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Therapy-related myeloid neoplasms (t-MN) are aggressive leukemia that develops as a complication of prior exposure to DNA-
damaging agents. Clonal cytopenia of undetermined significance (CCUS) is a precursor of de novo myeloid neoplasms.
Characteristics of CCUS that develop following cytotoxic therapies (therapy-related clonal cytopenia, t-CC) and outcomes following
t-CC have not been described. We identified 33 patients with t-CC and compared to a cohort of the WHO-defined t-MN (n= 309).
t-CC had a distinct genetic and cytogenetic profile: pathogenic variants (PV) in TET2 and SRSF2 were enriched in t-CC, whereas TP53
PV was more common in t-MN. Ten (30%) t-CC patients developed a subsequent t-MN, with a cumulative incidence of 13%, 23%,
and 50% at 6 months, 1, and 5 years, respectively. At t-MN progression, 44% of evaluable patients had identifiable clonal evolution.
The median survival following t-CC was significantly superior compared all t-MN phenotype including t-MDS with <5% bone
marrow blasts (124.5 vs. 16.3 months, P < 0.001) respectively. The presence of cytogenetic abnormality and the absence of variants
in DNMT3A, TET2, or ASXL1 (DTA-genes) were associated with a higher likelihood of developing a subsequent t-MN and an inferior
survival. We describe a putative precursor entity of t-MN with distinct features and outcomes.
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INTRODUCTION
With the widespread adaptation of sequencing techniques,
precursor states of myeloid neoplasms such as clonal hematopoi-
esis of indeterminate potential (CHIP), idiopathic cytopenia of
undetermined significance (ICUS) or clonal cytopenia of undeter-
mined significance (CCUS) are recognized. CHIP is defined as the
presence of expanded clonal blood cells carrying one or more
somatic mutations, in the absence of any detectable hematolo-
gical abnormalities. CCUS is characterized by unexplained
cytopenia of cytopenia in the context of clonal hematopoiesis,
but in the absence of known hematological malignancies. Finally,
the presence of unexplained cytopenia without the evidence of
clonality is defined as ICUS. While all these entities are associated
with a higher risk of subsequent hematological malignancies, their
malignant potential is diverse [1, 2].
Therapy-related myeloid neoplasms (t-MN) develop as a

complication of prior DNA-damaging therapies including che-
motherapy, radiation, stem cell transplantation (SCT), or immuno-
suppressive therapies (IST) for autoimmune diseases (AID). t-MN
are aggressive neoplasms with overall survival of approximately 1
year from diagnosis, regardless of the therapies employed [3, 4].
In the context of DNA-damaging therapy, the impact of

coexistent clonal hematopoiesis (CH) is context dependent. For
example, in lymphoma and solid tumors patients, CH increases the
risk of future t-MN [5, 6]. In contrast, the presence of CH did not
predict a higher risk of t-MN in multiple myeloma patients

undergoing autologous SCT [7]. Moreover, the therapeutic
modality as well as different therapeutic classes have a distinct
pattern of CH [8]. Combined how these host-related and external
forces shape the clonal evolution leading to leukemic transforma-
tion is not known.
While studying t-MN patients, we encountered patients who

had received DNA-damaging therapy and developed unexplained
cytopenia with clonal abnormality, without morphological evi-
dence of a myeloid neoplasm (i.e., CCUS). As a vast majority of
patients in the CHIP, ICUS, or CCUS cohorts did not receive prior
DNA-damaging therapies [2, 9–11], the significance of CCUS
following such therapies and its outcomes is not known. We
hypothesized that clonal cytopenia following DNA-damaging
therapy (therapy-related clonal cytopenia or t-CC) is a distinct
entity from the WHO-defined t-MN. To test this hypothesis, we
analyzed clinicopathological characteristics and outcomes of t-CC
as well as the risk factors for developing a subsequent t-MN.
The emergence of any cytogenetic abnormalities following

DNA-damaging therapy, raises the concern for a t-MN. In a cohort
of patients exposed to prior DNA-damaging therapy, 46% patients
with the deletion of chromosome 7q (del 7q) progressed to t-MN.
Thus, while del 7q was associated with a very high risk of
progression to t-MN; it—by itself—did not define t-MN [12]. This is
in contrast to the de novo context, wherein unexplained cytopenia
in the presence of MDS-defining cytogenetic abnormality would
be diagnosed as myelodysplastic syndrome, unclassifiable (MDS-
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U) [13, 14]. Therefore, we studied outcomes of following the
emergence of MDS-defining cytogenetic abnormalities and
compared with t-CC.

