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Functional perturbations of the cohesin complex with subsequent changes in chromatin structure and replication are reported in a
multitude of cancers including acute myeloid leukemia (AML). Mutations of its STAG2 subunit may predict unfavorable risk as
recognized by the 2022 European Leukemia Net recommendations, but the underlying evidence is limited by small sample sizes
and conflicting observations regarding clinical outcomes, as well as scarce information on other cohesion complex subunits. We
retrospectively analyzed data from a multi-center cohort of 1615 intensively treated AML patients and identified distinct co-
mutational patters for mutations of STAG2, which were associated with normal karyotypes (NK) and concomitant mutations in IDH2,
RUNX1, BCOR, ASXL1, and SRSF2. Mutated RAD21 was associated with NK, mutated EZH2, KRAS, CBL, and NPM1. Patients harboring
mutated STAG2 were older and presented with decreased white blood cell, bone marrow and peripheral blood blast counts. Overall,
neither mutated STAG2, RAD21, SMC1A nor SMC3 displayed any significant, independent effect on clinical outcomes defined as
complete remission, event-free, relapse-free or overall survival. However, we found almost complete mutual exclusivity of genetic
alterations of individual cohesin subunits. This mutual exclusivity may be the basis for therapeutic strategies via synthetic lethality
in cohesin mutated AML.
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INTRODUCTION
Acute myeloid leukemia (AML) is a genetically complex disease.
The recently revised WHO classification acknowledges a variety of
genetically defined alterations which constitute distinct disease
entities [1]. Correspondingly, our understanding of myeloid
neoplasms moves away from somewhat arbitrary numerical
counts of bone marrow blasts and toward an appreciation of
genetic drivers of disease as is acknowledged in the revised

International Consensus Criteria [2]. On this basis, the recently
revised European Leukemia Net (ELN) recommendations broaden
the spectrum of clinically relevant genetic alterations with respect
to individual patient risk warranting treatment that is adjusted to
individual low-, intermediate-, and high-risk molecular alterations
and cytogenetics [3]. In these updated definitions, mutations of
the cohesin subunit SA-2 (STAG2) are recognized as a defining
alteration of AML with myelodysplasia-related gene mutations (in
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absence of other defining alterations) irrespective of prior
presence of myelodysplastic neoplasms [3]. Further, mutated
STAG2 is defined as a prognostic marker of high-risk (if not co-
occurring with favorable risk AML subtypes) incentivizing inten-
sive treatment and, potentially, allogeneic hematopoietic stem cell
transplantation (HCT) [3].
STAG2, double-strand-break repair protein rad21 homologue

(RAD21), and structural maintenance of chromosomes (SMC)
proteins 1 A (SMC1A) and 3 (SMC3) form the four core units of the
cohesin complex, a ring-like protein complex that encircles sister
chromatids during replication and initiates metaphase-to-
anaphase-transition upon sister chromatid release [4]. Addition-
ally, the cohesion complex plays a key role in regulation of both
structure and function of chromatin where it is recruited to
chromatin binding sites via CCCTF-binding-factor [5]. Since the
initial discovery of the cohesin complex in 1997(refs. [6, 7]),
genetic alterations have been detected in a multitude of
malignant neoplasms [8] including bladder cancer [9–11], Ewing
sarcoma [12–14], endometrial cancer [15], glioblastoma [16], and
myeloid malignancies [17–24].
While initially inactivating mutations of the cohesin complex

