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Splicing changes are common in cancer and are associated with dysregulated splicing factors. Here, we analyzed RNA-seq data
from 323 newly diagnosed multiple myeloma (MM) patients and described the alternative splicing (AS) landscape. We observed a
large number of splicing pattern changes in MM cells compared to normal plasma cells (NPC). The most common events were
alterations of mutually exclusive exons and exon skipping. Most of these events were observed in the absence of overall changes in
gene expression and often impacted the coding potential of the alternatively spliced genes. To understand the molecular
mechanisms driving frequent aberrant AS, we investigated 115 splicing factors (SFs) and associated them with the AS events in MM.
We observed that ~40% of SFs were dysregulated in MM cells compared to NPC and found a significant enrichment of SRSF1,
SRSF9, and PCB1 binding motifs around AS events. Importantly, SRSF1 overexpression was linked with shorter survival in two
independent MM datasets and was correlated with the number of AS events, impacting tumor cell proliferation. Together with the
observation that MM cells are vulnerable to splicing inhibition, our results may lay the foundation for developing new therapeutic
strategies for MM. We have developed a web portal that allows custom alternative splicing event queries by using gene symbols
and visualizes AS events in MM and subgroups. Our portals can be accessed at http://rconnect.dfci.harvard.edu/mmsplicing/ and
https://rconnect.dfci.harvard.edu/mmleafcutter/.
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INTRODUCTION
Alternative splicing (AS) processes a single mRNA precursor into
one of the multiple transcript variants [1], resulting in isoform
diversity that enhances proteome diversity and impacts a number
of cellular processes [2, 3]. More than 60% of multiple-exon genes
undergo AS [4], and many of those have cell type-specific
isoforms. Abnormal splicing events are associated with malignant
transformation [5, 6], and overall, splicing is altered in many
human tumors and represents a unique vulnerability of cancer
cells [7, 8]. Several AS changes recapitulate cancer-associated
phenotypes by promoting angiogenesis, inducing cell prolifera-
tion, or avoiding apoptosis [9]. For instance, an AS event in exon 2
of Bcl-x results in two isoforms of Bcl-x with antagonistic effects on
cell survival: Bcl-xL (long isoform), which is anti-apoptotic, and Bcl-
xS (short isoform), which is pro-apoptotic [10]. Similarly, MCL1 is
alternatively spliced by either skipping exon 2 to yield the pro-
apoptotic MCL1S or including exon 2 to yield the anti-apoptotic
MCL1L [11]. In addition to conferring an anti-apoptotic effect, AS
can also modify genes to make cells resistant to therapy, as
suggested for the CASP-2 gene among others [12].

Multiple myeloma (MM) is a highly heterogeneous disease
driven by numerous genetic and epigenetic alterations and
characterized by clonal proliferation of plasma cells in the bone
marrow [3, 13, 14]. Aberrant splicing of individual genes has been
implicated in the disease pathogenesis and response to therapy
[15]. For example, splicing variation in CRBN transcripts is
associated with acquired resistance to immunomodulatory drugs
(IMiDs) [16]. Proteasome inhibitor therapy in MM leads to specific
alterations in splice site usage and broad-scale interference with
spliceosome function [17]. Recently, the impact of SF3B1
mutations on splicing patterns in MM was assessed, and
differences between wild-type and mutated SF3B1 as well as a
correlation between survival and the number of novel splice sites
was found [18]. However, more generally, the molecular and
cellular mechanisms driving aberrant AS events in MM cells
compared to normal plasma cells (NPC) are poorly defined.
The discovery of the underlying causes and consequences of

aberrant splicing is crucial to determining how these alterations
contribute to the pathogenesis of MM. Splicing decisions depend
on splicing factors (SFs) recognizing transcript-specific sequence
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elements. Therefore, point mutations in the transcripts or SFs as
well as aberrant expression of SFs can lead to changes in splicing
and provide a possible mechanism for increased cancer-cell
dependency on splicing in the absence of driving mutations
[19, 20]. Splicing factors like SRSF1, a member of the phylogen-
etically conserved serine/arginine-rich RNA binding protein family,
are involved in a plethora of biological processes [21–23] and are
functionally essential genes. For example, SRSF1 knockout is
embryonically lethal [24], and it is upregulated in many
malignancies even though the level of SRSF1 is tightly controlled
within the cell [25–29].
Here, we investigated whether the global splicing landscape in

MM cells is dysregulated compared to NPC. We evaluated the
expression of splicing factors in a large dataset of MM patient
samples and investigated the extent of AS events. We also
investigated whether overexpression of SR (Serine/arginine)
protein SRSF1 (previously known as SF2/ASF) drives aberrant AS
in MM, thus impacting tumor growth and survival, which provides
important biological insights with translational potential.

METHODS
Patient Samples
We collected CD138+ MM cells from 323 newly diagnosed MM patients
from the IFM/DFCI2009 clinical trial and NPCs from 16 donors. For quality
control purposes, we confirmed plasma cell content (≥95%) following
CD138+ selection by light chain staining. The median age of patients was
58 years (range: 30–65 years). Normal samples were collected from age-
matched individuals with no known disease. Standard fluorescence in situ
hybridization was performed on all patients to identify high-risk groups. All
study participants provided written informed consent.

