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While the clinical impact of mutations in the ABL1 gene on response to therapy in chronic phase chronic myeloid leukemia (CP-
CML) is well established, less is known about how other mutations affect prognosis. In a retrospective analysis, we identified 115
patients with CML (71 chronic, 15 accelerated and 29 blast phase) where targeted next-generation sequencing of genes recurrently
mutated in myeloid leukemias was performed. ASXL1 was the most frequently mutated gene in the chronic (14%) and accelerated
phase (40%) CML patients, whereas RUNX1 (20%) was the most common mutation in blast phase. Compared with wild-type ASXL1,
CP-CML with mutant ASXL1 was associated with worse event-free survival (EFS) (median of 32.8 vs 88.3 months; P= 0.002) and
failure-free survival (median of 13.8 vs 57.8 months; P= 0.04). In a multivariate analysis, ASXL1 mutation was the only independent
risk factor associated with worse EFS in chronic phase CML with a hazard ratio of 4.25 (95% CI 1.59–11.35, P= 0.004). In conclusion,
mutations in ASXL1 are associated with worse outcomes when detected in chronic phase CML.
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INTRODUCTION
Tyrosine kinase inhibitors (TKIs) have revolutionized the treatment
of chronic myeloid leukemia (CML). However, despite success of
this targeted therapy, resistance occurs with ABL1 kinase domain
mutation as the best described mechanism [1]. Approximately
40% of TKI resistance is independent of BCR::ABL1 signaling [2],
and could be mediated by chromosomal instability or possibly
mutations in other genes recurrently mutated in myeloid
malignancies [3–5].
Driver mutations in non-ABL1 genes, especially RUNX1, are

commonly detected in blast phase CML, (BP-CML) [6–10], where
there is a strong association between mutational profile and blast
phenotype [8]. ASXL1, BCORL1, RUNX1, and TP53 mutations are
associated with myeloid phenotype, whereas CDKN2A/B and IKZF1
mutations are more common in the lymphoid blast phase
phenotype [8]. Despite the characterization of the mutational
profile at blast-phase transformation, less is known about the
frequency and clinical impact of non-ABL1 gene mutations in
chronic phase CML (CP-CML). Mutations in ASXL1 have been
detected in CP-CML, though their impact on clinical outcomes is
not well-established [11–14]. These mutations could confer
suboptimal response to TKIs, but it is unclear whether this would
be due to higher co-occurrence with ABL1 kinase domain
mutations [12, 13, 15], or independent epigenetic changes
mediated by the polycomb repressive pathways [16]. In addition,
other somatic mutations have been detected in CML Philadelphia-
negative clones which persisted after optimal TKI response,
suggesting a clonal event similar to clonal hematopoiesis of
indeterminate potential (CHIP) [17, 18].

Given the unknown clinical impact of these mutations in CP-
CML and the lack of clinical guidelines for testing and interpreta-
tion [19], we sought to describe the mutational profile of both
chronic and advanced-phase CML and study the impact of
mutations on TKI response and survival.

METHODS
Patient selection and mutational analysis
We screened our databases for adult patients diagnosed with CML and
identified those where mutational analysis was performed between 2017
and 2022. Targeted next-generation sequencing was done using a panel of
81 genes recurrently mutated in hematologic malignancies (Supplemental
Table 1) [20]. To ensure the accuracy of ASXL1 p.G646fs mutation detection,
we used a combination of sequencing chemistry, sequencing platform,
internal VAF database, and a stringent VAF cut-off (>10%) to avoid
sequencing artifacts across this homopolymer region [21]. ABL1 kinase
domain mutations were identified using a previously described nested
PCR-based cDNA sequencing assay, targeting codons 221 to 500, with an
additional pyrosequencing step for T315I mutation detection [22].
Accelerated phase CML (AP-CML) and BP-CML were defined as per MD
Anderson Cancer Center (MDACC) criteria [23]. A total of 115 evaluable
patients were identified, among whom 71 had CP-CML (41 tested at
diagnosis), 15 had AP-CML and 29 had BP-CML (Supplemental Fig. 1). This
study was approved by the institutional review board and performed in
accordance with the Declaration of Helsinki.

