted liposomes showed negligible change. BTZ formulations

Fig. 2 E-selectin-targeting Lipo E-X lipid nanoparticles specifically accumulate in the BM of MM-bearing mice and improve the efficacy
and reduce the side effects of BTZ in vivo. A MM.1S-GFP-Luc cells (2 × 106 cells per mouse) were injected intravenously (IV) into
immunodeficient mice (n= 4, NCG mice, 8-week-old, Charles River Laboratories). The disseminated tumor developed over the next four
weeks, which was confirmed using BLI. Pre-labeled non-targeted liposomes (DiI) and E-Selectin-targeted Lipo-E-X liposomes (DiD) were mixed
in a 1:1 ratio and injected IV at 1 mg/100uL liposomes per mouse. For the biodistribution and binding efficacy determination of these two
formulations, mice were sacrificed 24 h post-liposome injection. BM, kidney, and liver were harvested, washed, filtered, run using flow
cytometry, and analyzed for the mean fluorescence intensity (MFI) of DiI and DiD in MM-GFP+ cells, as well as in GFP- population, i.e., tumor
microenvironment using the FlowJo® software. Biodistribution of fluorescently labeled non-targeted and Lipo E-X targeted lipid (number of
positive cells per 105 of MNCs) in different organs in MM-bearing mice, was determined 24 h following a single iv injection. B The correlation
between the ratio of Lipo E-X/non-targeted lipid nanoparticles binding and the presence of MM-GFP+ cells (% of MNCs) in different organs.
CMM.1S-GFP-Luc cells were injected intravenously into immunocompromised NCG mice (n= 40). Tumor progression was confirmed using BLI
at two weeks post-injection, and (5) BTZ as a free drug. Then mice were randomized into 5 groups of 8 mice each and treated once a week
with: (1) empty non-targeted liposomes, (2) empty Lipo E-X liposomes, (3) BTZ-loaded non-targeted liposomes, and (4) BTZ-loaded Lipo E-X
liposomes. All liposomal formulations (empty or loaded) were given at 10mg/kg of liposomes, and BTZ-treated groups (free or liposomal)
were given at an equivalent dose of 1 mg/kg. Tumor progression was assessed weekly by BLI and normalized to day 0 (initiation of post-
treatment). D Percentage of weight change of mice in each group at week 5 normalized to their weight pre-treatment. E The value of the
therapeutic index of different formulations of bortezomib in vivo. Each quantified value is presented as mean ± standard deviation from four
biological replicates, and we used an unpaired Student’s t-test (*p < 0.05) for statistical significance.
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showed changes in TI, in which the free-drug BTZ showed low TI
(0.4) due to high toxicity and moderate efficacy. Non-targeted
liposomal BTZ showed moderately increased TI (1.9), reflecting the
lack of side effects and moderate improvement of efficacy, mostly
due to enhanced permeabilization and retention effect (EPR).
Importantly, Lipo-E-X targeted liposomal BTZ showed the highest
TI (2.9), reflecting the lack of side effects and significant increase in
efficacy, due to EPR and active targeting to E-selectin on TAECs in
the MM tumors (Fig. 2E).
In conclusion, we demonstrated that E-selectin is specifically

and significantly upregulated in TAECs in MM, and that it can be
used as a specific target in the MM TME. Hence, we developed E-
selecting/TAECs/TME-targeting lipid nanoparticles (Lipo E-X),
which improved therapeutic efficacy and reduced the off-target
side effects of BTZ and enhanced its therapeutic index, as a
potential solution to the dose-limiting side effects observed
clinically and experimentally when using BTZ as a free drug.
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