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Chimeric antigen receptor-T (CAR-T) therapy remains to be investigated in T-cell malignancies. CD7 is an ideal target for T-cell
malignancies but is also expressed on normal T cells, which may cause CAR-T cell fratricide. Donor-derived anti-CD7 CAR-T cells
using endoplasmic reticulum retention have shown efficacy in patients with T-cell acute lymphoblastic leukemia (ALL). Here we
launched a phase I trial to explore differences between autologous and allogeneic anti-CD7 CAR-T therapies in T-cell ALL and
lymphoma. Ten patients were treated and 5 received autologous CAR-T therapies. No dose-limiting toxicity or neurotoxicity was
observed. Grade 1–2 cytokine release syndrome occurred in 7 patients, and grade 3 in 1 patient. Grade 1–2 graft-versus-host
diseases were observed in 2 patients. Seven patients had bone marrow infiltration, and 100% of them achieved complete remission
with negative minimal residual disease within one month. Two-fifths of patients achieved extramedullary or extranodular remission.
The median follow-up was 6 (range, 2.7–14) months and bridging transplantation was not administrated. Patients treated with
allogeneic CAR-T cells had higher remission rate, less recurrence and more durable CAR-T survival than those receiving autologous
products. Allogeneic CAR-T cells appeared to be a better option for patients with T-cell malignancies.
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INTRODUCTION
Chimeric antigen receptor-T (CAR-T) cell therapy provides an
emerging and promising option for patient with hematological
malignancies. CAR-T cells targeting CD19 have shown excellent
clinical results with a complete remission (CR) rate of 90% in B-cell
acute lymphoblastic leukemia (B-ALL) [1–4]. To date, 5 CAR-T
products have been approved by Food and Drug Administration
and 2 have been marketed in China. T-cell malignancies are
heterogeneous diseases. T-ALL accounts for 15–25% in ALL [5].
Relapse remains a challenge in T-ALL and indicates a poor prognosis
[6]. In non-Hodgkin lymphoma, approximately 15% of patients are
diagnosed with T-cell lymphoma [7]. Disease refractoriness is
common in T-cell lymphoma and correlates with dismal outcomes
[8–10]. Novel therapies are needed for these patients.
CAR-T cell therapies for T-cell malignancies have been explored

and their targets include CD7, CD5, CD99 and CD38 [11–13]. CD7 is a
transmembrane glycoprotein highly expressed in T-cell lymphoblas-
tic leukemias and lymphomas (>95%), and is also present on the
majority of T cells, NK cells, and their precursors [14–16]. Thus, CAR-T
cells targeting CD7 have the potential to eliminate tumor cells, but
also holds the risk to kill normal T and CAR-T cells. Since CD7 is
proven non-essential for T-cell development or function [17, 18],
several strategies including CRISPR-Cas9, natural selection, and
endoplasmic reticulum retention, have been developed to block

CD7 expression on CAR-T cells [19–22]. By adding a vector containing
a CD7-binding domain fused to an endoplasmic reticulum retention
signal domain, CD7 trafficking to the cell surface was restrained, thus
avoiding fratricide among anti-CD7 CAR-T cells [22]. The IntraBlock
donor-derived anti-CD7 CAR-T cells have demonstrated great safety
and efficacy in patients with T-ALL in a phase I clinical trial [22].
However, it offers us space to explore the use of allogeneic or
autologous cells.
Peripheral blood mononuclear cells (PBMCs) from patients