were thought to promote carcinogenesis via aberrant segregation
of sister chromatids and subsequent aneuploidy, especially recent
findings of altered cohesin subunits in commonly euploid myeloid
malignancies (with the exception of myeloid leukemias associated
with Down Syndrome [18]) hint at more complex mechanisms of
pathogenesis [4]. For instance, the finding that cohesin-CCCTF-
binding-factor sites are frequently altered in cancer cells under-
lines the cohesins’ function in three-dimensional chromosome
organization as a key component of carcinogenesis in a variety of
neoplasms [25–27]. Further, inactivation of cohesin subunits may
result in a complete collapse of topologically-associating-domain
(TAD) structure [28–30]. Additionally, mutated cohesin subunits
appear to play a role in stemness and differentiation in
hematopoietic stem cells (HSC). Inactivation of STAG2, RAD21,
SMC1A, and SMC3 was found to promote stem cell self-renewal in
human and mouse HSCs in vitro and subunit-specific knockout
mice were found to bear changes in erythroid and myeloid
differentiation mimicking myeloproliferative disorders similar to
early human leukemogenesis [31–33]. This results in a proliferation
advantage hinting at a key function of the cohesin complex in
regulating cellular differentiation [31–33].
Taken together, these findings suggest a multi-facetted role of

the cohesin complex and its individual subunits in human
carcinogenesis. The impact of individually altered cohesin
subunits on patient outcome in AML is unclear as previous
studies have suggested unfavorable [17], favorable [19] as well as
no prognostic impact [20]. Therefore, we aimed to identify distinct
co-mutational patters for mutations of STAG2 and other proteins
of the cohesion complex that help to predict clinical outcomes in a
large multicentric cohort of adult patients with AML.

METHODS
Data set and definitions
We retrospectively analyzed a cohort of 1615 adult AML patients that were
treated in previously reported multicenter trials (AML96(ref. [34])
[NCT00180115], AML2003(ref. [35]) [NCT00180102], AML60+ (ref. [36])
[NCT 00180167], and SORAML(ref. [37]) [NCT00893373]) or registered in the
bio-registry of the German Study Alliance Leukemia (SAL [NCT03188874])
which encompasses 59 centers specialized in the treatment of hemato-
logic neoplasms across Germany and the Czech Republic. Patients were
eligible based on diagnosis of AML according to WHO criteria [1], age ≥ 18
years, curative treatment intent and available biomaterial at diagnosis.
Prior to analysis, all patients gave their written informed consent according
to the revised Declaration of Helsinki [38]. All studies were approved by the
Institutional Review Board of the Technical University Dresden (EK
98032010). Complete remission (CR) and survival times including event-
free (EFS), relapse-free (RFS), and overall survival (OS) were defined

according to ELN2022 criteria [3]. Patients were retrospectively re-stratified
into ELN2022 risk groups [3]. Since patients from earlier clinical trials were
only re-stratified according to ELN2022 criteria, study accrual was not
influence based on ELN risk. A summary of individual study protocols is
provided in table S1. AML was defined as de novo when no prior
malignancy and no prior treatment with chemo- and/or radiotherapy was
reported. AML was defined as secondary (sAML) when prior myeloid
neoplasms were reported, and therapy-associated (tAML) when prior
exposure to chemo- and/or radiotherapy was reported.

Molecular analysis and cytogenetic analysis
Pre-treatment peripheral blood or bone marrow aspirates were screened
for genetic alterations using next-generation sequencing (NGS) with the
TruSight Myeloid Sequencing Panel (Illumina, San Diego, CA, USA) covering
54 genes (table S2) that are associated with myeloid neoplasms including
full coding exons for SMC1A, RAD21, and STAG2 and relevant exons (10, 13,
19, 23, 25, and 28) for SMC3 according to the manufacturer’s
recommendations as previously reported [39, 40]. DNA was extracted
using the DNeasy blood and tissue kit (Qiagen, Hilden, Germany) and
quantified with the NanoDrop spectrophotometer. Pooled samples were
sequenced paired-end (150 bp PE) on a NextSeq NGS-instrument
(Illumina). Sequence data alignment of demultiplexed FastQ files, variant
calling and filtering was performed with the Sequence Pilot software
package (JSI medical systems GmbH, Ettenheim, Germany) with default
settings and a 5% variant allele frequency (VAF) mutation calling cut-off.
Human genome build HG19 was used as reference genome for mapping
algorithms. Dichotomization of dominant and subclonal (or secondary)
mutations was performed by comparing VAFs of detected mutations with
VAFs of co-mutated driver variants. For resolution of putative subclonal
mutations a minimum difference of 10% VAF was applied. For cytogenetic
analysis, standard techniques for chromosome banding and fluorescence-
in-situ-hybridization (FISH) were used.