RNA preparation and sequencing of the primary samples
After extracting RNA from each sample, RNA quantity and quality were
evaluated using the Qubit RNA Assay Kit and Bioanalyzer using the RNA
Pico Kit. Next, poly-A-selected library preparation for all newly diagnosed
MM and normal plasma cell samples was done with the NEBNext Ultra RNA
Library Prep Kit using ≥100 ng RNA per sample. Libraries passing QC were
sequenced on the HiSeq 2000 system for 50 bp paired-end sequencing.

Fluorescence in situ hybridization (FISH) analysis
Sorted plasma cells were fixed in Carnoy’s fixative and stored at −20 °C
until hybridization. After slide preparation, they were denatured in 70%
formamide for 5 min and dehydrated in a 70%, 85%, and 100% ethanol
series. Probes specific for the t(4;14), del17p, and t(14;16) were purchased
from Abbott Molecular and denatured separately for 5 min at 75 °C. After
denaturation, the probes were dropped on the plasma cells and hybridized
overnight at 37 °C. Then, coverslips were removed, and the slides were
washed for 2 min in 2xSSC+0.1% Triton at 75 °C.

RNA-seq quantification and splicing analysis
Paired-end 50 bp sequencing was performed for primary RNA samples and
stranded 75 bp paired-end RNA sequencing for SRSF1 in-vitro samples. Raw
files in fastq format were first evaluated with “FastQC v0.11.2” against any
sequencing bias and error. All samples were evaluated after alignment with
STAR (median reads per sample 79.3M [32.2M–168.6M], >90% of samples
had 50M or more reads, Supplementary Table 3 for alignment QC), and only
samples passing QC were kept for downstream analysis. The reference human
genome (GRCh38) was downloaded from the GENCODE project website. RNA-
seq samples in fastq format were aligned to the reference human genome
using the STAR RNAseq aligner [30]. Samtools [31] was used to convert, sort,
and index alignment files. Aligned data were analyzed using rMATS [32] 4.0.2
to identify differential AS events between: (1) MM and NPC; (2) OE and empty
control for SRSF1 in MM cells; (3) KD and WT for SRSF1 in KMS11 and MM1S
cell lines. Analyses were conducted for all five basic types of AS patterns using
two biological replicates. rMATS uses a modified version of the generalized
linear mixed model to detect differential AS events from RNA-seq data. We
used the reads on target and junction counts (JCEC) for each AS event. All AS
events were then filtered based on absolute Inclusion Level Difference
(ΔPSI) > 0.1 between MM and NPCs with FDR < 0.05. The same filtering was
used for SRSF1 cell lines. We ran rMAPS2 [33] (v2.0.0) using rMATS output for

binding motif enrichment analysis, covering known binding motifs for RNA-
binding proteins. Significantly spliced regions were used as the target regions
for motif enrichment, and not significantly spliced regions were used for
estimating background binding levels. We used 250 bp and 50 bp, respectively,
as the length of the intronic and exonic regions to be examined and plotted.
50-bp sliding windows were used to count the motif occurrences, and the step
size of windows sliding was set to 1. RSAT [34] was used to validate enrichment
results from rMAPS. We converted the alternatively spliced regions identified
with rMATS into a BED file and extracted hg38 sequenced using RSAT
Sequence tools. FASTA files are generated with RSAT and then fed into matrix-
scan (full options) using ATtRACT (2017) database. Homo Sapiens specific
background model estimation method was used to correct estimations and
results were reported as Enrichment of hits in the whole input sequence set.
Change in the coding potential of the target genes after AS was estimated
using Mapping Alternative Splicing Events to pRoteins (MASER) from the R/
Bioconductor package. We used MASER’s “mapTranscriptsToEvents” function
to identify transcripts potentially affected by alternative splicing events. We
then annotated all transcripts attached to alternatively spliced regions using
GTF files. Coding potential was considered switched only if gene type
information in the GTF file for all new targets differs from all pre-splicing
targets.

Differential expression and pathways analysis
SRSF1 expression was compared between NPC, precursor conditions
(MGUS, SMM), and newly diagnosed MM samples using the IFM 2009 [35],
Mayo Clinic (GSE6477) [36], and Arkansas (GSE2654 and GSE5900) [37]
datasets.
Transcript-level raw counts were estimated using the lightweight

alignment tool Salmon [38] and converted to gene-level estimates by
summing the estimated transcript counts. All genes with 0 counts were
excluded from any downstream analysis before normalization. 26954
genes passed the filter and were used for normalization. Gene counts were
normalized using DESeq2 [39], and differentially expressed genes were
identified. The Reactome Functional Interaction network analysis in
Cytoscape [40] was used for pathway analysis. Microarray datasets were
downloaded from canEvolve.org [41] and analyzed using R and limma [42]
packages.