are easy to acquire and are not limited to appropriate donors.
Autologous CAR-T cells do not cause severe graft-versus-host
disease (GVHD). For patients who have not exposed to or do
not plan to bridge allogeneic stem cell transplantation (SCT),
autologous CAR-T cells can avoid rejection by autoimmune
system. Yet, it remains a challenge to distinguish between
normal T and malignant T cells. Circulating malignant T cells
have the risk to contaminate CAR-T cell products [23]. More-
over, T cells from patients with heavily pretreated diseases
have inferior quality and quantity. To investigate the effects of
different cell sources, we launched a phase I clinical trial to
evaluate the safety and efficacy of anti-CD7 CAR-T cells in
adolescents and adults with refractory or relapsed (r/r) T-cell
malignancies, and further compared the differences between
autologous and allogeneic CAR-T cells.
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METHODS
Clinical trial design
This is a single-center phase I study of anti-CD7 CAR-T cell therapy in
patients with r/r T-cell malignancies (NCT04823091). Eligible Patients must
age 14–70 years old, be diagnosed with CD7-positive r/r T-cell ALL or
lymphomas [24], with Eastern Co-operative Oncology Group status of 0–2,
and without un-controllable infections, active intracranial lesions or organ
failures. All patients have provided written informed consents. The trial was
approved by the Medical Ethics Committee of the Union Hospital affiliated
to Huazhong University of Science and Technology, Wuhan, China.

CAR-T cell production and patient treatment plan
Peripheral blood mononuclear cells (PBMCs) were collected from patients
or donors. Donors must be equal to or over 5/10 HLA-identical siblings or
10/10 HLA-matched unrelated donors. The production process was
detailed as previously described [22]. Patients received cyclophosphamide
300mg/m2 and fludarabine 30mg/m2 daily on day −5 to −3 and infusion
of anti-CD7 CAR-T cells at the dose of 1 or 2 × 106 CAR-T cells/kg on day 0.

End points
Primary end points included incidence of treatment-related adverse
events. Cytokine release syndrome (CRS) and immune effector cell-
associated neurotoxicity syndrome were graded according to ASTCT
consensus [25]. GVHD was graded according to International Bone Marrow
Transplant Registry severity index [26]. Organotoxicities, hematologic
toxicities, and infections, were graded according to CTCAE, version 5.0
(http://ctep.cancer.gov/). If the grade of hematological toxicity raised after
the infusion compared to that after lymphodepletion and before infusion,
it is considered as a CAR-T associated adverse effect. Secondary end points
included clinical responses and kinetics of CAR-T cells. Bone marrow (BM)
blasts were assessed by flow cytometry (FCM) and cell morphology on day
7, 14 and 21 after infusion. Minimal residual disease (MRD) negativity was
defined as less than 0.01% nucleated cells. Extramedullary diseases (EMD)
were measured by imaging including positron emission tomography-
computed tomography (PET-CT) and/or CT. Proliferation and duration of
in vivo CAR-T cells were detected by FCM and droplet digital polymerase
chain reaction (ddPCR). Serum cytokines were detected by FCM using
cytometric bead array as previously described [27].

Collection and loading of single-cell RNA-seq samples
PBMCs were isolated by Ficoll density gradient sedimentation and then
captured using the SeekOne® DD Single Cell 5′ library preparation kit
following the manufacturer protocol. Libraries sequencing was performed
in an Illumina NovaSeq 6000. The specific protocol is detailed in the
supplementary materials.

Statistical analysis
Clinical safety, efficacy and CAR-T kinetics were summarized and analyzed
using descriptive statistics. All analyses were performed with the use of
GraphPad Prism 9.0. Correlation and subgroup analysis were done by the
two-tailed student’s t test. P < 0.05 was considered statistically significant.
Single-cell RNA-seq data were analyzed by R package Seurat. Reciprocal

Principal Component Analysis was administrated to integrate two samples.
Cells were clustered based on a graph-based clustering approach, and
were visualized in 2-dimension using Uniform Manifold Approximation and
Projection (UMAP). Significant differentially expressed genes were
identified as log2 average expression >1 and P < 0.00001.

RESULT
Characteristics of patients and anti-CD7 CAR-T infused
products
From April 15, 2021 to January 13, 2022, 11 patients were enrolled
in this trial. Expect for one patient who achieved complete
remission (CR) before CAR-T cell infusion, 10 were treated (Fig. 1).
Seven patients (70%) were male, and the median age was 32
(range, 16–69) years (Table 1). All enrolled patients had CD7+