METHODS
Patient cohort
Following the institutional review board approval, we conducted a
retrospective review of all adult patients treated at Mayo Clinic. After
obtaining informed consent, we defined t-CC using the following criteria:
(i) history of exposure to DNA-damaging agents in the form of
chemotherapy, radiation, autologous SCT for non-myeloid diseases, or
IST; (ii) unexplained cytopenia persisting ≥4 months; (iii) evidence of
clonality using cytogenetic analysis or next-generation sequencing (NGS);
and (iv) no morphological evidence of a myeloid neoplasm. t-MN was
defined using the WHO guideline [13]. t-CC patients that subsequently
developed t-MN were included in the t-CC cohort for the purpose of this
analysis. Finally, we identified patients with prior exposure DNA-damaging
therapy and unexplained cytopenia that had no morphological evidence of
a myeloid neoplasm but had at least one MDS-defining cytogenetic
abnormality (referred to as t-MDS (cyto). According to the WHO guidelines
[13], these patients were classified as t-MN and their outcome was
compared to t-CC and other t-MN phenotypes.

Clinicopathological characteristics
Demographic and clinical characteristics including age at the time of
primary condition, sex, DNA-damaging therapies received, and hematolo-
gical parameters were abstracted. All available bone marrow biopsies were
re-reviewed by 2 hematopathologists independently (R.H. and D.C.) to
exclude t-MN. Diagnostic and therapeutic decisions were made per
treating physician’s discretion.

Next-generation sequencing
DNA was extracted from fresh bone marrow aspirates and next-generation
sequencing (NGS) testing was performed using a targeted next-generation
sequencing (NGS) panel that included 42 genes commonly mutated in
myeloid neoplasms: ANKRD26, ASXL1, BCOR, CALR, CBL, CEBPA, CSF3R, DDX41,
DNMT3A, ELANE, ETNK1, ETV6, EZH2, FLT3, GATA1, GATA2, IDH1, IDH2, JAK2,
KDM6A, KIT, KRAS, MPL, NPM1, NRAS, PHF6, PTPN11, RAD21, RUNX1, SETBP1,
SH2B3, SF3B1, SRP72, SMC3, SRSF2, STAG2,TERT, TET2, TP53, U2AF1, WT1, and
ZRSR2. The library preparation, sequencing, and data analysis were
performed as described [15]. Briefly, libraries were prepared using the
Agilent SureSelect‐XT Target Enrichment Kit (SureSelectXT, Agilent, Santa
Clara, CA). and sequencing was performed on MiSeq or HiSeq platforms
(Illumina, San Diego, CA) at the Mayo Clinic Clinical Genome Sequencing
Laboratory. Pathogenic and likely pathogenic variants calling was performed
as described [16]. Only the variants at the sites with a total read depth >100,

supported by more than five alternate variant reads and a variant allele
frequency (VAF) ≥ 5%, were retained for further analysis.

Statistical analysis
Univariate analysis was performed using logistic regression for nominal
characteristics and Cox proportional hazard for time-to-event endpoints.
Myeloid neoplasm-free survival (MNFS) was defined as interval from t-CC
diagnosis to t-MN progression or the last follow-up. Progression-free
survival (PFS) was defined as interval from t-CC diagnosis to t-MN
progression or death. Finally, overall survival (OS) was calculated from t-CC
diagnosis to last follow-up or death, whichever occurred first.
Kruskal–Wallis test for continuous variables and Fisher Exact test for
categorical variables were used with a significance level of 5% or less (P-
value ≤0.05). Statistical analysis was performed using BlueSky Statistics
(Chicago, IL) and figures were generated using GraphPad (v9, San Diego,
USA). Oncoplot was prepared as described [17, 18].