Visualization and statistical analysis
All downstream analyses were performed using R (v3.5.2). DESeq2, limma,
and edgeR were used for normalization and differential gene expression
analysis. Pheatmap, UpsetR, rehape2, ggrepel, ggpubr, ggsignif, VennDia-
gram, survival, survcomp, readr, ggplot2, maser, and leafcutter were used for
visualization purposes. After selecting the top differentially expressed
genes, expression data were scaled and clustered with the ward2
algorithm (ward. D2). All p-values are calculated with two-tailed tests.

Cell lines. KMS20 and MM1S cells were infected with pWZL-hygro retroviral
vectors expressing T7-tagged SRSF1 cDNAs and selected with hygromycin for
72 h. The hairpin-containing PLKO.1 plasmid used for the generation of
MM1S and KMS11 SRSF1-depleted cells was obtained from Sigma Mission.
Packaged viral particles were used to infect MM cells using polybrene media
(final concentration 8 µg/ml). Infected MM cells were selected by puromycin
(0.5 µg/ml) for 48 h (Sigma, St. Louis, MO) and then left to recover for 24 h.
CRISPR/Cas9 knockdown studies in the KMS11 MM cell line were performed
using transEDIT lentiviral gRNA plus Cas9 expression vectors.

Cell proliferation and viability assays. The human MM cell lines (HMMCL)
were cultured in RPMI 1640 (Mediatech, Herndon, VA) supplemented with
10% fetal bovine serum (FBS). MM cell growth was measured by a 3(H)
thymidine (PerkinElmer, Boston, MA) incorporation assay. Cell viability was
analyzed by CellTiter-Glo (CTG) (Promega). Statistical significance was
determined by Student’s t-test.

Colony formation assays. KMS11 were seeded in a six-well tissue culture
plate in semi-solid, methylcellulose media at a density of ~200 cells/well to
enable single cells to proliferate into clonal populations. After 21 days,
colonies were counted using an inverted microscope and gridded scoring
dishes.

In vivo studies. KMS20 stably expressing wild-type SRSF1, or empty
control were injected (8 × 106 cells per site in 200 μl of phosphate-buffered
saline) subcutaneously into the right flank of SCID mice. Mice were
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monitored for signs of distress and sacrificed after the animals showed at
least four out of five signs of distress (ruffled fur, tremor, loss of mobility,
kyphosis, anorexia).

Quantitative RT-PCR analysis. Expression of human SRSF1 transcript was
determined using real-time quantitative reverse transcriptase–polymerase
chain reaction (qPCR) based on TaqMan fluorescence methodology,
following manufacturer protocols (Applied Biosystems, Foster City, CA).
Relative expression was calculated using the comparative delta (Ct) method.

Western blotting. MM cells were harvested and lysed using RIPA lysis
buffer. Cell lysates were subjected to sodium dodecyl sulfate-
polyacrylamide gel electrophoresis SDS–PAGE, transferred to nitrocellulose
membranes, and immunoblotted with SRSF1 and T7 antibodies (Thermo
Fisher Cat#32-4500 and Sigma-Aldrich MABE50). Glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) or B-actin were used as a loading
control (Santa Cruz Biotechnology).

RESULTS
The landscape of alternative splicing changes in multiple
myeloma
To assess AS differences, we analyzed deep RNA sequencing data
from CD138+MM cells isolated from 323 newly diagnosed
patients and CD138+ NPC from 16 normal donors. In total, we
identified 448,488 AS events between MM and NPC and
computed the percent-spliced-in (PSI) scores. Using stringent
criteria for AS between MM cells and NPC (FDR < 0.05 and
absolute (ΔPSI) > 0.1), we identified 1150 differential AS events in
715 genes (Fig. 1A, Supplementary Fig. 1A). Global splicing
analysis showed that events associated with exon usage altera-
tions (mutually exclusive exons (MXE) (n= 510, 44.3%) and exon
skipping (ES) (n= 417, 36.2%)) were the most frequent splicing
events, while retained intron (RI) (n= 134, 11.6%), alternative 5’
site (A5) (n= 47, 4.0%), and alternative A3’ site (A3) (n= 42, 3.6%)
were observed less frequently (Fig. 1B). Of these 1150 splicing
events, 375 (33%) involved genes with significant differential
expression (DE) between MM and NPC, whereas 775 (67%)
occurred in genes not differentially expressed (Not-DE) (Fig. 1B).
Alternative 3’ and 5’ site events were more common in DE genes
than in Not-DE genes (46.1% vs. 31.3%, p-value= 0.003).
Some of the alternative splicing events imparted functional

change by affecting the coding potential of the transcribed
sequence. MXE and ES events retained the coding potential of
most genes, with MXE and ES only changing the coding potential
in 25% and 33% of the transcripts, respectively (Fig. 1C). RI altered
80% of the genes with a significant change from coding to non-
coding or vice versa (Fig. 1C). A3SS and A5SS events altered the
coding potential of 60% and 42% of their target genes,
respectively (Supplementary Fig. 1B).
Using the DepMap CRISPR dataset (21Q1) [43, 44], we identified