Statistical analysis
Statistical analysis was performed using STATA BE 17.0 (Stata Corp, College
Station, TX, USA). All tests were carried out as two-sided tests. Statistical
significance was determined using a significance level α of 0.05. Fisher’s
exact test was used to compare categorical variables. Normality was
assessed using the Shapiro-Wilk test. If the assumption of normality was
met, continuous variables between two groups were analyzed using the
two-sided unpaired t-test. If the assumption of normality was violated,
continuous variables between two groups were analyzed using the
Wilcoxon rank sum test. With regard to outcome variables, patients were
analyzed on a complete case basis. Univariate analysis was carried out
using logistic regression to obtain odds ratios (OR). Time-to-event analysis
was performed using Cox-proportional hazard models to obtain hazard
ratios (HR) as well as the Kaplan-Meier-method and the log-rank-test. For
survival times, OR and HR, 95%-confidence-intervals (95%-CI) are reported.
Multivariable models were adjusted for ELN2022 categories and age. In the
case of AML with mutated STAG2, additional adjustments were performed
in multivariable analysis for frequently co-mutated genes with an
established impact on patient outcome according to ELN2022 definitions
[3]. Median follow-up time was calculated using the reverse Kaplan-Meier
method [41].

RESULTS
Alterations of cohesin complex genes are recurrent events in
AML with distinct clinical presentation
Alterations of any of genes of the cohesin complex (i.e. STAG2,
RAD21, SMC1A and SMC3) were found in 184 of 1615 patients
(11.4%). With the exception of one patient harboring both
mutated STAG2 and SMC3, alterations of cohesin complex genes
were found to be mutually exclusive. With respect to clinical
presentation, patients harboring mutations in genes of the
cohesin complex had significantly lower white blood cell count
(WBC, median 12.1*109/l vs, 20.4*109/l, p= 0.001), peripheral
blood blast count (PBB, median 25.5% vs. 41.0%, p= 0.020), and
bone marrow blast count (BMB, median 54.0% vs. 63.5%,
p < 0.001) at initial diagnosis. Mutations in the cohesin complex
were significantly associated with normal karyotypes (66.8% vs.
49.6%, p < 0.001), mutated TET2 (25.0% vs. 18.5%, p= 0.046),
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ASXL1 (17.9% vs. 7.1%, p < 0.001), and SRSF2 (16.8% vs. 5.0%,
p < 0.001), while inframe mutations in CEBPA-bZIP (7.6% vs. 9.1%,
p= 0.008) and mutated IKZF1 (0% vs. 3.2%, p= 0.007), TP53 (2.7%
vs. 7.7%, p= 0.009), complex karyotypes (6.0% vs. 12.4%,
p= 0.022) and inv [16] or t(16;16) were rare (0.5% vs. 4.0%,
p= 0.016) compared to cohesin wild-type AML. Table 1 shows
baseline characteristics of patients with wild-type and cohesin
mutated AML and Table S3 illustrates associations with other
recurrent genetic alterations. Median follow-up time for the entire
cohort was 89.5 months (95%-CI: 85.5-95.4).