RESULTS
Clinical and pathological characteristics
We identified 90 patients who developed unexplained cytopenia
following cytotoxic therapy. Of these, 36 were excluded for reasons
as shown (Fig. 1). Twelve patients with no morphologic evidence of
a myeloid neoplasm but the presence of MDS-defining cytogenetic
abnormalities [referred to as t-MDS (cyto)] were classified as t-MN
according to the WHO guideline [13]. The remaining 42 cases were
re-reviewed, of which 9 (21.4%) cases were determined to have t-
MN, while 33 patients were determined to have t-CC. Detailed
pathological features of t-CC patients are described in Table 1 and
serial bone marrow examinations from a representative case are
shown (Fig. 2). We also identified 309 WHO-defined t-MN patients
and compared clinicopathological features of the two cohorts
(Supplementary Table 1). The interval from the primary diagnosis to
t-CC was shorter compared to t-MN (34.4 vs. 79.8 months,
P < 0.001). t-CC patients were more likely to have received IST
(30.3% vs. 8.7%, P= 0.001); whereas a higher proportion of t-MN
patients had received chemotherapy (82.5% vs. 63.6%, P= 0.018).
Presentation as t-MN was associated with a higher degree of
anemia (9 vs. 10.9 g/dL, P < 0.001), absolute neutropenia (1.1 vs. 1.6,
P= 0.022), and thrombocytopenia (63 vs. 101, P= 0.037); though
the white blood cell (WBC) count did not differ between the two
cohorts. t-CC patients had a lower likelihood of abnormal
cytogenetics (24.2% vs. 84.9%, P < 0.001), complex karyotype (CK,
none vs. 52.3%, P < 0.001), and monosomal karyotype (MK, none vs.
50.3%, P < 0.001) compared to t-MN. Finally, we compared the

Fig. 1 Experimental design and description of the cohort. (i) CONSORT diagram; and (ii) Venn diagram showing the relation between
therapy-related clonal cytopenia (t-CC) and therapy-related myeloid neoplasm (t-MN) patients. *1 patient did not have NGS analysis
performed. CCUS clonal cytopenia of undetermined significance. MDS myelodysplastic syndrome.
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clinicopathological features of t-CC, t-MDS (cyto), and t-MN
separately and found that t-MDS (cyto) had distinct clinicopatho-
logical features (Supplementary Table 2 and Supplementary Fig. 1).
The proportion of patients with abnormal NGS was similar

between t-CC and t-MN (96.3% vs. 90.3%, P= 0.477). Clinico-
pathological features and its correlation with NGS findings are
shown in Fig. 3 and Supplementary Table 3. Median variance allele
frequency (VAF) at t-CCUS was 35% (range 5–76%). The median
VAF was not different between the DTA and non-DTA genes (33%
vs. 39%, P= 0.45). The proportion of patients with a pathogenic
variant (PV) in TP53 was significantly higher in t-MN compared to
t-CC (40.9% vs. 7.4%, P < 0.001). On the other hand, a higher
proportion of t-CC patients had PV in TET2 (55.6% vs. 10%,
P < 0.001), and SRSF2 (23.1% vs. 8.1%, P= 0.028) compared to

t-MN. The most common PV in t-CC were in TET2 19 (37%, Fig. 3),
DNMT3A 7(14%), SRSF2 66(12%), RUNX1 4 (8%), and TP53 3 (6%). In
contrast, the most common PVs in CCUS [9] were TET2 (21%),
SRSF2 (12%), DNMT3A (7%), ZRSR2 (7%), and U2AF1 (6%) and the
most common PV in t-MN were TP53 (26%), TET2 (8%), ASXL1 (7%),
DNMT3A (6%), SRSF2 (4%) and IDH1 (4%). Thus, the genetic
landscape of t-CC is distinct from t-MN as well as compared to the
recently described cohort of CCUS patients [9].

Risk of t-MN progression
At the last follow-up, 10 (30.3%) patients progressed to t-MN. We
compared the characteristics of t-CC patients that subsequently
developed t-MN compared to those who did not (Table 2). The
distribution of the primary condition was different between the

Fig. 2 A representative example of the morphological changes associated with progression from therapy-related clonal cytopenia (t-CC)
to therapy-related myeloid neoplasm (t-MN). A Bone marrow aspirate smear (600x) and B bone marrow biopsy (400x) at the time of t-CC
diagnosis. Six months later, C bone marrow aspirate smear (600x) and D bone marrow biopsy (400x) showed dysplastic changes in the
megakaryocytes (*) and increase in CD34+ myeloblasts (# and inset), consistent with the diagnosis of t-MN.