T-cell malignancies including adult T-ALL, T-cell lymphoblastic
lymphoma, angioimmunoblastic T-cell lymphoma and mycosis
fungoides. The median lines of previous therapies were 4 (range,
2–10). One patient received an excision of mediastinal tumor, 7

patients received allogeneic SCT, and one received donor
lymphocyte infusion. Five patients (50%) had ALL including one
with extramedullary disease (EMD) involving the nasopharynx and
clavicle. Four patients were diagnosed with lymphoma grading II-
IV according to Ann Arbor stage. Two of them had BM infiltrations
and four had extranodular lymphoma including mediastinum,
lung, chest wall, gastrointestinal tract, spleen, and subcutaneous
tissue. Patient 1 had IIIA mycosis fungoides staging by TNMB
(tumor, node, metastasis, blood) classification [28]. The median
blasts were 25% (range, 0.42–53%) in 7 patients with BM
infiltration. Three patients had high-risk mutations including
RUNX1 [29, 30], HOX11L2 [31], and KMT2D [32]. Patient 6 and
patient 7 received chidamide, a histone deacetylase inhibitor, as
bridging therapy after aphesis and before lymphodepletion.
Based on the patient’s tumor burden, pancytopenia status, the

preference and donor availability, PBMCs were collected from the
patients (n= 5) or donors (n= 5) for CAR-T cell production. The
characteristics of infused CAR-T cell products are presented in
Supplementary Table 1. The median transfection efficiency was
46.3% (range, 40.2–81.7%) and the median CD4+/CD8+ T-cell ratio
was 6.6 (range, 1.5–55.9). All cell products were frozen due to
long-distance transportation and were thawed within 15 min
before infusion. The median vein-to-vein time of patients with
autologous CAR-T cells was 18 days (range, 16–26), and that of
patients with allogeneic CAR-T cells was 22 days (range, 17–101).
Due to various reasons such as patients’ infections, overloaded
ward and COVID-19, the vein-to-vein time was generally longer
than the manufacturing time (Supplementary Table 2). One
patient achieved CR when the product was done and receiving
allogeneic CAR-T cells after his second relapse.

Safety
Eight patients (80%) experienced CRS, with grade 1–2 in 7 patients
(70%) and grade 3 in one patient (10%) (Table 2). The median time
of onset and duration of CRS was 10 (range, 7–15) days and 4
(range, 2–9) days, respectively. Both tocilizumab and corticoster-
oids were administrated for 5 patients. Considering the serum
levels of interleukin-6, 3 patients received dexamethasone alone
(Supplementary Table 3) [33]. Immune effector cell-associated
neurotoxicity syndrome was not observed among these partici-
pants. Two patients were diagnosed with hemophagocytic
lymphohistiocytosis (HLH). Patient 3 recovered from HLH after
intravenous steroids. Steroids and etoposide failed to control
Epstein-Barr virus (EBV)-related HLH of patient 10, and the patient
died from fungal pneumonia on day 63.
GVHD of grade 1–2 occurred in two patients. Patient 4 who

received allogeneic CAR-T cells developed acute GVHD presented
as diarrhea and maculopapular rash. Patient 2 had previously
received allogeneic SCT. She was treated with autologous CAR-T
cells and developed chronic GVHD characterized as skin
desquamation and pigmentation. GVHDs of these patients were
well controlled by tacrolimus and methylprednisolone.
Pancytopenia was generally observed in these patients which

might correlate to patients’ marrow reserves, lymphodepletion or
CAR-T therapy (Supplementary Table 4). Five patients (50%) had
grade ≥3 cytopenia before lymphodepletion. All patients devel-
oped grade 4 lymphopenia, neutropenia and leukopenia after
infusion. Persistent grade 3–4 lymphopenia and neutropenia over
one month occurred in 2 patient and 3 patients, respectively.
Secondary appearance of grade 4 lymphopenia and neutropenia
were observed in patient 2 and 10. Patient 4 developed grade 4
lymphopenia during day 52 to day 75. Seven patients (70%)
suffered grade ≥ 3 thrombocytopenia. Grade ≥ 3 anemia occurred
in 7 patients (70%). A significant secondary decrease of platelets
was found in patients 4, 8 and 9 (Supplementary Fig. 1). Patient 9
recovered to an absolute platelet count of at least 50,000 per
cubic millimeter by day 28 but plunged to 21,000 per cubic
millimeter on month 2. The patient died from a sudden
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Fig. 1 Consort diagram of patient flow. Ten patients were enrolled in the study and underwent leukapheresis. Anti-CD7 CAR-T cells were
derived from patients or their donors and infused into all patients at a low dose (1 × 106/kg, n= 5) or a high dose (2 × 106/kg, n= 5).