AML with mutated STAG2 shows a distinct co-mutational
pattern and clinical presentation while patient outcome is not
affected
Mutations in STAG2 were the most frequent alterations of cohesin
complex genes in the cohort (n= 88, 5.4%). The majority of STAG2
mutations were nonsense mutations (n= 82, 93.2%), while
missense mutations were rare (n= 6, 6.8%, Fig. 1A). Alterations
of STAG2 were more often dominant (58.0%) rather than subclonal
(42.0%). At initial presentation, AML patients harboring mutated
STAG2 were significantly older (58 years vs. 55 years, p= 0.023)
and had lower WBC (median 5.4 × 109/l vs. 20.7 × 109/l, p < 0.001),
PBB (20.0% vs. 41.0%, p < 0.001), BMB (48.3% vs. 63.5%, p < 0.001)
and LDH (median 342 U/l vs. 450.8 U/l, p= 0.001). Table S4
provides an overview of baseline characteristics of patients with
STAG2-mutated AML. Alterations of STAG2 were frequently
associated with normal karyotypes (75.0% vs. 50.4%, p < 0.001),
mutated IDH2 (23.9% vs. 13.5%, p= 0.011), RUNX1 (18.2% vs. 8.8%,
p= 0.007), BCOR (12.5% vs. 4.3%, p= 0.002), ASXL1 (31.8% vs.
6.9%, p < 0.001), SRSF2 (27.3% vs. 5.1%, p < 0.001), CUX1 (6.8% vs.
2.4%, p= 0.004), and ZRSR2 (4.5% vs. 1.4%, p= 0.044). Compared
to STAG2-wild-type AML, in-frame mutations of CEBPA-bZIP (5.7%
vs. 9.1%, p= 0.004) as well as mutated NPM1 (14.8% vs. 32.0%,
p < 0.001) and FLT3-ITD (9.1% vs. 22.3%, p= 0.002) were sig-
nificantly less common (Fig. 1B, Table S5). With respect to patient
outcome, we found no difference in CR rate between patients with
mutated or wild-type STAG2 (63.6% vs. 66.8%, OR= 0.71,
p= 0.138). EFS, RFS and OS did not differ (Table 2, Fig. 1C–E).
Clonality, i. e. whether mutated STAG2 was present in the
dominant clone or detected at a subclonal level, did also not
influence patient outcome. Mutations of BCOR, RUNX1 and ASXL1
are established markers of adverse risk and mutated STAG2 has
been added as an adverse marker in the recent ELN2022
recommendations [3]. Since patients that harbored mutations of
STAG2 showed a co-mutational pattern with significantly
increased rates of co-mutated BCOR, RUNX1 and ASXL1, we
evaluated their individual influence on outcome in multivariable
models. With respect to achievement of CR, mutated STAG2
remained of no independent prognostic impact in a multivariable
model adjusted for mutational status of BCOR, RUNX1, and ASXL1
(Table S6) while mutated RUNX1 and ASXL1 showed significantly
decreased ORs to achieve CR (p < 0.001 for both) in this model.
Regarding survival times, multivariable models adjusted for
mutations of BCOR, RUNX1, and ASXL1 also showed no indepen-
dent impact of mutated STAG2 on EFS (Table S7), RFS (Table S8),
and OS (Table S9). Contrastingly, mutated RUNX1 showed
significantly increased HRs for EFS, RFS, OS, while mutated ASXL1
showed significantly increased HRs for EFS and OS, and mutated
BCOR showed a significantly increased HR only for EFS in these
multivariable models (Tables S6–8).

AML with mutated RAD21 shows a distinct co-mutational
pattern while RAD21 mutational status does not influence
outcome
The second most common alteration was RAD21 which was
detected in 51 patients (3.2%), again mostly being nonsense
(n= 35, 68.6%) rather than missense mutations (n= 16, 31.4%,
Fig. 2A). Further, alterations of RAD21 were mostly dominant

(n= 36, 70.6%). With respect to baseline patient characteristics,
patients harboring RAD21 mutations showed significantly
increased LDH (median 705.0 U/l vs. 440.2 U/l, p < 0.001) upon
initial diagnosis. Table S10 provides an overview of baseline
patient characteristics. Patients with mutated RAD21 were most
frequently categorized within the ELN2022 favorable risk group
(51.0% vs. 35.2%, p= 0.037), while categorization in the ELN2022
adverse risk group was less prevalent (15.7% vs. 37.0%, p= 0.001).
Concordantly, patients with mutated RAD21 commonly had

Table 1. Baseline patient characteristics with respect to cohesin
mutation status.

