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Proteomic profiling based classification of CLL provides
prognostication for modern therapy and identifies novel
therapeutic targets
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Protein expression for 384 total and post-translationally modified proteins was assessed in 871 CLL and MSBL patients and was
integrated with clinical data to identify strategies for improving diagnostics and therapy, making this the largest CLL proteomics
study to date. Proteomics identified six recurrent signatures that were highly prognostic of survival and time to first or second
treatment at three levels: individual proteins, when grouped into 40 functionally related groups (PFGs), and systemically in
signatures (SGs). A novel SG characterized by hairy cell leukemia like proteomics but poor therapy response was discovered. SG
membership superseded other prognostic factors (Rai Staging, IGHV Status) and were prognostic for response to modern (BTK
inhibition) and older CLL therapies. SGs and PFGs membership provided novel drug targets and defined optimal candidates for
Watch and Wait vs. early intervention. Collectively proteomics demonstrates promise for improving classification, therapeutic
strategy selection, and identifying novel therapeutic targets.
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INTRODUCTION
Chronic Lymphocytic Leukemia (CLL), the most common adult
leukemia, is an indolent B-cell malignancy predominantly diag-
nosed in older people [1]. Several molecular factors influence CLL
biology and prognosis: Immunoglobulin Heavy Variable mutation
status (IGHV, Unmutated U-/Mutated M-CLL), cytogenetic aberra-
tions (deletions 17p, 11q, and 13q and trisomy 12), and high
expression of ZAP70 and CD38 [2–6]. The majority of CLL patients
are initially observed without treatment (Watch and Wait (WaW)).
CLL therapy has significantly evolved as new treatment modalities
were introduced [7]. Initially cytotoxic therapies, predominantly
alkylating agents (1960s), purine analogs alone (1970s–80s), or a
combination of the two (1990s) were used. Treatment markedly
changed with the development of the anti CD20 monoclonal
antibody rituximab (1998) used alone or as combined chemoim-
munotherapies (fludarabine, cyclophosphamide, and rituximab
(FCR)). These modalities dominated until 2014 with the develop-
ment of therapies inhibiting B-cell receptor signaling by targeting
BTK (Ibrutinib, Acalabrutinib), or PI3K (Idelalisib, Duvelisib) or
apoptosis regulation by targeting BCL2 (Venetoclax) [8–13]. The
decision on when to treat and what therapy to utilize is
determined based on the presence of symptoms, patient age
and comorbidities, and certain prognostic markers such as the 17 P
deletion/TP53 or IGHV-mutation status. Currently, when therapy is
warranted, most patients receive a BTK inhibitor with or without an
antibody (Rituximab/Obinutuzumab) or combination of anti-CD20

mAb and Venetoclax [14]. Younger patients with M-CLL may still be
offered chemoimmunotherapy, FCR.
The availability of highly effective therapy and the concurrent

increased molecular understanding of CLL requires the re-
evaluation of treatment paradigms. Are there high-risk patients
who should be treated upfront, because their WaW period can be
predicted to be brief, and others for whom WaW remains
appropriate? What criteria can we use to select these patients?
Similarly, with many potential therapies to select from, can we
match individual patients to specific molecular characteristics to
rationally select therapy and improve outcomes? Traditional
prognostic factors were successful at stratifying patient risk
groups for survival and treatment strategies, however, in the
modern targeted therapy era some are no longer relevant (i.e.,
ZAP70). Furthermore, many different molecular events can co-
occur in the same patient complicating therapy allocation based
on the presence/absence of a single genetic event. There is
therefore a need for a means to recognize the integrated
consequence of all the internal molecular events and the external
environment influences that affect CLL cell biology, for each
patient, in order to provide prognostication for therapy need
(predict WaW interval, TTFT) and response to different therapies.
Since the end consequence of all genetic, epigenetic, and