Table 1. Baseline patient characteristics.

Characteristics Total (N= 10) Autologous (N= 5) Donor derived (N= 5)

Median age (range), years 32 (16–69) 32 (16–69) 23 (18–36)

Male, No. (%) 7 (70) 3 (60) 4 (80)

Prognosis of disease, No (%)

Acute T-cell lymphoblastic leukemia 5 (50) 2 (40) 3 (60)

T-cell lymphoblastic lymphoma 3 (30) 1 (20) 2 (40)

Angioimmunoblastic T-cell lymphoma 1 (10) 1 (20) 0 (0)

Mycosis fungoides 1 (20) 1 (20) 0 (0)

Previous therapies

Median lines of therapy (range) 4 (2–10) 4 (2–4) 5 (4–10)

Surgery, No (%) 1 (10) 1 (20) 0 (0)

Allogeneic SCT, No (%) 6 (60) 2 (40) 4 (80)

Donor lymphocyte infusion, No (%) 1 (10) 0 (0) 1 (20)

Primary refractory disease, No (%) 4 (40) 3 (60) 1 (20)

Baseline disease burden

Bone marrow blasts, %

>50 1 (10) 1 (20) 0 (0)

25–50 3 (30) 1 (20) 2 (40)

5–25 2 (20) 0 (0) 2 (40)

<5 4 (40) 3 (60) 1 (20)

Median blasts, range 15 (0–53) 0 (0–25) 40 (15–53)

EMD, No (%) 5 (50) 3 (60) 2 (40)

High-risk phenotype or genotypes 4 (40) 2 (40) 2 (40)

≥Grade 3 cytopenia, No (%) 6 (60) 4 (80) 2 (40)

Bridging therapies 2 (20) 1 (20) 1 (20)

SCT stem cell transplatation, EMD extramedullary disease.
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intracerebral hemorrhage on day 81 and the pathogenesis was
unclarified.
Six patients experienced 9 infections (Supplementary Table 3).

Five occurred within one month after infusion, with 3 bacterial
infections, 1 fungal infection and 1 viral infection. Three patients
suffered from cytomegalovirus (CMV) or EBV activation, mani-
fested with cough, fever or diarrhea. Patient 4 developed viral
pneumonia associated with EBV infection on day 62 and died from
respiratory failure on day 75 (Supplementary Table 5).

Efficacy and long-term outcomes
At a median follow-up of 6 (range, 2.7–14) months, the best
overall response rate (ORR) was 70% (Fig. 2A). Among 7
responders, 3 patient received autologous cells and 4 were
treated allogeneic therapies. Within a month post infusion, 7
patients with BM infiltration (100%) achieved MRD-negative CR.
Four patients with high-risk mutations (100%) achieved molecular
remission. Two patients with EMD or extranodular infiltrations
responded to CAR-T therapies, including 1 CR (Fig. 2B) and 1
partial remission (PR) (Fig. 2C). Patients 6 and 7 with progressively
bulky lymphoma withdrew from the trial on day 14 and 25,
respectively. Shrunken lymphadenopathy was observed in patient
10 on day 49, but unfortunately, the reduction did not reach the
criteria of PR.
None of patients received SCT after CAR-T cell therapies. After

autologous CAR-T cell therapies, patient 1 with mycosis fungoides
achieved PR on day 65, relapsed on day 180 and attained CR

followed by 11-fraction radiotherapy; patients 2 and 3 suffered
CD7+ relapses on day 103 and 140, respectively. After allogeneic
CAR-T cell therapies, patient 8 with KMT2D and HOX11L2
mutations had a CD7- relapse at month 3; patient 5 with T-ALL
maintained MRD-negative remission for 9 months; patients 4 and
9 died during remission as previously described.