Parameter Cohesin
mutated

Cohesin
wildtype

p

n/N (%) 184/1615 (11.4) 1426/
1615 (88.3)

Age (years), median
(IQR)

57 (48.5-65.5) 53 (44.0-65.0) 0.112

Sex, n (%) 0.643

female 94 (49.7) 683 (47.9)

male 95 (50.3) 743 (52.1)

Disease status,
n (%)

de novo 141 (79.7) 1198 (84.9) 0.133

sAML 30 (16.9) 165 (11.7) 0.050

tAML 6 (3.4) 48 (3.4) 1.000

extramedullary
disease, n (%)

24 (12.7) 190 (13.3) 1.000

ELN-Risk 2022,
n (%)

favorable 59 (31.2) 518 (36.3) 0.324

intermediate 32 (1518/
16156.9)

392 (27.5) 0.004

adverse* 88 (46.6)* 498 (34.9)* 0.001*

missing 10 (5.3) 18 (1.3)

Complex karyotype,
n (%)

0.022

No 144 (92.9) 1123 (86.4)

Yes 11 (7.1) 177 (13.6)

Normal karyotype, n
(%)

<0.001

No 46 (27.2) 627 (47.0)

Yes 123 (72.8) 707 (53.0)

allogeneic HCT

in first CR 27 (14.7) 217 (15.2) 1.000

overall 55 (30.0) 464 (32.5) 0.613

missing 4 (2.2) 0

Laboratory, median
(IQR)

WBC (109/l) 12.1 (3.2-41.1) 20.4 (4.9-55.5) 0.001

HB (mmol/l) 6.0 (5.0-6.8) 5.9 (5.1-7.0) 0.764

PLT (109/l) 49.0 (26.0-91.0) 50.5 (27.0-95.0) 0.899

LDH (U/l) 455.5 (281.0-
824.0)

443.0 (771.0-
281.0)

0.558

PBB (%) 25.5 (8.0-67.5) 41.0 (13.0-74.0) 0.020

BMB (%) 54.0 (40.0-72.5) 63.5 (45.0-79.5) <0.001

AML acute myeloid leukemia, sAML secondary AML, tAML therapy-
associated AML, BMB bone marrow blasts, CR complete remission, HB
hemoglobin, HCT hematopoietic cell transplantation, IQR interquartile
range, n/N number, PBB peripheral blood blasts, PLT platelet count, WBC
white blood cell count. Boldface indicates statistical significance (p < 0.05).
*It has to be taken into account that mutated STAG2 is included as a marker
of adverse risk in the novel ELN2022 risk stratification model and thus,
partial collinearity may have diluted this specific result.
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normal karyotypes (70.6% vs. 50.8%, p= 0.009), while complex
aberrant karyotypes were rare (2.0 vs. 12.0%, p= 0.009). Common
co-mutations compared to patients with wild-type RAD21 were
alterations in EZH2 (9.8% vs. 3.7%, p= 0.046), KRAS (13.7% vs.
5.0%, p= 0.016), CBL (7.8% vs. 1.8%, p= 0.017), and NPM1 (56.9%
vs. 30.4%, p < 0.001, Fig. 2B). Mutated RAD21 was mutually
exclusive with mutated SMC3, SMC1A and STAG2 as well as TP53
(p= 0.047). Table S11 shows co-mutations of mutated RAD21 in
detail. With respect to patient outcome, we found no differences
in CR rate, EFS, RFS and OS for patients with mutated vs. wild-type
RAD21 in general (Table 2, Fig. 2C-E). Clonality of mutated RAD21
(dominant clone vs. subclonal) did not affect CR rate, EFS, RFS or
OS.