Fig. 3 Comparing genetic landscapes of therapy-related clonal cytopenia (t-CC), clonal cytopenia of undetermined significance (CCUS),
and therapy-related myeloid neoplasms (t-MN). (i) Clinical and genetic characteristics of t-CC patients; and (ii) the distribution of pathogenic
variants in clonal cytopenia of undetermined significance (CCUS), therapy-related clonal cytopenia (t-CC), and therapy-related myeloid
neoplasm (t-MN). AID autoimmune disease, Heme primary hematological malignancy, Solid primary solid tumor, Chemo chemotherapy, Rad
radiation, Auto SCT autologous stem cell transplant, IST immunosuppressive therapy, Neutro neutropenia, Thrombo thrombocytopenia, cyto
cytogenetics.
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two cohorts: a higher proportion of patients that developed t-MN
had hematological malignancy, whereas none of the 5 patients
with AID developed t-MN. A higher degree of thrombocytopenia
(platelets 46 vs. 11, P= 0.012), the presence of bone marrow blasts
(1 vs. 0, P= 0.021), and nucleated red blood cells (0.6 vs. 0,
P < 0.001) were associated with a higher likelihood of a
subsequent t-MN. Similarly, the presence of a cytogenetic
abnormalities (P= 0.004) and the absence of DTA variants
(P= 0.015) were associated with a higher likelihood of a
subsequent t-MN. Regardless of the presence of a non-DTA
variants, the presence of at least one DTA variant was associated
with a low risk of a subsequent t-MN: none of the 12 patients with
DTA variants only developed t-MN, whereas 1 of the 8 patients
with combined DTA and non-DTA variants progressed to t-MN.

Table 2. Clinicopathological characteristics therapy-related clonal
cytopenia (t-CC) patients that progressed to therapy-related myeloid
neoplasm (t-MN) and those who do not.

Variables No
subsequent
t-MN
(N= 23)

Subsequent
t-MN
(N= 10)

P-value

Hemoglobin g/dL,
median (Q1, Q3)

11.2
(8.9, 12.6)

10.2
(7.8, 12.3)

0.372

Mean corpuscular
volume, median
(Q1, Q3)

99.8
(94.8, 109.6)

105.3
(102.2, 108.3)

0.412

Red cell distribution
width, median
(Q1, Q3)

14.2
(13.7, 17.2)

15.2
(15.2, 17.2)

0.218

White blood cell,
median (Q1, Q3)

3.2 (2.1, 4.4) 3.8 (2.1, 5.2) 0.811

Platelets, median
(Q1, Q3)

110.0 (78.2,
166.2)

46.0 (34.0,
80.0)

0.012

Absolute neutrophil
count, median
(Q1, Q3)

1.1 (0.8, 2.4) 1.8 (1.2, 6.3) 0.361

% Blasts, median
(Q1, Q3)

0.0 (0.0, 0.0) 1.0 (0.0, 2.5) 0.021

% Nucleated red
cells, median
(Q1, Q3)

0.0 (0.0, 0.0) 0.6 (0.0, 1.0) <0.001

% Cellularity, median
(Q1, Q3)

40.0
(22.5, 57.5)

40.0
(30.0, 42.5)

0.777

M:E ratio, median
(Q1, Q3)

3.0 (1.1, 4.0) 2.0 (1.1, 2.1) 0.362

Gender 1

Female 10 (43.5%) 4 (40.0%)

Male 13 (56.5%) 6 (60.0%)

Primary condition 0.069

Hematological
malignancy

8 (36.4%) 7 (70.0%)

Solid malignancy 9 (40.9%) 2 (20.0%)

Multiple
malignancies

0 1 (10%)

Autoimmune
disease

5 (22.7%) 0

Chemotherapy 0.259

No 10 (43.5%) 2 (20.0%)

Yes 13 (56.5%) 8 (80.0%)

Radiation 0.139

No 16 (69.6%) 4 (40.0%)

Yes 7 (30.4%) 6 (60.0%)

Prior autologous
stem cell transplant

0.627

No 20 (87.0%) 8 (80.0%)

Yes 3 (13.0%) 2 (20.0%)

Immunosuppressive
therapy

0.123

No 14 (60.9%) 9 (90.0%)

Yes 9 (39.1%) 1 (10.0%)

Anemia at t-CC
diagnosis

0.109

No 10 (43.5%) 1 (10.0%)

Yes 13 (56.5%) 9 (90.0%)

Table 2. continued

Variables No
subsequent
t-MN
(N= 23)

Subsequent
t-MN
(N= 10)