Kinetics of anti-CD7 CAR-T cells and serum cytokines
We adopted two methods to detect in vivo CAR-T cells. During
treatment, FCM is more convenient to trace the expansion of CAR-
T cells. However, PCR has higher sensitivity for tracking a trickle of
CAR-T cells during follow-up. The median time of peak expansion
measured by FCM was 14 (range, 7–23) days after infusion. The
median levels of peak expansion were 409.0 (range,11.4–8640.0)
per μl measured by FCM and 7.95 × 104 (range,
2.88 × 102–1.75 × 105) copies per microgram genomic DNA
measured by ddPCR, respectively (Fig. 3A, B). Limited by the
small sample size, peak CAR copies were not significantly
correlated with cell sources, disease subtypes, tumor burden
and dose of infused cells, but they were associated with the best
efficacy (P= 0.02) (Fig. 3C, Supplementary Fig. 2). Four patients
(57.1%) had a relatively high level of CAR-T copies detected by
ddPCR at month 2, among whom 3 received allogeneic CAR-T cells
and 1 received autologous products.
Sixteen serum biomarkers were detected after infusions, among

which 10 rise at different levels in a group of patients (Fig. 4A).
Unfortunately, the data was insufficient for statistical analysis.

Table 2. Adverse events within a month post infusion.

Adverse events Grade 1 Grade 2 Grade 3 Grade 4 Total patients

CRS

Total score 3 (30) 4 (40) 1 (10) 0 8 (80)

Fever 3 (30) 4 (40) 1 (10) 0 7 (70)

Hypoxia 0 3 (30) 1 (10) 0 4 (40)

Hypotension 0 2 (20) 1 (10) 0 3 (30)

ICANS

Total score 0 0 0 0 0

GVHD

Total score 1 (10) 1 (10) 0 0 2 (20)

Skin 1 (10) 1 (10) 0 0 2 (20)

Intestinal 0 1 (10) 0 0 1 (10)

Liver 0 0 0 0

Hematological Event

Anemia 1 (10) 0 3 (30) 0 4 (40)

Thrombocytopenia 2 (20) 1 (10) 1 (10) 5 (50) 4 (40)

Leukopenia 0 0 0 9 (90) 9 (90)

Neutropenia 0 0 0 9 (90) 9 (90)

Lymphocytopenia 0 0 0 9 (90) 9 (90)

Infection

Total scores 0 0 5 (50) 0 4 (40)

Virus 0 0 1 (10) 0 1 (10)

Bacteria 0 0 3 (30) 0 3 (30)

Fungus 0 0 1 (10) 0 1 (10)

Others

Hypofibrinogenemia 5 (50) 0 0 0 5 (50)

Capillary leak syndrome 2 (20) 0 0 0 2 (20)

HLH 0 0 1 (10) 1 (10) 2 (20)

CRS cytokine release syndrome, ICANS immune effector cell-associated neurotoxicity syndrome, GVHD graft-versus-host disease, HLH hemophagocytic
lymphohistiocytosis.
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Serum interleukin-6, interleukin-10, interferon-γ showed signifi-
cant summits in patients 2, 5, 7, 8 and 9 (Fig. 4B). These summits
clung to the occurrence of CRS-related symptoms and were prior
to CAR-T cell peak amplification (Supplementary Fig. 3).
The absolute count of T cells had a transient decline after CAR-T

infusion followed by a dramatic rise due to CAR-T cell proliferation
(Supplementary Fig. 4). Accompanied by CAR-T amplification,
CD7+ T cells were rapidly eliminated and CD7− cell subsets
remained alive (Fig. 4D). T cells reached a median count of 401.82
(range, 46.47–1998.40) per μl a month post infusion.