AML with either mutated SMC3 or SMC1A does not differ from
SMC3- or SMC1A-wild-type AML regarding clinical
presentation, co-mutations, and outcome
Twenty-five patients (1.5%) harbored alterations in SMC1A, while
mutated SMC3 was found in 20 patients (1.2%). Alterations in both
SMC1A and SMC3 were only detected as missense mutations
(Fig. 3A, Fig. 4A) and the majority was found in the dominant
clone (SMC1A: 60.0%, SMC3: 55.0%). There were neither differences
in baseline clinical characteristics between patients with SMC1A-
mutated vs. SMC1A-wild-type AML (Table S12) nor between
patients with SMC3-mutated vs. SMC3-wild-type AML (Table S13).
With respect to co-mutations, patients harboring mutated SMC1A
showed significantly increased rates of t(8;21) (20.0% vs. 3.5%,
p= 0.002) while no other associations were found (Fig. 3B, Table
S14). Patients harboring SMC3 mutations showed significantly

increased co-mutations of NPM1 (65.0% vs. 30.8%, p= 0.003) while
no difference between mutated or wild-type SMC3 was found for
other alterations (Fig. 4B, Table S15). CR rate did not differ neither
for patients with SMC1A mutations nor patients with SMC3
mutations when compared to wildtype patients. With regard to
survival times, again no difference was found both for patients
with SMC1A-mutated vs. SMC1A-wildtype AML (Fig. 3C-E) as well as
patients with SMC3 mutations when compared to their wildtype
counterparts (Fig. 4C-E). Further analysis with respect to clonality
(dominant vs. subclonal) of the specific mutations did not show
any differences for CR rates, EFS, RFS, or OS both for AML with
mutated SMC1A and SMC3.

DISCUSSION
In our retrospective multi-center cohort study in 1615 intensively
treated AML patients, we were able to ascertain distinct patterns
of changes in cohesin complex genes, identify their association
with other recurrent genetic alterations and clinical presentation
as well as confirm their mutual exclusivity which may serve as a
target for therapeutic approaches. We confirm that mutations in
the genes of the cohesin complex are recurrent genetic events in
AML with a reported frequency between 5.9-13.0%(ref.
[15, 19, 20, 23, 24, 42]) which is in line with our cohort where
11.4% of patients harbored an alteration of cohesin complex
genes. In accordance with previous studies(ref.
[15, 19, 20, 23, 24, 42]), we found these mutations to be mutually
exclusive with the exception of one patient bearing both mutated
STAG2 and SMC3. The inactivation of more than one subunit of the
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Table 2. Summary of outcomes for AML patients with mutations of cohesin subunit genes.

Outcome mut. STAG2 wtSTAG2 OR/HR p

n/N (%) 88/1615 (5.5) 1527/1615 (94.5)

CR rate, n (%) 56/88 (63.6%) 1079/1615 (66.8) 0.71 [0.45-1.11] 0.138

EFS 4.9 [1.9-11.9] 7.4 [6.6-8.1] 1.09 [0.86-1.39] 0.464

RFS 32.9 [15.8-95.6] 17.5 [14.8-20.6] 0.81 [0.57-1.15] 0.233

OS 20.7 [11.0-36.2] 17.3 [15.6-19.1] 0.97 [0.74-1.26] 0.800

mut. RAD21 wtRAD21 OR/HR p

n/N (%) 51/1615 (3.2) 1564/1615 (96.8)

CR rate, n (%) 41/51 (80.4) 1094/1615 (67.7) 1.73 [0.86-3.48] 0.126

EFS 11.4 [5.4-41.4] 7.1 [6.4-7.9] 0.74 [0.53-1.03] 0.077

RFS 23.5 [8.3-108.3] 18.1 [15.5-21.2] 0.91 [0.61-1.36] 0.646

OS 20.6 [8.2-112.2] 17.5 [15.7-19.1] 0.85 [0.60-1.22] 0.386

mut. SMC1A wtSMC1A OR/HR p

n/N (%) 25/1615 (1.5) 1590/1615 (98.5)