environmental influences on the cell occurs at the protein level we
hypothesize that proteomic analysis of CLL can provide this
missing information. Currently, several methods exist to quantify
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protein expression levels: immunohistochemistry (IHC), ELISA, flow
cytometry, Mass spectrometry, and protein arrays. Antibody-based
techniques (i.e., IHC, flow cytometry, ELISA, reverse phase protein
array (RPPA)) have increased sensitivity as antibodies are designed
to solely bind to certain proteins. However, ELISA tests require a
large amount of patient sample, and like IHC, is only capable of
quantifying a single protein in one sample at a time, making these
less applicable for large-scale studies and precluding unbiased
analysis of the proteome. Mass spectrometry could provide data
on the complete proteome, but this methodology is not practical
for the rapid analysis of large numbers of patients. RPPA is a
method capable of a collective simultaneous assessment of a large
number of total and post-translationally modified proteins (PTMs)
in a large number of samples, requiring only a small amount of
patient sample. This methodology, while limited to targets with
validated antibodies and therefore not “unbiased”, strikes a
compromise between the technical limitations of Mass spectro-
metry and individual protein analysis methods. The application of
proteomics methods has shown great promise for characterizing
CLL biology. In particular, previous CLL proteomics studies
highlighted that elderly CLL patients have deregulated inflamma-
tory and DNA damage responses, ROS generation signaling
utilization, interactions between CLL cells and their microenviron-
ment, CLL cell immunoreactivity antigens, and recently how
Trisomy 12 and IGHV status are primary drivers determinants of
CLL proteomics biology [15–19]. However, the sample size of
these studies makes it difficult to completely ascertain how a
culmination of factors (i.e., stage, age, race, gender, mutational
status) influence CLL proteomics biology.
Here, we present the largest CLL proteomics study to date

which identified recurrent protein expression signatures (SG), that
classify CLL and identify a novel subset, and which are strongly
predictive of time to first therapy (TTFT), overall survival (OS), and
display differential responsiveness to modern therapy.

RESULTS
Global proteins expression in CLL
To paint a “big picture” of protein expression in CLL, 871 patient
samples were printed on RPPA slides and probed with 384
validated antibodies that passed quality control criteria, which
recognized total (n= 302) or post-translationally modified (n= 82)
proteins. Biases in the data based on sample collection intervals
(diagnosis to sample), organ (PB or BM), processing of fresh vs.
cryopreserved cells, treatment status prior to collection were
looked for but were not observed (Supplementary Fig. S1).
Additionally, clustering and differential expression of same day
matched CLL BM and PB, samples found no difference.
The proteins were normalized against expression in normal

CD19+ B-cell controls with expression shown in Supplementary
Fig. S2. Expression was universally absent (Indigo, n= 14 i.e., E2F1,
ITGB1, SQSTM1, SMAD5, CDC25C) or consistently very low (all
sample blue, n= 48 i.e., SOD1, RB1, PARK7, CD74, PIK3CB) for 16%
of the proteins measured. In contrast, universally high expression
across all samples was uncommon only occurring in six proteins
(dark red, LEF1, PXN, ZAP70, CD4, S100A4, PDCD4).

Identifying individual proteins that are prognostic in CLL
First, we asked which proteins are individually prognostic for CLL
clinical outcomes. The clinical significance of proteins was
evaluated as continuous variables (Supplementary Table S1) and
by splitting their expression by median, tertiles, and sextiles. As we
were testing a large number of variables, we used a cutoff of false
discovery rate (FDR) p ≤ 0.05; based on this cutoff we would expect
to find 19.2 significant variables. We observed that a high number
of proteins were significant for OS (n= 59 by median, n= 78 by
tertile, n= 79 by sextile, n= 130 continuously), TTFT (n= 52 by
median, n= 56 by tertile, n= 45 by sextile, n= 61 continuously),

and TTST (n= 11 by median, n= 14 by tertile. n= 18 by sextile, n=
1 continuously) (blue proteins in Supplementary Fig. S3). The
prognostic capabilities of proteins were validated using iterative
Cox hazard tests (n= 200) on randomly split training and test data.
Multiple proteins (n= 42 for OS, n= 38 for TTFT, and n= 12 for
TTST) were prognostic in >70% of the test sets. The lists contain
previously reported (i.e., H3K27Me3, MCL1, and BCL2L11) and novel
(i.e., NCSTN, SGK3, HSPD1, VTCN1, TRAP1, SOD1, and TAZ) CLL
prognostic proteins. This list of proteins can be used to generate
hypotheses regarding what pathways CLL cells rely upon as an
identifier for potential cellular vulnerability points. For example,
SOD1, not previously identified as prognostic in CLL, predicted both
OS and TTFT (Supplementary Fig. S4), implicating reactive oxygen
species scavenging in CLL pathogenesis. We also endeavored to
evaluate the clinical significance of individual proteins in the
context of BTKi therapy for the 108 receiving drugs in this class. A
multitude of proteins were significant for OS by median (n= 3),
tertile (n= 12), sextile (n= 37), and continuously (n= 62). Three
proteins (LYN, MEF2C, NUMB) were significant for all levels of
stratification (Supplementary Fig. S5). These proteins could
potentially serve as additional targets for inhibition or replacement
in combination with BTK inhibitors.