Single-cell RNA sequencing
Patients 1 and 5 achieved durable remission after receiving CAR-T
cell therapies. To further explore the immune reconstitution after
CAR-T cell infusion, we performed single-cell transcriptomic
sequencing of PBMCs derived from the two patients. Sample 1
was from patient 1 at 12 months after autologous CAR-T
treatment, and sample 2 from patient 5 at 9 months after
allogeneic CAR-T therapy. After performing quality control, we
included 8627 cells from sample 1 and 12,455 cells from sample 2
for further analysis. UMAP analysis revealed 22 clusters in both
sample 1 and 2 (Supplementary Figs. 5 and 6). Sample 2 contained
a higher proportion of T cells compared with sample 1 (79.40% vs
55.04%). Among T cells, CD8+ T cells accounted for 74.27% in
sample 2. A predominant cluster of NK cell accounted for 10.46%
in sample 1 (Fig. 5A). Notably, CD7 expression differed significantly
between the two samples, especially higher expression on NK cells
from sample 1, but almost absent on sample 2 (Fig. 5B). We

analyzed differentially expressed genes in CD4+ T, CD8+ T, and NK
cells, and found that only CD4+ T in sample 1 highly expressed
FOS, which was enriched in the TNF signaling pathway
(Supplementary Figs. 7 and 8). CD7 and FCER1G were upregulated
in NK cells in sample 1, but were not enriched to any pathway.
We further divided T cells into 16 clusters via Principal

Component Analysis and found that 93.9% of T cells from sample
2 expressed T-cell effector function-related genes (Supplementary
Figs. 9 and 10). Patient 1 had higher levels of memory T, γδ T and
cytotoxic T cells with high granzyme B compared with patient 5
(Fig. 5C, D). Immune checkpoint, TIGIT, was widely expressed on
effector T cells of patient 1 but limited to exhausted T cells of
patient 5 (Fig. 5D). Patient 5 had relatively less regulatory T cells
compared with patient 1, and myeloid-derived suppressor cells
and tumor-associated macrophages were not detected.

DISCUSSION
Patients with relapsed or refractory T-ALL/lymphoma have dismal
outcomes under the intervention of traditional chemotherapies
and the combination of targeted medicines showed limited
efficacy [34, 35]. Thus, CAR-T therapy were considered the last
resort to save these patients. The products adopted in our trial has
been reported in a previous study among children and youngers
with T-ALL [22]. However, advanced age is a high-risk factor for
poor prognosis for leukemia. In this clinical trial, we focus on the
teenagers and adults with T-ALL or lymphoma. Among patients
aging 16 to 69, 70% achieved CR with mild CRS and no ICANS.

Fig. 2 Clinical response to anti-CD7 CAR-T cells. A The clinical responses of patients’ BM and EMD post anti-CD7 CAR-T infusion are shown
by swimmer plots. For patients without BM infiltration or EMD, striped bars are presented. PT patient, BM bone marrow, EMD extramedullary
disease, CR complete remission, PR partial response, SD stable disease, PD progressive disease. * EMD did not existed during screening in
patient 2 and she achieved MRD- CR after infusion. On the 140th post infusion, extramedullary recurrence occurred in the gastric wall, pelvic
peritoneum and multiple lymph nodes detected by PET-CT. B Representative PET-CT images of patient 6 before and after anti-CD7 CAR-T cells
infusion. As is shown in PET-CT, patient 6 had lesions in nasopharynx and left clavicle. The patient achieved extramedullary complete
remission at day 30 post infusion. C Images of patient 1 before and after anti-CD7 CAR-T cells infusion. Patient 1 had diffuse lesions over the
body, especially on his elbows and right knee (left), and achieved remarkable remission with a small phyma on the right knee on Day 65.
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Another hit of our study is to identify the pros and cons of CAR-
T cells derived from different cell origins which can provide
evidence to optimize the treatment. Although it seems that
allogeneic CAR-T cells would not shorten the length of
manufacture, allogeneic CAR-T cells do have advantages in
acquiring the optimal window of the latest therapy. After the
latest chemotherapy, patients with autologous CAR-T cells were
demanded for more time to recover from cytopenia (median time,
36 days vs. 11 days). For patients with highly aggressive and
rapidly progressing malignancies, the choice to receive allogeneic
CAR-T cells can eliminate the need to go through a one-month
drug elution period before leukapheresis, which can greatly
reduce the likelihood of rapid disease progression.
The CR rate of patients receiving allogeneic cells was 80% and