Response and outcome definitions
Response and survival outcomes were determined as previously described
[24]. Major molecular response (MMR) was defined as a BCR::ABL1/ABL1
ratio of ≤0.1% on the international scale (IS). Molecular response with a
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4-log reduction (MR4) and molecular response with a 4.5-log reduction
(MR4.5) were defined as a BCR::ABL1/ABL1 ratio of ≤0.01% and ≤0.0032%
(IS), respectively. Event-free survival (EFS) was measured from the start of
treatment with first-line TKI to the date of any of the following events: loss
of complete hematologic remission, loss of major cytogenetic response
(MCyR), failure to achieve MCyR by 12 months, progression to accelerated
or blast phase, or death from any cause. Failure-free survival (FFS) was
measured similarly to EFS with the addition of treatment discontinuation
due to resistance or intolerance as an event [25]. Overall survival (OS) was
measured from the time of treatment with first-line TKI to time of death
from any cause as an event.

Statistical analysis
Patient characteristics were summarized using median (range) for contin-
uous and frequency (percentage) for categorical variables. Fisher’s exact test
and Wilcoxon rank-sum test were used to assess differences in categorical
and continuous variables, respectively. Survival probabilities were estimated
by the Kaplan–Meier method and the log-rank test was used for
comparisons. Univariate and multivariate analyses were used to assess the
association between patient characteristics and survival outcomes.

RESULTS
Baseline characteristics
Table 1 summarizes the baseline characteristics and treatments of
patients with CP-CML by mutational status. The rate of ABL1
mutations was higher in patients with mutant ASXL1 compared to
patients with no mutations, albeit not statistically significant (29%
vs 11%, P= 0.3).
In BP-CML, the median bone marrow blast percentage at

presentation was higher in the mutation group (45%) compared
with the no mutation group (24%) albeit not statically significant
(P= 0.07). The baseline characteristics for AP-CML and blast BP-
CML are summarized in Supplemental Tables 2 and 3.

Mutational profile in CP-CML
Among the 71 evaluable patients, 23 (32%) had at least one non-
ABL1 mutation with 6 (8%) carrying two or more non-ABL1
mutations (Fig. 1A). The prevalence of mutations was lower in
patients who were tested at diagnosis (10 out of 41) compared

with patients who were tested at resistance or at loss of response
(13 out of 30) (24% vs 43%; P= 0.1) The most common mutation
was ASXL1 detected in 10 (14%) of all tested patients followed by
DNMT3A in 5 (7%) and RUNX1 in 3 (4%) patients. Mutations in 12
other genes were detected at least once (Fig. 1A).
Seven different ASXL1 mutations were detected among 10

patients, with one patient carrying two concomitant ASXL1
mutations. These were either frameshift or nonsense mutations
in exon 13 that resulted in a truncated ASXL1 protein. The most
common mutation was G646fs, detected in five patients (Fig. 1B).

Response rates and time to response
Cytogenetic and molecular response rates as well as times to
attaining these responses (TTR) are highlighted in Table 2 and
Supplemental tables 4 and 5. One of the patients in the mutation
group was lost to follow-up soon after treatment initiation and
therefore was not included in response analyses. A trend of lower
early response rates (33% vs 61%, P= 0.2) and longer time to
MMR (17.5 vs 9.0 months, P= 0.2), MR4 (20.7 vs 16.2 months,
P= 0.4) and MR4.5 (48.7 vs 23.0 months, P= 0.4) were observed in
patients with mutant ASXL1, compared to wild-type counterpart,
albeit not statistically significant (Supplemental Table 5).

Impact on survival
Patients who had at least one non-ABL1 mutation had worse FFS
compared to those with no mutations (Median FFS 13.3 months vs
57.8 months; P= 0.02). There was no statistically significant
difference in EFS or OS comparing the two groups (Supplemental
Fig. 2). Compared with patients with no mutations, patients who
had ASXL1 mutations had worse EFS (median of 32.8 months vs
88.3 months; P= 0.002) (Fig. 2A, Supplemental Fig. 3B) and worse
FFS (median of 13.8 months vs 57.8 months; P= 0.04) (Fig. 2B). EFS
and FFS of patients with mutations other than ASXL1 were not
significantly different from those with no mutations. There was no
significant difference in OS in our cohort based on the mutational
profile of the patients (Fig. 2C), albeit a trend of worse OS in
patients with mutated ASXL1 when considering only CML-related
mortality (Supplemental Fig. 3C).