154 (dependency score <−0.5 in at least 50% of MM cell lines)
MM cell dependency genes with a significant alternative splicing
event. These 154 genes constitute 21% of all MM dependency
genes (n= 733). We then used a hypergeometric test to see if MM
dependency genes are enriched in alternatively spliced genes
(n= 715) and found a significant enrichment (hypergeometric test
p-value 3.62e−19). MM dependency genes with significant
splicing events included MEF2C, IKZF3, IRF4, UBE2G2, PSMC1, and
SMARCB1 (Supplementary Table 1). Overall, 20 tumor suppressors
or oncogenes, 24 protein kinase genes, and 64 transcription
factors were significantly differentially spliced between MM and
NPC. These critical genes were affected by different splicing
mechanisms. For example, compared to NPC, MM cells preferen-
tially expressed a longer IKZF1 transcript through alternative
splicing involving DNA sequence recognition sites. Similarly, IRF4
had altered DNA binding domains by alternatively utilizing the
second exon. The utilization of these spliced products was
significantly higher in MM cells than in NPC (Fig. 1D, E).

To evaluate the pathways and network patterns affected by the
splicing alterations, we performed Reactome Functional Interac-
tion network analysis using 715 alternatively spliced genes
(Supplementary Table 1) and identified 15 protein-protein
interaction networks using Reactome Protein Interaction database.
In total, 148 unique pathways were enriched in 15 networks
(Supplementary Fig. 2). Three clusters were enriched in pathways
controlling transcription, splicing, and mRNA processes. One
cluster was enriched in deubiquitination and proteasome path-
ways. Two clusters were enriched in B cell activation, B Cell
receptor signaling, histone deacetylases, RXR, and RAR hetero-
dimerization, which controls DNA binding (Supplementary Fig. 2).
Like mRNA levels, splicing patterns had significant alterations

across MM subtypes (Fig. 1F). Splicing analysis comparing
individual MM subtypes to NPC showed heterogeneity in the
number and types of genes involved. Of 1150 events, 195 (17%)
events were common to all MM subtypes (Fig. 1F, Supplementary
Fig. 3, Supplementary Table 2), which affected 150 genes
including XBP1, SRSF7, IKZF3, STAT2, CD46, and IRF9. Details about
MM subgroups can be visualized using our portal.

Dysregulated splicing factors in multiple myeloma
To further explore the role of AS in MM, we focused on
understanding the molecular mechanisms driving aberrant AS.
We identified a set of differentially regulated alternatively spliced
regions in MM cells compared to NPC and performed motif
enrichment analyses in the vicinity [33] of these alternatively
spliced regions for 115 well-characterized RNA binding proteins.
We observed RNA binding motifs (RBM) for 38 SFs, including
multiple motifs from SRSF1, SRSF9, FXR2, PCBP2, and RBM5 (Fig.
2A and Supplementary Table 5 for RSAT results), which were
significantly enriched around the regions alternatively spliced in
MM cells. Among these five SFs, only the expression of SRSF1 was
consistently upregulated in MM and its precursor conditions
(MGUS and SMM) compared to NPCs (Fig. 2B). High SRSF1
expression was also significantly associated with shorter overall
survival (OS) in three datasets (Fig. 2C). We further confirmed that
patients with high SRSF1 expression also had significantly more ES
and MXE (Fig. 2D). RBM analysis showed that ES events were
typically accompanied by SRSF1 binding either within the exon
skipped, or within 100 nucleotides upstream of the skipped 3′
splice site, whereas SRSF1‐mediated ES involved binding of SRSF1
within the downstream intron (Fig. 2E).

SRSF1 promotes multiple myeloma cell growth
To validate the role of SRSF1 in MM cell growth and survival, we
first confirmed the protein expression of SRSF1 in a panel of MM
cell lines and CD138+ primary cells (Supplementary Fig. 4A). We
performed genetic loss-of-function (LOF) experiments by steady-
state depletion of SRSF1 in MM cells using several specific shRNAs.
We observed inhibition of cell growth (assessed by 3H-thymidine
uptake; Fig. 3A and Supplementary Fig. 4B) and MM cell viability
(measured by CellTiter-Glo; Fig. 3B) compared to scramble control
as well as shRNA #93, which failed to KD SRSF1 protein. The
impact of SRSF1 depletion on MM cell growth and colony
formation potential was confirmed by CRISPR-Cas9 KO using two
different guides targeting SRSF1 (Fig. 3C, D). These results are in
agreement with the recently reported analysis of the CRISPR
screen data in the DepMap [43, 44] (Avana library public 18Q448),
which shows MM cell lines to be the most sensitive tumor cell type
across >400 cancer cell lines to genetic ablation of core
components of the U1-U2 spliceosome including SRSF1 [17].
Since inhibitors of RNA-binding protein kinases can regulate

splicing by fine-tuning the phosphorylation of SR proteins [17], we
also evaluated TG003, an inhibitor of Clk1/4, for its effect on MM
cell proliferation. We indeed observed that TG003 decreased
SRSF1 phosphorylation and induced a dose-dependent inhibition
of MM cell viability, with a significant difference in the IC50
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detected between MM cells and PHA-activated normal donor
PBMCs (Fig. 3E and Supplementary Fig. 4C). We also observed high
variance among PBMCs, highlighting a need for further evalua-
tions of this cell type.