P-value

Neutropenia at t-CC
diagnosis

0.283

No 11 (47.8%) 7 (70.0%)

Yes 12 (52.2%) 3 (30.0%)

Thrombocytopenia
at t-CC diagnosis

0.005

No 12 (52.2%) 0 (0.0%)

Yes 11 (47.8%) 10 (100.0%)

Cytogenetics at t-CC
diagnosis

0.004

Abnormal 2 (8.7%) 6 (60.0%)

Normal 21 (91.3%) 4 (40.0%)

NGS at t-CC
diagnosis

0.179

Abnormal 23 (100.0%) 4 (80.0%)

Normal 0 (0.0%) 1 (20.0%)

PV in DTA genes 0.015

Absent 19 (82.6%) 1 (20.0%)

Present 4 (17.4%) 4 (80.0%)

PV in TP53 0.279

No 22 (95.7%) 3 (75.0%)

Yes 1 (4.3%) 1 (25.0%)

PV in TET2 0.028

No 8 (34.8%) 4 (100.0%)

Yes 15 (65.2%) 0 (0.0%)

PV in DNMT3A 1

No 18 (78.3%) 3 (75.0%)

Yes 5 (21.7%) 1 (25.0%)

PV in ASXL1 1

No 21 (91.3%) 4 (100.0%)

Yes 2 (8.7%) 0 (0.0%)

PV in RAS 1

No 22 (95.7%) 4 (100.0%)

Yes 1 (4.3%) 0 (0.0%)

t-MN therapy-related myeloid neoplasm, M:E myeloid to erythroid ratio,
t-CC therapy-related clonal cytopenia, NGS next-generation sequencing, PV
pathogenic variant. Fisher’s Exact test was used for categorical variables
and Kruskal–Wallis was used for continuous variables.
Bold values indicates statistical significant P values (P ≤ 0.05).
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The cumulative incidence of t-MN at 6 months, 1 year, and 5
years was 13%, 23%, and 50% respectively (Fig. 4). The presence of
cytogenetic abnormalities at the time of t-CC diagnosis was
associated with a statistically shorter MNFS (20.4 months vs. not
reached, P= 0.02, Supplementary Table 4). Similarly, the absence
of DTA variants was also associated with a statistically shorter
MNFS (33.1 vs. 48 months, P= 0.02).

Clonal evolution at the time of t-MN progression
Paired cytogenetics and NGS at t-CC and t-MN were available for 9
and 4 patients, respectively. Combined, 4 (44.4%) of 9 evaluable
patients had identifiable clonal evolution (Table 3) at t-MN

progression. Among those with paired cytogenetic analyses, 3
patients acquired additional cytogenetic abnormalities (deletion of
chromosome 13q, del 7q/trisomy 21, and a complex clone). Among
those with paired NGS, one patient each noted the acquisition of
NRAS and CEBPA/TP53, whereas in one patient each, DNMT3A/
RUNX1 and TP53 were undetectable. Thus, leukemic transformation
was associated with diverse biological mechanisms.

Outcomes following t-CC
Most common management strategy for t-CC was observation in 19
patients. The rest were treated with growth factor support (n= 7),
chemotherapy (n= 1), IST (n= 1), intravenous immunoglobulin

Fig. 4 Cumulative incidence of therapy-related myeloid neoplasms (t-MN) in patients with therapy-related clonal cytopenia (t-CC). (i)
Cumulative incidence (CI) of t-MN in patients with therapy-related clonal cytopenia (t-CC); (ii) Myeloid neoplasm free survival (MNFS) stratified
by the presence of abnormal cytogenetics and (iii) the presence of pathogenic variants in DNTM3A, TET2, or ASXL1 (DTA) genes. Abnl abnormal,
cyto. cytogenetics, DTA DNMT3A, TET2, and ASXL1 genes, PV pathogenic variant, NR not reached.

Table 3. Clonal evolution at the time of progression to therapy-related myeloid neoplasm.