Most protein functional group expression patterns in CLL are
leukemia-specific
Second, we wanted to collectively evaluate proteins with a shared
function. Proteins were sorted into 40 protein functional groups
(PFG) based on known relationships from the literature or strong
correlations within the dataset. Unbiased k-means clustering of
each PFG was performed utilizing a gap statistic-based algorithm
(Supplementary Table S2) to identify the optimal number of
clusters for each PFG, identifying 150 expression patterns overall
across the 40 PFGs. Each expression pattern was defined as
“Protein Cluster”. To identify which protein clusters are similar to
normal CD19 controls (Supplementary Fig. S6) a linear discrimi-
nant analysis and principal component analysis was performed.
Compared to CD19 normal controls overall 39% of PFG (58/150)
were normal-like, and normal-like patterns were found in all but
two PFG (PKC, UBQ), with 17 PFG having >1. Leukemia specific
patterns were seen for all PFGs. Therefore, nearly all PFG
contained both normal-like and leukemia restricted clusters.

PFGs associated with clinical outcomes
We observed that outcome based on PFG were strikingly
prognostic with 32 predicting OS, 17 prognostic for TTFT, and 19
predicting TTST (Fig. 1A), with most remaining significant after FDR
correction (p < 0.05, median= 69%), markedly exceeding the two
events expected by chance using the P < 0.05 threshold. Notably
adhesion, apoptosis-occurring, apoptosis-regulating, heatshock,
Histone1 (marks), Histone 2 (modifiers) and the STP-regulation
PFG were prognostic for all three outcome measures. The clinical
and molecular implications of the histone proteins in CLL were
reported in a separate manuscript [20]. A higher percentage of
PFGs were prognostic with the systems biology approach
compared to analysis of individual proteins (78% vs. 19% were
prognostic.) For 16 PFGs this was driven by a single cluster with a
different outcome (Supplementary Fig. S7), 15 were more
heterogeneous between the different PFG clusters (Supplementary
Fig. S8), and nine had no differences (Supplementary Fig. S9). As an
example, within the MAPK PFG (Supplemental Fig. S7, row 2,
column 2) a single group (cluster 1(C1)) has adverse prognosis
relative to the other three protein clusters, whereas in apoptosis-
BH3 (Supplementary Fig. S8, row1, column 1) there is a stepwise
decrease in survival between clusters. MAPK PFG cluster C1
(Fig. 1B, left), is distinguished by lower levels of activating
phosphorylation of MAP2K1, its target MAPK1 as well as MAPK8,
compared to the other three clusters which have high levels of
phosphorylation. This suggests that MAPK pathway utilization is
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active in most cases of CLL, but, in a small subset (6%), non-
utilization occurs and this may contribute to a reduction in
sensitivity to therapy. This demonstrates the potential to recognize
an increased level of information obtainable from analyzing
proteins by systems, rather than individually.

Integrated Metagalaxy analysis of all proteins identifies
recurrent signature groups and constellations of correlated
PFGs in CLL and other B/T cell derived hematological
malignancies
We next wanted to see if higher-order relationships exist between
the different PFG expression patterns that would better classify,
prognosticate, and discern similarities between CLL and related
Mature Small B-cell Neoplasms/Leukemias (MSBL). Each patient
belonged to one cluster from each of the 40 PFGs and the 150
expression patterns underwent unbiased hierarchical clustering,

identifying co-occurring PFG expression patterns (constellations),
and recurrent signatures formed by patients with similar patterns
of constellation membership. From a total of 63 possible signature
(range 9–15) and constellation (range 9–17) combinations, an
optimal number (13 Constellations, 16 signatures) were deter-
mined algorithmically (Supplementary Table S3). The 16 patient
signatures were further grouped into six signature groups (SG)
A–F based on similarities in constellation patterns and clinical
outcomes (Supplementary Fig. S10 and Fig. 2). The demographic,
molecular, clinical, and response characteristics of the six
signature groups are shown in Table 1.
The most notable difference between the groups relates to the