We further delineated the role of SRSF1 in promoting MM cell
growth and survival by inducing ectopic expression of SRSF1 in
the KMS20 cell line, which has low endogenous SRSF1 levels.
Overexpression of SRSF1 led to a significant increase in MM cell
proliferation compared to control cells in vitro (Fig. 3F) and
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impacted overall survival in vivo, where mice injected with SRSF1
overexpressing cells had a median survival of 53 days while mice
injected with empty control cells had a median survival of 77 days
(Fig. 3G).
The SRSF1 protein has a modular domain structure, with two

RNA-recognition motifs (RRMs) as well as a serine/arginine-rich
C-terminal domain (RS) for protein-protein interactions, subcellular
localization, and recruitment of spliceosome components. To
dissect the mechanisms involved in the SRSF1-induced growth
effects, we also expressed SRSF1 mutants lacking either of the two
RNA-recognition motifs (ΔRRM1 or ΔRRM2 mutants) or the RS
domain (ΔRS mutant) in KMS20 MM cells. In contrast to full-length
SRSF1, the SRSF1 mutants, which had an impaired ability to alter
AS, were not as competent in inducing MM cell growth,
suggesting an essential role for splicing regulation in SRSF1-
mediated MM cell proliferation (Fig. 3F). These data were also
confirmed in the MM1S MM cell line (Supplementary Fig. 4D).
Interestingly, we also observed that the expression of a chimeric

SRSF1 protein harboring a nuclear retention signal (NRS) fused to
its C-terminus (SRSF1-NRS1), which constitutively retains SRSF1 in
the nucleus, failed to significantly promote MM cell proliferation
(Fig. 3F). These results suggest that both nuclear (splicing) and
cytosolic activities of SRSF1 have a role in promoting MM cell
proliferation. SRSF1 indeed shuttles from the nucleus to the
cytoplasm, where it participates in a wide range of post-splicing
activities [19, 25, 45]. The evaluation of the SRSF1 interactome in
MM cells expressing either full-length SRSF1 or SRSF1-NRS1 by
mass spectrometry confirmed consistent interaction of nuclear
SRSF1 with RNA-binding and processing proteins besides the
normal components of the nucleus. In contrast, the cytosolic
SRSF1 binds mostly to proteins involved in the translational
process (Supplementary Fig. 4E).
To gain further insight into the role of SRSF1 in MM, LOF and gain-

of-function (GOF) cells along with control cells were analyzed by RNA-
seq to identify the change in genome-wide alternative splicing
profiles regulated by SRSF1 in MM cells. We identified a total of 4888
(FDR < 0.05 and absolute (ΔPSI) > 0.1) SRSF1-regulated AS events in
SRSF1 overexpressing MM cells compared to control cells (Fig. 4A). As
expected, enforced SRSF1 nuclear retention (NRS) caused the highest
number of AS events, with 3736 unique events (Fig. 4B, Supplemen-
tary Fig. 5A). Expression of SRSF1 mutants lacking either of the two
RNA-recognition motifs (ΔRRM1 or ΔRRM2 mutants) or the RS domain
(ΔRS mutant) caused fewer AS events (Fig. 4B, Supplementary Fig.
5B–D). Genes with AS events after enforced SRSF1 nuclear retention

were enriched in the deubiquitination, cell cycle checkpoint, and
mitotic G2-G2/M pathways (Fig. 4C). We further compared alternative
splicing between patients with high and low SRSF1 expression (top
10% patients in each group) and performed gene set enrichment
analysis. RNA Pol II transcription, spliceosome, and B cell receptors
were common in this comparison (Supplementary Table 4). The
majority of these AS events corresponded to ES (n= 3059) (Fig. 4A,
D), with RI (n= 593) events as the second most common (Fig. 4A, D).
SRSF1 promoted a similar number of exon inclusion and exclusion
changes (Fig. 4A, B), either directly through RNA binding or indirectly
through secondary interactions.
Analysis of AS events after SRSF1 KD in the KMS11 cell line

revealed a total of 759 events (Supplementary Fig. 5E), with 348
genes (which is the union of 106 genes common between KD
DPSI > 0 & OE DPSI < 0 and 242 genes common between KD
DPSI < 0 & OE DPSI > 0) showing directionally consistent ΔPSI
change between OE and KD experiments (Fig. 4E). These 348
genes were involved in the cell cycle, DNA repair, and DNA
replication pathways (Fig. 4F). Some of these shared genes,
including WHSC1 (MMSET), IRF9, DICER1, IKZF1, CD46, and ERC1,
are involved with MM pathobiology (Fig. 4G, H). For example, the
overexpression of SRSF1 significantly changed the utilization of
WHSC1 exons (Fig. 4I), causing an isoform switch (Fig. 4J).
Next, we investigated the mechanism of SRSF1 upregulation

in MM and observed that SRSF1 is amongst the top E2F1-
regulated genes in MM1S (Supplementary Fig. 6A, B). Accord-
ingly, E2F1 depletion decreased SRSF1 expression at the
transcriptional and protein level (Supplementary Fig. 6C).
Altogether, these data show that aberrant expression of an SF
promotes MM cell growth and suggest that splicing modulation
could be broadly effective across MM samples. Consistent with
this and previous literature [17, 46], we observed a significant
decrease in viability following exposure to SF3B1 inhibitor
Pladeniolide B in a large panel of MM cell lines compared to
PBMC from healthy donors (data not shown).