UPIN t-CC to
t-MN*

Cytogenetics
at t-CC

# PV
at
t-CC

PV at t-CC
(%VAF)

Cytogenetics at t-MN # PV
at
t-MN

PV at t-MN
(%VAF)

Summary

1012 6.6 46,XY,del(7)
(p15)[20]

Not performed 46,XY,del(7)(p15)[20] 0 None No change

1067 3.5 46, XX 2 BCOR (23%),
U2AF1 (26%)

46, XX 3 BCOR (36%), U2AF1
(45%), NRAS (43%)

Clonal
evolution

1132 3.0 47,XY,+ 21[3]/
46, XY[17]

Not performed 47,XY,+ 21[7]/46,XY[13]. 2 SRSF2 (44%),
U2AF1 (36%)

No change

1142 98.7 Trisomy 8 Not performed 47,XX,+ 8[6]/46,XX[14] Not performed No change

1724 47.8 46, XY 2 DNMT3A
(8%),
RUNX1 (48%)

46,XX,del(13)(q12q14)[7]/
46,XX[13]

0 None Clonal
evolution

2004 33.1 46,XY,del(4)
(q21q31),t(7;20)
(q22;q13.1)[4]/
46,XY[16].

0 None 45,XY,del(5)(q22q31),add(7)
(q22),-14,add(18)(q21), add(19)
(p13.1)[18]/ 45,XY,del(5)
(q22q31),add(6)(p23),-18[2].

2 TP53 (25%) CEBPA
(7%)

Clonal
evolution

2043 6.1 47,XY,+ 8[11]/
46,XY[9]

Not performed 47,XY,+ 8[8]/46,XY[12] 6 ASXL1 (46%), BCOR
(65%), EZH2 (44%)
EZH2 (50%), RUNX1
(13%), TET2 (44%)

No change

2052 8.1 46, XY 2 IDH1 (33%),
SRSF2 (27%)

46, XY Not performed No change

2057 5.4 46, XY 2 TP53 (5.5%),
TP53 (7.5%)

46,XY,del(7)(q22)[11]/
47,idem,+21[5]/46,XY[4]

0 None Clonal
evolution

UPIN unique patient identification number, PV pathogenic variant, VAF variance allele frequency, t-CC therapy-related clonal cytopenia, t-MN therapy-related
myeloid neoplasm.
*interval in months.
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(n= 1), or a clinical trial (n= 1). One patient was diagnosed as MDS
at an outside institution and underwent allogeneic SCT. At the last
follow up, 11 (33.3%) deaths were noted. Primary causes of death
included: t-MN (n= 4), infection (n= 2), cardiac complications
(n= 2), primary malignancy (n= 1), progressive cytopenia without
MN (n= 1), and undetermined (n= 1). Thus, 4 of 11 deaths were
noted in patients who did not develop a subsequent t-MN.
Median PFS and OS for the entire cohort were 33 and

124.5 months respectively (Fig. 5). The presence of cytogenetic
abnormality (9.5 vs. 47.7 months, P= 0.01) and the absence of DTA
variants (20.6 vs. 47.7 months, P= 0.03) were associated with a
shorter PFS. Similarly, the presence of cytogenetic abnormality
(17.9 months vs. not reached, P= 0.02) was associated with
inferior OS and there was a trend towards an inferior survival in
the absence of DTA variants (29.9 months vs. not reached,
P= 0.07). Other factors associated with shorter PFS were the
history of autologous SCT (HR 5.02, P= 0.03, Supplementary Table
5), the presence of thrombocytopenia (HR 9.1, P= 0.03), or the
presence of anemia (HR 8.58, P= 0.04) at t-CC diagnosis. Similarly,
history of autologous stem cell transplant (HR 8.82, P= 0.01,
Supplementary Table 6) was associated with an inferior OS.

Outcomes following t-CC compared to t-MN
We next assessed the impact of the development of a subsequent
t-MN on survival. Patients who developed t-MN (n= 10) had a
statistically significantly inferior survival compared to those who
did not (17.1 months vs. not reached, P= 0.03, Fig. 6). Comparing
the overall survival following t-CC to that with various phenotypic
subclassifications of t-MN: t-MDS with <5% bone marrow blasts,
t-MDS with excess blasts (t-MDS-EB), t-MDS/MPN, and t-AML
showed that t-CC patients had a significantly superior survival
(124.5 months) compared to t-MDS with <5% blasts (16.3 months),
t-MDS-EB (14 months), and t-AML (13 months).