CR rate, n (%) 17/25 (68.0) 1118/1615 (69.2) 1.18 [0.46-3.00] 0.731

EFS 14.6 [9.3-n.r.] 7.1 [6.4-7.9] 0.61 [0.35-1.05] 0.075

RFS n.r. 18.1 [15.5-21.4] 0.61 [0.29-1.28] 0.190

OS 11.4 [6.4-n.r.] 17.5 [15.7-19.2] 0.85 [0.49-1.47] 0.567

mut. SMC3 wtSMC3 OR/HR p

n/N (%) 20/1615 (1.2) 1595/1615 (98.8)

CR rate, n (%) 12/20 (60.0) 1123/1615 (69.5) 0.83 [0.31-2.22] 0.708

EFS 9.8 [0.9-27.5] 7.1 [6.5-7.9] 0.94 [0.55-1.59] 0.809

RFS 25.8 [7.7-n.r.] 18.1 [15.5-21.4] 0.72 [0.34-1.52] 0.389

OS 21.4 [4.7-n.r.] 17.5 [15.7-19.1] 0.91 [0.51-1.60] 0.740

Survival times are displayed in months. Square brackets show 95%-confidence intervals.CR complete remission, EFS event-free survival, HR hazard ratio, mut.
mutated, n/N number, n.r. not reached, OR odds ratio, OS overall survival, RFS relapse-free-survival, wt wild-type.
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cohesin complex may result in structural collapse of topologically
associated domains which may explain the mutual exclusivity of
these gene alterations [4]. STAG2 may form the exception as it has
a functional homologue in STAG1 that can potentially compensate
for its malfunction in three-dimensional genome organization [29].
In the early days of research into the role of the cohesin complex
in carcinogenesis, it has been hypothesized that its malfunction
may lead to aberrant segregation of sister chromatids and
consequently aneuploidy as a major driver in neoplastic
transformation [8]. However, especially studies investigating
mutations of the cohesin complex in myeloid neoplasms have
refuted this claim since these alterations are commonly found in
AML with euploid karyotypes [20, 24, 42]. Correspondingly, the
rate of patients with normal karyotypes in our cohort was
significantly increased while the rate of complex aberrant
karyotypes was significantly decreased for patients with cohesin-
mutated AML. These findings suggest alternate contributions of
cohesin in carcinogenesis rather than mere aneuploidy and
chromosomal instability. Alterations of cohesin subunit genes
have both been described as early and late events in leukemo-
genesis [17, 20, 24, 31, 32, 43] suggesting a passenger rather than
a driver function. However, in our cohort, the majority of cohesion
complex mutations were detected in dominant clonal constella-
tions, pointing at a potential role as an early event during AML
initiation. Likewise, cohesin plays an important role in regulating

the stemness and pluripotency of stem cells [31–33]. Thus, an
interplay of alterations of cohesin genes with other genetic events
in driver genes such as NPM1 likely promotes malignant
transformation. Mutated NPM1 has been associated with altera-
tions of cohesin complex genes [19, 20]. An interaction of cohesin
proteins with NPM1 could be mediated by CCCTC-binding factor
—a transcription factor that regulates tumor suppressor loci—
which has been shown to bind and interact with both [44, 45],
potentially contributing to their role in stem cell self-renewal
[46, 47]. In our cohort, we found mutated SMC3 and RAD21 to be
associated with mutated NPM1 while NPM1 mutations were less
frequently associated with mutated STAG2. In comparison to their
wildtype counterparts, patients with mutated STAG2 more
frequently also had mutated IDH2, TET2, BCOR, ASXL1, SRSF2,
and ZRSR2. Further, patients with alterations of RAD21 showed
increased rates of co-occurring mutations in EZH2, KRAS, and CBL
besides NPM1. An association of cohesin mutations with mutated
TET2, ASXL1, BCOR, and EZH2 has previously been reported
[24, 42], however, it is important to note that different subunits of
the cohesin complex show different co-mutational patterns.
The prognostic impact of cohesin mutations in AML has been