Alternative splicing database for multiple myeloma
We have developed a R/Shiny-based web portal that allows the
scientific community to access analysis results between MM,
clinical subgroups, and NPC. A user-friendly interface can be
accessed at http://rconnect.dfci.harvard.edu/mmsplicing for
rMATS results and http://rconnect.dfci.harvard.edu/mmleafcutter
for leafcutter results. Users can query splicing results generated by
both tools using official gene symbols.

Fig. 1 The landscape of alternative splicing (AS) events in multiple myeloma. A A volcano plot showing inclusion level (PSI) difference (x-
axis) between MM (n= 323) and NPC (n= 16) and corresponding false discovery rate (FDR) (y-axis). Each point represents a splicing event.
Events with ΔPSI > 0 (<0) indicate a higher (lower) utilization in MM compared to normal samples. Gray denotes splicing events that did not
reach significance (adjusted p > 0.05 or −0.1 <ΔPSI < 0.1). Five splicing event types (MXE, ES, RI, A3, and A5) are indicated by different colors
(red, blue, orange, purple, and green, respectively). B Number of splicing events (y-axis) by alternative splicing event type (x-axis). Splicing
events occurring in genes differentially expressed between MM and normal samples are shown in green, others in yellow. C Distribution of
transcripts by potential protein-coding ability change and AS event. Coding potentials are calculated by mapping splicing events to
transcripts, as explained in the methods. The frequency of four categories (coding to coding, coding to non-coding, non-coding to coding,
and non-coding to non-coding shown by four different colors) of possible changes is shown for ES, MXE, and RI, respectively. Green represents
isoforms that remain protein-coding after AS, yellow for coding to non-coding switches, orange for non-coding to coding switches, and
purple for isoforms that remain non-coding after AS. D Exon skipping event in IKZF1. MM cells skipped exon #5 more than NPC and tended to
use a longer isoform. Boxplot in the upper panel shows the PSI levels for the skipped exon (marked with blue in the bottom panel). IKZF1
isoforms and exons are shown in the bottom genomic track. Yellow thick boxes represent coding exons, and thin yellow boxes represent
untranslated regions. Lines with arrows indicate the intronic regions and the strand where the represented gene is located. Red boxes show
the upstream and downstream exons relative to spliced exons detected by rMATS; the blue box shows skipped exons. E Exon skipping event
in IRF4. MM cells used exon #2 more than NPC. Boxplot in the upper panel shows the PSI levels for the skipped exon (marked with blue in the
bottom panel). IRF4 isoforms and exons are shown in the bottom genomic track. Yellow thick boxes represent coding exons, and thin yellow
boxes represent untranslated regions. Lines with arrows indicate the intronic regions and the strand where the represented gene is located.
Red boxes show the upstream and downstream exons relative to spliced exons detected by rMATS; the blue box shows skipped exons.
F Upset plot for the distribution of AS events by myeloma subgroup. The horizontal bar chart at the bottom left represents the total number
of events found in each subgroup. The vertical bar chart in the top section indicates the number of event types shared by specific subgroups,
with the membership combination indicated by gray circles in the center panel. Red indicates mutually exclusive exons (MXE), blue for exon
skipping (ES), green for alternative 5 prime site (A5), purple for alternative 3 prime site (A3), and orange for retained intron (RI).
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DISCUSSION
Splicing dysregulation is a major contributor to cancer pheno-
types. Unlike previous studies focused on alternate splicing
involving single genes such as Xbp-1 in MM, here we evaluated
the global alternative splicing landscape using large-scale RNA-

seq data from newly diagnosed patients with MM. We report
profound and widespread abnormalities of AS in MM.
The alternative splicing events in MM frequently impacted the

coding potential of the target genes, and the majority of the AS
events did not involve differentially expressed genes. These two
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observations suggest that evaluating only gene expression
without considering the actual isoform usage provides limited
information about the transcriptomic alterations affecting disease
biology. Our analysis also identified that certain events, such as
SEs, are frequently shared amongst patients, while other events,
such as MXE, are more individualized. This would suggest that
specific AS events have tissue- and condition-specific behaviors,
similar to non-coding RNAs. However, short RNA sequencing
platforms and alternative splicing detection methods tend to bias
towards finding ES and MXE events.
Further studies with long isoform sequencing platforms and