The significance of MDS-defining cytogenetic abnormalities
Of the 12 t-MDS (cyto) patients, 9 (75%) developed the
morphological evidence of a myeloid neoplasm at a median of

10.5 months, while 3 (25%) patients did not. One patient (UPIN
2048) died within 1 month due to sepsis. UPIN 2041 died of
progressive lymphoma 12 months without developing morpholo-
gical evidence of a myeloid neoplasm. Finally, UPIN 1036 was alive
at 44 months despite harboring the deletion of chromosome 5q, as
well as PVs in ASXL1 and TP53. Time to develop morphological
evidence of t-MN was significantly shorter for those with t-
MDS(cyto) compared to t-CC (Supplementary Table 7, Supplemen-
tary Fig. 2). Importantly, median OS of the patients with MDS-
defining cytogenetic abnormalities was significantly inferior com-
pared to t-CC patients (13.2 vs. 124 months, P= 0.01), but was
comparable to the other t-MN phenotypes (13–16.3 months, Fig. 5).

DISCUSSION
Therapy-related myeloid neoplasms are one of the most
aggressive malignancies with no effective therapies and an
exceedingly poor survival [20]. Therefore, there is an urgent need
to predict and prevent future t-MN.
The evidence of clonality in patients with otherwise unexplained

cytopenia, impart a 17–27% risk of developing a subsequent
myeloid neoplasm [9–11]. However, these studies did not assess
the impact of prior DNA-damaging therapies, which is one of the
strongest known risk factors for myeloid neoplasms [21].
We comprehensively characterized CCUS developing after the

exposure to DNA-damaging therapies and found that the
cumulative incidence of t-MN was 50% at 5 years. The interval
from the diagnosis of primary malignancy/AID to t-CC diagnosis
was shorter than t-MN. In addition, t-MN was accompanied by a
higher degree of anemia, absolute neutropenia, and thrombocy-
topenia. A significantly smaller proportion of t-CC patients had
TP53, CK, and MK—features known to predict inferior outcomes
[3]. This raises two possibilities—the first is that patients
presenting as t-CC, including those progressed to t-MN, represent
a distinct subset of t-MN. Another possibility is that the leukemic
transformation is a distinct biological event characterized by the
acquisition of high-risk features including the acquisition of PV in

Median OS: 124 mo.

Median PFS: 33 mo. 

(i)

(ii)

(iii)

(iv)

(v)

(vi)

Normal cyto.: 47.7 mo.
Abnl. cyto.: 9.5 mo.
P=0.01

PV in DTA: 47.7 mo.
No DTA PV: 20.6 mo. 
P=0.03

PV in DTA: NR
No DTA PV: 29.9 mo. 
P=0.07

Normal cyto.: NR
Abnl. cyto.: 17.9 mo.
P=0.02

Fig. 5 Outcomes following the development of therapy-related clonal cytopenia (t-CC). (i) Progression-free survival (PFS), and (ii) overall
survival (OS) of the entire AQ11 cohort. (iii) PFS and (iv) OS stratified by the presence of abnormal cytogenetics.(v) PFS and OS (vi) stratified by
the presence of pathogenic variants in DNTM3A, TET2, or ASXL1 (DTA) genes. Abnl abnormal, cyto. cytogenetics, DTA DNMT3A, TET2, and ASXL1
genes, PV pathogenic variant, NR not reached.
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TP53 as well as chromosomal instability. While limited by a small
cohort size, the paired cytogenetic/genetic analysis at t-CC and
t-MN showed complex clonal evolution seen at the time of
leukemic transformation. Using a lower VAF threshold (≥2%), a
recent study found that the leukemic transformation was
associated with acquisition of additional somatic mutations,
including chromosomal aneuploidies or mutations in genes in
91% of cases [8]. Combined, these observations raise the
possibility that a prompt and accurate diagnosis of t-CC may
allow for interventions which may not be feasible in t-MN patients.
Designing optimized surveillance strategies and counseling will

require an accurate identification of patients at a higher risk of
t-MN. We noted that the presence of cytogenetic abnormalities
was associated with inferior outcomes, whereas the presence of
DTA variants—regardless of the co-existing non-DTA variants—
were associated with superior outcomes. The mechanism under-
lying this observation remains unclear. A possible explanation is
that the presence of DTA variants may denote ‘true’ CHIP-like
clone, whereas the presence of cytogenetic abnormalities and/or
non-DTA variants may represent a therapy-related clone.
Long-term follow up following t-CC revealed 2 interesting