distribution of the non-CLL diagnoses between SG-A and all the
others (p= 3.66E-44). Group A is comprised of 52% MSBL
diagnoses and 48% CLL cases whereas the remaining SGs are
predominantly CLL (86–99%). There were significant differences in
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Fig. 1 Protein functional groups associated with clinical outcomes. A Kaplan–Meier significance (x-axes) of protein functional group (y-axes)
patient clusters are displayed in barplots. Dotted lines represent the - log10 (0.05) p-value cutoff. As examples, the expression patterns of the
MAPK, TCell, and TP53 PFG protein members (B) and their Kaplan–Meier plots (C) are also displayed for each outcome.
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age, hemoglobin, platelets, % BM and PB lymphocytes and β2M
(Supplementary Fig. S11) between the SG, but not for race (p=
0.84) or gender (p= 0.72) The SGs also associated with Binet (p=
0.00017) and Rai Staging (p= 4.4E-06), IGHV status (p= 1.3E-05),
and chromosomal aberrations. Early stage cases (Binet A and
Rai 0 and 1) are more prevalent in signatures E (68% Binet A), and F
(60% Binet A), whereas SG-A has 47% Binet C. Overall 48% had
unmutated IGHV, but unmutated cases were underrepresented in
SG-A, -B and -D (35, 36, and 35%) and markedly overrepresented in
SG-C (68%), ZAP70 positivity was seen in all SG, with over-
representation in SG-C and underrepresentation in SG-D. In regard
to mutations and cytogenetic aberrations, historically adverse del
11q and del 17p events (24% overall) were less common in SG-A,
-B, -D, and E (15, 14, 16, and 17%) and overrepresented in SG-C
(32%), while historically favorable 13q changes were seen across all
groups as was Trisomy 12 (15% overall), although SGs A and E were
enriched (25%, 22%) while SG-F was low (5%) for Trisomy 12. Flow
cytometry measures showed differences for CD19, CD20, CD22,
CD23, CD38, and CD79b.

Signature groups clinical outcomes and associations
The prognostic value of the SGs in CLL for OS, TTFT, and TTST were
evaluated (Fig. 3). For OS, groups A and C had markedly inferior
survival (P < 0.0001) (10.3 and 20.3 median years) relative to the
other four groups, which were statistically similar to each other
(Fig. 3A). First treatment occurred sooner for Groups A and C (5.8
and 5.23 median years) with group C being statistically earlier than

all other groups, which were otherwise similar to each other.
Additionally, the TTST was also inferior for Group A (median
3.5 years). Next, we assessed whether protein signature member-
ship provided prognostic information beyond that of already
identified prognostic markers. Multivariate analysis of signature
groups and prognostic factors revealed that they are indepen-
dently prognostic for survival outcomes (Table 2). When signature
groups are included platelets, hemoglobin, chromosomal abnorm-
alities, and IGHV status were no longer prognostic for survival
outcomes. As shown in Supplementary Fig. S12, within each
individual Rai stage there was heterogeneity based on SG, which
was highly significant in Rai 0 and 1 (<0.0001, =0.0007
respectively) and the overall trend was similar in Rai 2 despite
small numbers. Similarly, for TTFT, protein SG were prognostic
within Rai stage 0 and 1. In contrast, within each individual SG, Rai
staging was not prognostic (Supplementary Fig. S13). Therefore,
Protein SG information was additive to Rai staging, but the
converse was not true. We also performed a similar analysis for
IGHV status, CLL-International Prognostic Index (IPI) classification,
and mutational groups (i.e., Deletions 17p and 11q). We observed
that IGHV status is prognostic within signature groups B and F for
OS, all signatures except for E for TTFT (Supplementary Fig. S14). IPI
classification did not prognosticate within any of the signatures for
survival outcomes (Supplementary Fig. S15 top row), but did for
TTFT in signature groups A, B, C, D, and F (Supplementary Fig. S15
bottom row). However, within a given IPI group signature group
membership prognosticated for survival in all but the low-risk IPI

Fig. 2 Metagalaxy heatmap of signatures, constellations, and clinical annotations. The heatmap displays the presence(blue) and absence
(yellow) of 152 protein functional group expression patterns in all patients (labeled on the right). Annotations above the heatmap display
signatures, signature groups, B2M levels, CD19, CD20, and CD38 expression, ZAP70 Status, age at diagnosis, staging, and diagnosis. Thirty
constellations are annotated on the left side of the figure.
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Table 1. Signature group demographics and clinical information.

ALL patients Total A B C D E F P-value

N= 871 (N= 84) (N= 51) (N= 206) (N= 106) (N= 227) (N= 197)

Diagnosis 3.66E-44

CLL 795 (91%) 48% 86% 96% 96% 95% 99%

HCL 12 (1%) 14% 0% 0% 0% 0% 0%

HCLV 4 (0%) 4% 0% 0% 0% 0% 0%

LGL-T 4 (0%) 5% 0% 0% 0% 0% 0%

MBL 4 (0%) 1% 0% 0% 0% 1% 0%

MCL 12 (1%) 5% 4% 1% 1% 1% 0%

MZL 12 (1%) 7% 0% 0% 2% 1% 1%

PLL 4 (0%) 0% 2% 1% 0% 0% 0%

Richters 8 (1%) 4% 2% 1% 1% 0% 0%

T-cell PLL 16 (2%) 13% 6% 0% 0% 1% 0%

CLL patients Total A B C D E F

N= 795 (N= 40) (N= 44) (N= 198) (N= 102) (N= 215) (N= 196)