more suitable techniques to detect broader event types without
bias are needed to confirm these findings. Long isoform
sequencing platforms like Oxford Nanopore would provide better
resolution; however, their input sample requirements are usually
much higher than Illumina-based methods, and it is often not
possible to obtain enough plasma cells for every patient in large
clinical studies. Although our study has a large RNAseq dataset, we
would need to consider larger sets to measure individual variance
in the future. In addition, alternative splicing tools can affect the
interpretation of the results. Certain tools, such as rMATS,
specifically use predefined splicing models and identify alternative
splicing changes by comparing groups, making interpreting data
easy. Extensions of these primary approaches, such as LeafCutter,
jointly analyze groups of splice events and detect changes within
each group [47] but make interpretation more challenging. We
have also run LeafCutter on our dataset and added the results on
our portal, where you can search the gene-level data (https://
rconnect.dfci.harvard.edu/mmleafcutter/). The final comparison
can be made on the isoform level. Techniques like isoform switch
analysis utilize predicted isoform expression, and some try to
explain them using AS events. Although the biological interpreta-
tion of these methods might be easier, they do not rely on direct
evidence (reads covering the events). Bone marrow samples from
normal donors are critical pieces in plasma cell cancers like MM. In
our study, we used 16 samples; however, this caused a
disproportional sample size that eventually affected the statistical
power. Although this is the largest RNAseq dataset with normal
plasma cells profiled similarly to MM cells, an increased normal
sample pool would definitely help in future studies. Therefore,
comparing the two conditions would benefit from increased
sample size.
One of the key findings from our analysis was that specific

treatment target genes, such as IRF4 and IKZF1, had a significant
alteration in splicing patterns compared to NPCs. This confirmed

our previous data showing two separate isoforms of IKZF1 [48].
This suggests the need to evaluate specific IKZF1 isoforms in
future studies to understand the impact of treatments like
lenalidomide, for which IKZF1 is a primary target. Accordingly,
therapeutic targeting of mis-splicing by small molecules may
represent an innovative approach for treating MM, as shown by us
and others.
Mutations in splicing machinery, such as SF3B1, are connected

with splicing pattern changes in hematological cancers [18, 49].
However, mutations targeting splicing factors are very rare in MM.
Similarly, other mutations in spliceosome components have also
not been reported for any MM subtypes. The impact of these
mutations should be addressed in further studies by inducing
mutations in cell and animal models. While mutations in the core
splicing machinery components drive dysregulated splicing in
cancer, genome-wide splicing defects occur even in the absence
of SF mutations. For instance, dysregulation of SF levels in cancer
can arise from gene copy number or mRNA expression changes
[19, 25, 45]. Recently, we reported miRNA-driven loops modulating
the expression of SF and splicing modifiers (SM, enhancers/
silencers) in MM patients [50]. Several studies prove that an
abnormally expressed SF can have oncogenic properties by
impacting alternative splicing of cancer-associated genes. We
have identified all differentially expressed clinically relevant SFs
and proteins involved in spliceosome assembly using a compre-
hensive evaluation of the genomic data from MM patient samples.
This analysis provides the first look at the aberrations in splicing
machinery impacting MM cell biology. MM subgroups driven by
translocations or copy number changes showed significant
overlap in our analysis, and unique splicing events in each of
these subgroups were few. This may suggest that the spliceosome
machinery regulating transcripts is similarly affected between
subgroups. However, great heterogeneity among patients leaves
the field open for further studies that may target various patient
populations in lab environments.
Our motif enrichment analysis around alternatively spliced

regions identified several splicing factors as the potential binding
factors. This list includes several SRSF family members. We found
higher expression of SRSF1 in MM patient cells, with a significant
impact on clinical outcome. This information highlights that
aberrant levels of “non-mutated” SFs provide a possible mechan-
ism for increased dependency on splicing in the absence of
driving mutations [19, 20]. Importantly, genetic modulation of
SRSF1 in MM cells showed that altered expression of SRSF1 is
associated with changes in AS and impacts MM cell proliferation.