themes: more than a third of patients died without developing
t-MN. These findings are commensurate with CHIP patients who
experience increased morbidity and mortality [1, 19]. On the other
hand, the survival of t-CC patients was significantly superior
compared to t-MN patients. In the de novo context, an argument
can be made that the clear distinction between CCUS and low-risk
MDS (LR-MDS) may be of little importance; as observation is the
preferred option for both entities [1], and there is no difference in
survival [9]. This is in stark contrast with our findings as t-CC
appears to have superior survival compared to all t-MN
phenotypes, including t-MDS with no increase in blasts. In
addition, once diagnosed with t-MN, very few patients would be
watched without interventions. Thus, we argue that the distinction
between t-CC and t-MN is clinically meaningful.
Finally, we assessed if, in the context of prior DNA-damaging

therapy, the presence of MDS-defining cytogenetic abnormalities
carries similar prognostic significance as in the de novo context
[12, 13]. Survival of t-MDS(cyto) patients was no different
compared to t-MN, but significantly superior to t-CC—supporting
the assertion that even in the absence of morphological evidence

of a myeloid neoplasm, these cases should be considered as t-MN.
However, the interval from the emergence of cytogenetic
abnormality to morphological progression varied greatly
(0.9–81 months) and 2 patients did not develop morphological
evidence of t-MN despite 12 and 44 months of follow-up.
Goswami et al. followed patients with prior DNA-damaging
therapy who developed isolated deletion of 7q—an MDS-
defining cytogenetic anomaly [12]. While these patients fulfilled
the WHO-defined t-MN diagnostic criteria, less than half actually
progressed to t-MN. Collectively, these results underline the
heterogeneity of the cohort and the need for larger studies that
will help more accurate risk stratification of this cohort.
A limitation of our study was that the samples obtained prior to

DNA-damaging therapy were not available and that a subset of
patients did not have paired NGS performed at t-CC and t-MN.
Therefore, whether a clone strictly represented CHIP, or the effect
of the prior DNA-damaging therapy could not be established.
Second, the absolute and relative risks of t-CC or t-MN following
chemotherapy could not be inferred. Third, PPM1D that has a well-
known association with t-MN; [22] as well as CUX1 [23], recently
described to be a gatekeeper in t-MN pathogenesis, were not
assessed. Fourth, with regards to the paired sequencing, the
inability to identify a corresponding t-MN clone at the time of t-CC
does not necessarily denote the absence of such a clone. It is
possible that low-level clone is present below the detection
threshold of NGS and cytogenetics technique. Finally, given that t-
CC, at least in some cases, acted as a precursor to t-MN, whether
the difference in outcomes reflects the differences in the biology
of the 2 entities or the lead-time bias could not be ascertained
[24]. Therefore, a larger prospective study of all patients under-
going cytotoxic therapies with a longer follow-up will be needed
to answer these questions.
In summary, we describe t-CC as a putative precursor entity of

t-MN and identify the risk factors for poor outcomes including the
progression to t-MN. t-CC had a distinct clinical and genetic profile
as well as overall superior survival compared to t-MN. The
presence of cytogenetic abnormality and the absence of variants
in DNMT3A, TET2, or ASXL1 genes were associated with a higher
likelihood of progressing to t-MN and an inferior survival. Paired
analysis at t-CC and t-MN as well as comparative analyses of the
t-CC and t-MN cohorts suggest that the leukemic transformation

Fig. 6 Therapy-related clonal cytopenia (t-CC) is a distinct clinical entity characterized by superior survival compared to therapy-related
myeloid neoplams (t-MN). (i) Overall survival (OS) in therapy-related clonal cytopenia (t-CC) as stratified by the subsequent development of
therapy-related myeloid neoplasm (t-MN); (ii) t-CC has significantly superior OS compared to t-MN, including compared to t-MDS (<5% bone
marrow blasts). t-MDS (cyto)—therapy-related myelodysplastic syndrome based on the presence of MDS-defining cytogenetics; t-MDS (<5%)
—t-MDS with <5% blasts at the time of presentation; t-MDS (EB)—t-MDS with excess blasts (5–19%); t-AML—therapy-related acute myeloid
leukemia.

M.V. Shah et al.

8

Blood Cancer Journal          (2022) 12:106 



as an event characterized by acquisition of morphologic evidence
of dysplasia as well as cytogenetic and genetic abnormalities.
Given that half of the patients develop t-MN over the next 5 years,
a wider recognition of t-CC may allow to individualize counseling,
optimize surveillance, and design prevention studies—ultimately
improving outcomes in t-MN.
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