unclear as studies are not only limited but also report conflicting
results. Tsai et al. [19] report increased OS and disease-free survival
for patients with cohesin mutations, which was confirmed by
multivariable analysis in a cohort of 391 patients with de novo AML.
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In contrast, Thol et al. [20] found no impact of cohesin mutations on
CR rate, RFS, and OS in a cohort of 389 intensively treated AML
patients. In MDS, Thota et al. [24] reported decreased OS for
patients with cohesin mutations, especially in STAG2-mutated MDS
for patients who survived beyond 12 months. Commonly, previous
studies were limited in sample size, often ranging between 300 and
600 patients. In our comparatively large cohort of 1615 intensively
treated AML patients, we did not find a significant impact of any
gene alterations of cohesin subunits on CR rate, EFS, RFS, or OS. The
recently revised ELN2022 recommendations [3] introduce mutated
STAG2 as a prognostic marker of adverse risk (if no markers of
favorable risk are co-occuring). Multivariable models adjusted for
mutation status of BCOR, ASXL1, and RUNX1, which were more
prevalent in STAG2-mutated AML patients, demonstrated no
independent impact of mutated STAG2 on patient outcome while
these co-mutations had varying individual prognostic impact.
Several reports agree that STAG2 mutations are associated with
sAML, and thus, as a part of corresponding compound attributes
they are associated with the overall adverse impact of sAML on
outcome [17, 43]. However, these mutations contribute only a
minor part of this compound attributes. According to our
observations such an adverse effect on outcome cannot be verified
for the presence of STAG2 mutations per se. While the cohesin
complex undoubtably plays a role in leukemogenesis, given the
ambiguity of existing reports on cohesin’s (and STAG2’s) role in AML

prognostication [19, 20, 24] caution may be warranted with respect
to determining patient risk and ultimately treatment allocation.
Nevertheless, it should be acknowledged that our study is limited
by the fact that results are only available for intensively treated
patients. The extent to which the reported results are also
transferable to patients which receive less intensive regimens or
targeted therapy remains to be evaluated.
While the prognostic impact of cohesin alterations in AML

remains elusive, their co-mutational pattern with respect to
mutual exclusivity may make them a viable option for targeted
therapy. Mutually exclusive gene alterations may be utilized
therapeutically via synthetic lethality [48]. If the alteration of one
mutated gene provides a cancerous cell with a survival advantage
as long as a second gene remains unaltered, the alteration or
inhibition of the second gene or its gene product may confer
apoptosis specifically in cells carrying the initial alteration [49, 50].
Synthetic lethality via inhibition of mediators of replication fork
stability such as poly ADP-ribose polymerase (PARP) has been
demonstrated in BRCA-mutated breast, ovarian, pancreatic, and
prostate cancer [51]. The functional homologues STAG1 and 2 offer
the possibility for a synthetically lethal therapeutic strategy via
PARP inhibition. In glioblastoma cells, Bailey et al. [52] have
demonstrated that mutated STAG2 significantly increases the
sensitivity to PARP inhibition. Further, Black et al. [53] found
STAG2-deficient leukemic cells to bear a significantly higher
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susceptibility to treatment with talazoparib. Currently, a phase
1 study is ongoing investigating the safety and efficacy of
talazoparib for cohesin-mutated AML and MDS with excessive
blasts (NCT03974217) [54].
In summary, we report distinct co-mutational and clinical

patterns for mutated STAG2 and RAD21 in a large sample of
AML patients while mutated SMC3 and SMC1A lacked such
patterns. However, no cohesin subunit—including mutated STAG2
that was recently added to the ELN2022 criteria as a marker of
adverse risk—showed any impact on patient outcome regarding
the achievement of CR, EFS, RFS, or OS. While we did not find a
prognostic impact of cohesin alterations in AML, their mutual
exclusivity may make them a potential target for therapeutic
approaches based on synthetic lethality.
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