that of patients with autologous products was 40%. During the
follow-up period, the relapse rate showed more remarkable
differences. One patient (25%) with allogeneic CAR-T cells suffered
CD7− recurrence. One hundred percent of patients treated with
autologous CAR-T cells relapsed whether in BM or in EMD. Patients
experienced CD7+ recurrence, but CAR copies were not detect-
able in vivo. The less persistence of autologous CAR-T cells might
contribute to the treatment failure. CAR-T cells could stably survive

in 75% of patients with allogeneic cells but only 33% of patients
receiving autologous cells at month 2. Single-cell RNA sequencing
can further reveal the internal factors for the long-term
persistence of allogeneic CAR-T cells. CAR copies did exist at
month 9 of patient 5. The remaining anti-CD7 CAR-T cells spared
CD7- T and NK cells at the transcriptional level. Previous studies
had demonstrated that a deficiency of CD7 might promote CD8+

T cells toward effector phenotype [36] and reduce secretion of
interleukin-2 in CD4+ T cells [37], which could explain the
downregulated expression of proliferation-related genes like
FOS, as well as the decreased proportion of Treg cells. CD7 loss
alleviates the exhaustion of CAR-T cells mediated by chronic
antigen stimulation and reduces proportion of Treg cells in the
immune microenvironment as the possible mechanism of long-
term survival of allogeneic CAR-T cells
CRS, ICANS and GVHD are main adverse events but mild in our

study. Patients with allogeneic CAR-T cells did not suffer from
ICANS, severe CRS or GVHD. Expect for these common complica-
tions, hematological toxicities, HLH, infections and T-cell aplasia
were also observed in this trial. Although hematological toxicities
were significant, our data was broadly consistent with other anti-
CD7 CAR-T studies [19–22]. CD34+ stem cell infusion and
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transplantation could effectively restore patients’ bone marrow
hematopoietic function after multiple lines of treatment. Long-
term cytopenia may also be associated with the absence of a
bridging SCT. HLH has been described as a second inflammatory
storm after CRS. The incidence of HLH in patients with CRS was
40.4% and 26.7% in anti-CD19 and CD22 CAR-T cells [38, 39].
Steroids, ruxolitinib and anakinra were recommended for the
treatment of HLH. In our study, two patients developed HLH after
CRS and were treated with steroids and etoposide. Heavy tumor
burden has been proven high risks of HLH which may explain the
deterioration in patient 10 with diffused gastrointestinal infiltra-
tion [38]. Two patients with EBV activation died of pneumonia on
day 63 and day 75, respectively. EBV-associated B-cell lympho-
proliferation has been reported in a case treated with anti-CD7
CAR-T cells [20]. Both of these clinical findings indicated that
patients with a history of EBV infection should be enrolled in

caution, otherwise they should be closely monitored. The recovery
of T cells within one month was in line to the previous study.
Single-cell RNA sequencing indicated that CD7− T cells had
normal immune functions [22].
Limitations exist in our study. This is not a randomized

controlled trial in consideration of the patients’ conditions.
Moreover, the sample size of patients is small and extended
follow-up time are needed for further evaluation of long-term
outcomes.
In summary, our study has revealed that this IntraBlock anti-CD7

CAR-T cell therapy had achieved remarkable efficacy in teenager
and adult patients with R/R T-cell malignancies, especially for
patients with allogeneic products. In face of high relapse rate of
patients with autologous CAR-T cells, consolidation therapies are
recommended and need further investigation. As the majority of
adverse events common in these trials were manageable, the anti-

Fig. 4 Serum biomarkers in peripheral blood after CAR-T cell infusions. A A heatmap of biomarkers. Each row is a biomarker, and each
column is a time point. At each time point, the color patches from left to right represent patient 1–10, respectively. B Kinetics of IL-6, IL-10 and
IFN -γ in peripheral in individual patients measured by cytometric bead array. Pronounced increases of these cytokines were detected in
patients 2, 5, 7, 8 and 9, which were overlapped with grade 1 or 2 cytokine release syndrome and precede the peak of CAR-T cell expansion.

Y. Zhang et al.

7

Blood Cancer Journal           (2023) 13:61 



CD7 CAR-T cell therapy has been regarded a promising option for
patients with R/R T-cell malignancies.

DATA AVAILABILITY
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corresponding authors upon reasonable request.
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