Table 1. Baseline characteristics.

Characteristic ASXL1 mutation (N= 10) P Other non-ABL1 mutation (N= 13) P No mutation (N= 48)

Age, median (range) 62 (27–73) 0.7 60 (25–80) 0.9 59 (18–77)

Female, no. (%) 5 (50%) 0.9 5 (43%) 0.9 22 (46%)

WBC, median × 109 (range) 42.7 (3–281) 0.2 30 (3–341) 0.4 84.8 (3–538)

Hb, median g/dL (range) 10.2 (8.0–13.9) 0.2 11.6 (7.5–15.5) 0.9 12.0 (6.7–16.3)

Platelets, median × 109 (range) 405 (137–1265) 0.4 193 (74–375) 0.02 333 (19–1832)

Basophils, median% (range) 2 (0–5) 0.8 1 (0–4) 0.03 2 (0–5)

BM Blasts, median% (range) 2 (0–5) 0.6 1 (0–6) 0.9 2 (0–5)

ABL1 mutation, no./tested (%) 2/7 (29%) 0.3 1/9 (11%) 0.9 2/18 (11%)

Sokal Score, no./tested (%) 0.5 0.3

Low 1/8 (12%) 3/10 (30%) 9/39 (23%)

Intermediate 4/8 (50%) 7/10 (70%) 23/39 (59%)

High 3/8 (38%) 0/10 (0%) 7/39 (18%)

1st Line Therapy 0.5 0.2

Imatinib 2 (20%) 4 (31%) 8 (17%)

Dasatinib 7 (70%) 3 (23%) 27 (56%)

Other 1 (10%) 6 (46%) 13 (27%)

HSCT 2 (20%) 0.02 1 (8%) 0.3 1 (2%)

HSCT hematopoietic stem cell transplant.
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Among patients who were tested for mutations at diagnosis,
those who had ASXL1 mutations had significantly worse EFS
(median of 30.3 months vs not reached; P= 0.02) and FFS (median
of 12.6 months vs not reached; P= 0.02) when compared to
patients with no mutations (Supplemental figure 4). In patients
tested at loss of response, there was still a trend of worse EFS in
patients with ASXL1 mutation, albeit not statistically significant
(Supplemental Fig. 5).

Multivariate analysis
In order to assess the impact of confounding variables on survival,
we conducted univariate and multivariate analyses to predict the
determinants of EFS, FFS, and OS. ASXL1 mutation was identified
as an independent risk factor associated with worse EFS with a
hazard ratio (HR) of 4.25 (95% CI 1.59–11.35, P= 0.004) (Fig. 2D).
On the other hand, having any non-ABL1 mutation (HR of 2.33,
95% CI 1.16–4.68, P= 0.02) and treatment with imatinib (HR of

Table 2. Responses.

Response ASXL1 (N= 9) Other mutations (N= 13) No Mutation (N= 48)

N (%) Median TTRa

(range)
P N (%) Median TTRa

(range)
P N (%) Median TTRa

(range)

MCyR 9 (100%) 3.3 (1–65) 0.9 12 (92%) 3.7 (1–13) 0.5 45 (94%) 3.4 (1–52)

CCyR 8 (89%) 9.7 (3–66) 0.4 11 (85%) 6.0 (3–13) 0.2 45 (94%) 6.0 (2–31)

MMR 7 (78%) 17.5 (5–66) 0.7 10 (77%) 6.7 (3–70) 0.7 39 (81%) 9.2 (3–142)

MR4 5 (56%) 29.1 (10–86) 0.5 8 (62%) 15.5 (4–76) 0.7 32 (67%) 16.3 (3–167)

MR4.5 4 (44%) 48.7 (11–89) 0.7 8 (62%) 27.0 (12–120) 0.7 26 (54%) 17.2 (4–73)

Early
responseb

3/9 (33%) – 0.3 5/12 (42%) – 0.2 28/42 (67%) –

Early response is reported as number/evaluable.
TTR time to response in months, MCyR major cytogenetic response, CCyR complete cytogenetic response, MMR major molecular response, MR4 molecular
response with a 4-log reduction, MR4.5 molecular response with a 4.5-log reduction.
aWilcoxon rank sum test was performed to assess the difference in TTR (*P < 0.05).
bDefined as BCR::ABL1 < 10% at 3 months.
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2.65, 95% CI 1.30–5.44, P= 0.008) were each independent risk
factors associated with worse FFS (Fig. 2E).