Fig. 2 AS is Controlled by Splicing Factors (SFs). A SF motifs significantly enriched around AS events. The position (R) of each splicing event
relative to the event type is represented in the x axis, 5’ to 3’. Splicing factors’ binding motifs are described in the y axis and were clustered
using a sequence similarity network (SSN). Clustered SFs are shown in different colors. Each panel shows a single event type (A3, A5, MXE, ES,
RI, respectively). The color and size of circles both indicate the significance of SFs. The red color and larger circles show the most significant
SFs. Multiple regions were evaluated for each event type (bottom panel). Exons that are shown with green boxes are the region of interest for
each event type. Exons represented with gray colors are up- and downstream exons. Lines separated with / are representing exons. Each
region is numbered from R1 to R(n), where n is the total region for each event type. Intronic regions are 250-bp flanking sequences, and exon
regions are 50-bp sequences from the start or end of the exon where splicing factors often bind. B Boxplots of SRSF1 expression (y axis) by
MM stage (x axis) in three datasets (3 panels). Panel corresponds to datasets: IFM 2009 (left), Mayo Clinic-(GSE6477) (center), and Arkansas-
(GSE5900 and GSE2658) (right). Colors correspond to MM (red), MGUS (green), SMM (purple), and NPC (blue). p values for each dataset are
given on the top with corresponding test names. C Hazard ratio (y axis) shown with blue boxes and 95% CI (lines) of overall survival (OS) for
SRSF1 expression in three datasets. p values were calculated using the cox proportional hazard model, and the summary table is on the right.
D Boxplots of the number of exon skipping and MXE (y axis) events by SRSF1 expression (x axis). Green boxes show that patients with low
SRSF1 expression have fewer splicing events (ES, MXE) compared to patients with high SRSF1 expression (orange boxes), as separated by the
upper median. E Positional distribution of the SRSF1 binding motif. The middle section of the figure shows skipped exon (green box), 3’ end of
the exon before (left gray box), and the 5’ end of the exon after (right gray box). Lines represent 250-bp intronic sequences before and after
each shown exon. The top panel shows the mean motif score calculated as density within a 50-bp sliding window as the overall percentage of
nucleotides covered by the SRSF1 binding motif. The black line indicates the background signal in this region. Red and blue lines show
enrichment of SRSF1 binding motifs around exons more utilized by MM (red) or less utilized by MM cells (blue). The SRSF1 binding motif is
shown above the panel. The panel at the bottom shows the -log10(p value) of the motif enrichment in these windows. The higher the peak
reaches, the more significant the p value for that region. Significance was determined by comparison to a ‘background set’ of 16765 exons
without splicing changes (rMATs FDR > 50%) in expressed genes (bottom section).
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Fig. 3 SRSF1 expression impacts MM cell growth and viability. A Genetic depletion of SRSF1 was achieved using four different shRNAs
containing the target sequence or scrambled control in MM1S (x-axis). MM1S cells were infected with either scrambled (pLKO.1) or 4 SRSF1-
targeted shRNAs and selected with puromycin for 72 h. qPCR analysis (right panel) was performed to confirm decreased SRSF1 mRNA levels
(red line, right y-axis) in cells expressing SRSF1 shRNAs compared to scrambled cells (red line). Transduced cells were analyzed for effect on cell
growth by 3(H) thymidine uptake and presented as fold change from cells infected with pLKO.1 (left y-axis and bar plots). Data are shown as
the mean values ± s.d. of triplicates. B SRSF1 protein levels and cell proliferation were evaluated three days from puromycin selection by WB
and CTG. Cellular proliferation is presented as the growth rate increase compared to t= 0. Reduced expression of SRSF1 is accompanied by a
reduction of cell growth rate compared to control cells. C CRISPR/Cas9 knockdown studies were performed using transEDIT lentiviral gRNA
plus Cas9 expression vectors in the KMS11 cell line. Cell growth was evaluated by 3H-thymidine uptake (y axis) over time (x axis). D CRISPR/
Cas9 knockdown studies were performed using transEDIT lentiviral gRNA plus Cas9 expression vectors in the KMS11 cell line. CRISPR/Cas9
knockdown studies were performed using transEDIT lentiviral gRNA plus Cas9 expression vectors in the KMS11 cell line. Colony formation was
measured in semi-solid, methylcellulose media. Graphs depict average colony numbers (mean ± SD) from control (NT) and KO MM cells in
methylcellulose medium on day 21. E A panel of 13 MM cell lines (circles in left bar plot) and PHA-activated PBMC from seven healthy donors
(triangles) were tested with different concentrations of TG003. IC50 analysis and a non-parametric t-test were performed. Data are shown as
the mean value ± SD. F KMS20 MM cells were stably transduced with retroviruses expressing empty vector or T7-tagged SRSF1 mutants (x-
axis). These cells were analyzed by western blotting with an anti-T7 antibody (right panel) to confirm transduction efficiency. Cell proliferation
was evaluated after seven days of culture and represented as fold change from an empty control (y-axis). G SCID mice were injected with
empty or SRSF1-expressing KMS20 cells (n= 3/cohort) and evaluated for overall survival. Log-rank Mantel-Cox test was utilized to assess
statistical significance (p= 0.02).
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The mechanisms involved in the decreased MM cell growth after
SRSF1 knockdown need further evaluation.
Nevertheless, this study represents an important example of SF

facilitating tumor cell growth. Our results confirm that systematic
targeting of SFs may perturb a distinct splice pattern, resulting in a

better therapeutic index than global splicing inhibition [51, 52].
Our observation of E2F control of SRSF1 expression highlights the
concept that splicing programs and transcriptional programs
participate in the corruption of cellular processes during tumor
initiation and progression. A similar observation was reported in

A. Aktas Samur et al.

9

Blood Cancer Journal          (2022) 12:171 



breast cancer, where transcriptional upregulation of several
spliceosome components, including SRSF1, resulted in MYC
hyperactivation [45, 53] and oncogenic translation impacting
critical SF networks [54]. In our study, we used sequence-based
analysis; however, the targets we identified can be further
validated and prioritized with other technologies like CLIP-seq.
Future studies are needed to validate all these targets and their
effects.
In conclusion, we report for the first time detailed genome-wide

alternate splicing pattern changes in MM compared to NPCs. We
examined the molecular and cellular mechanisms driving alter-
native RNA splicing in MM cells, providing evidence for the
functional role and clinical significance of a gene in regulating
alternative splicing in MM. These observations now provide the
rationale for developing a therapeutic application to target spliced
products and SFs in MM.

DATA AVAILABILITY
Data generated and/or analyzed during the current study are available from the
corresponding author.
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