Advanced phase CML
Fifteen patients with AP-CML and 29 patients with BP-CML had
mutational analysis performed (Supplemental Tables 2 and 3).
Among the 15 patients with AP-CML, 10 (67%) had at least one

non-ABL1 mutation (Fig. 3A). The most common mutation was
ASXL1 detected in 6 (40%) patients followed by RAS, SF3B1, and
TET2 detected in 2 (13%) patients each. Mutations were also
detected in 7 other non-ABL1 genes as highlighted in (Fig. 3A).
ABL1 was the most common mutation in BP-CML, detected in

11 (38%) patients. Sixteen (56%) patients had at least one non-
ABL1 mutation and 9 (31%) had two or more mutations (Fig. 3B).
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RUNX1 was the most frequently mutated gene in 6 (21%) patients,
followed by WT1 in 4 (13%) and ASXL1 in 2 (7%) patients. PTEN
mutation was detected in one patient who had lymphoid BP-CML
and RAS mutation was detected in both lymphoid and myeloid
phenotypes (one patient each). All the other gene mutations were
associated with myeloid blast phenotype (Fig. 3C).
Among the 29 BP-CML patients, 26 were followed for a median

of 18.1 months. Patients who had at least one non-ABL1 mutation
had significantly worse EFS (1-year survival of 17% vs 61%,
P= 0.007) (Supplemental figure 6). Multivariate analysis revealed

that having at least one non-ABL1 mutation was an independent
risk factor associated with worse EFS (HR= 5.42, 95% CI 1.2–23.8,
P= 0.03) (Supplemental Table 6). Mutation status did not affect OS
or FFS, whereas a myeloid phenotype was associated with worse
OS (HR= 5.67, 95% CI 1.3–25.6, P= 0.02) (Supplemental Tables 7
and 8).

AML development
When screening our databases for patients for this study, we also
identified patients who had history of CML and later developed de
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novo myelodysplastic syndrome (MDS) or acute myeloid leukemia
(AML), with low BCR::ABL1 levels (<1% IS). Interestingly, one of
these patients with ASXL1, IDH2 and SRSF2 mutations identified in
CP-CML, developed de novo AML 6 years after his initial CML
diagnosis. Mutational analysis at the time of AML diagnosis
revealed the same mutations.

DISCUSSION
In this study we report on the mutational profile of CML patients
who were tested in the clinical setting. Mutations in ASXL1 were
the most common alteration in CP-CML, detected in 14% of all
evaluable patients and in 12% of patients tested at diagnosis.
These mutations were associated with significantly worse EFS
and FFS.
The presence of non-ABL1 mutations and their potential

adverse prognostic impact has been previously described [14];
however, to our knowledge, our study represents the first report
on the impact of ASXL1 mutations on survival, adding to recently
emerging evidence of suboptimal TKI response associated with
these mutations [15]. There was no difference in OS when these
mutations were detected, which could be due to the relatively
short follow-up period (median follow-up of 42 months), or the
excellent outcomes of CP-CML with the current standard of care.
Mutations in RUNX1 were the most common non-ABL1 mutations
among patients with BP-CML, mostly among those with a myeloid
blast phenotype, an association reported in previous studies [8].
While none of the CP-CML patients in our cohort progressed to AP
or BP, a small fraction with CP-CML developed de novo MDS or
AML, including one patient who had the same mutational profile
during his CML treatment. This could be explained by the
presence of non-ABL1 mutations in Philadelphia-negative clones
[17, 18]. Our findings could be biased by the fact that only 41 of 71
(58%) patients were tested for mutations at diagnosis, whereas 30
(42%) were tested only when clinicians suspect resistance or
suboptimal response, therefore confounding our predicted
associated risks with adverse outcomes. Prospective analysis with
unbiased testing of these mutations could better determine their
associated prognostic impact.
Although larger studies are needed, our findings support the

role of broad mutational analysis in CP-CML, especially those with
suboptimal response to therapy and absence of ABL1 mutations.

DATA AVAILABILITY
Data generated and/or analyzed during the current study are available from the
corresponding author on reasonable request.
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