Age (mean+ SD) 65 (±10) 63 (±8.6) 64 (±12) 66 (±9.5) 64 (±11) 63 (±11) 66 (±11) 0.01

Race (772 reported) 0.84

Asian 7 (1%) 3% 0% 1% 0% 2% 2%

Black 33 (4%) 5% 3% 5% 3% 3% 5%

Hispanic 22 (3%) 3% 5% 2% 3% 4% 2%

White 710 (92%) 89% 92% 92% 94% 91% 91%

Gender 0.11

Male 485 (61%) 42% 55% 63% 68% 61% 60%

Binet stage (784 reported) 0.0002

A 478 (61%) 47% 73% 49% 71% 68% 60%

B 71 (9%) 6% 2% 15% 4% 6% 10%

C 235 (30%) 47% 25% 36% 25% 26% 30%

Rai stage (784 reported) 4.44E-06

0 268 (34%) 26% 39% 22% 49% 44% 28%

I 234 (29%) 18% 32% 34% 18% 28% 37%

II 47 (6%) 8% 5% 9% 8% 2% 6%

III 132 (17%) 34% 16% 17% 14% 17% 14%

IV 103 (13%) 14% 9% 18% 11% 9% 15%

Lab tests (mean+ SD)

Lymphocytes 38 (±54) 14 (±13) 28 (±27) 56 (±64) 24 (±38) 20 (±31) 54 (±66) 1.74E-31

Hemoglobin 13 (±1.8) 14 (±1.8) 14 (±1.4) 13 (±1.9) 14 (±1.5) 14 (±1.5) 13 (±2.0) 1.67E-04

Serum B2M 2.8 (±1.8) 2.3 (±1.2) 2.7 (±2.9) 3.4 (±2.1) 2.4 (±1.5) 2.4 (±1.1) 2.8 (±1.7) 4.04E-11

Serum LDH 480 (±240) 560 (±260) 500 (±180) 540 (±310) 380 (±140) 390 (±210) 530 (±180) 8.78E-18

IGHV status (576 reported) 1.30E-05

Unmutated 280 (49%) 35% 36% 68% 35% 44% 47%

ZAP70 Positive (376 reported) 189 (50%) 35% 43% 60% 34% 60% 45% 7.00E-03

SF3B1 Mutated (211 reported) 34 (16%) 20% 10% 28% 15% 12% 13% 0.25

Chromosome abnormalities (715 reported)

Deletion 11Q 100 (14%) 5% 11% 19% 11% 10% 17% 0.03

Deletion 13Q 273 (38%) 28% 45% 31% 47% 41% 40% 0.05

Trisomy 12 109 (15%) 25% 13% 18% 11% 22% 5% 9.35E-05

Deletion 17 P 68 (10%) 10% 11% 15% 6% 9% 5% 0.06

No major abnormalities 165 (23%) 35% 24% 19% 22% 17% 32% 0.006

Immunophenotypic markers (mean+ SD)

CD19 81 (±15) 68 (±19) 78 (±21) 87 (±10) 78 (±13) 77 (±14) 85 (±14) 6.41E-17

CD20 78 (±20) 84 (±21) 80 (±19) 77 (±21) 73 (±20) 78 (±21) 79 (±18) 0.02

CD22 63 (±39) 82 (±32) 70 (±41) 60 (±39) 68 (±36) 79 (±33) 43 (±39) 1.14E-17
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group (Supplementary Fig. S16 top row), with small numbers
hindering analysis of the very high-risk IPI group. Similar to the
reverse analysis (Supplementary Fig. S15) the two scoring systems
were complimentary for TTFT prognosis with protein signature
group separating IPI low, high, and very high (Supplementary
Fig. S16 bottom row). As for mutations, we observed that signature
groups prognosticated within 17p deletion patients for OS and
TTFT. Within those with 11q abnormalities, those with Sig C and F
had worse survival than the other four signatures, with very small
numbers of Sig A and B complicating the analysis (Supplementary
Fig. S17). Proteomic SG membership was therefore additive to the
prognostic information from IGHV-mutation status, 17p deletions,
and CLL-IPI classification.

Signature groups can be leveraged to inform therapy
decisions
As CLL therapy has shifted over time, former prognostic factors have
become less relevant. As this data has a mixture of patients treated
on older and more modern therapies we sought to determine if the

proteomic classification remained informative independent of
therapy. We therefore divided therapy into three broad classifica-
tions: BTK inhibition related protocols (±venetoclax), antibody only
therapy, or chemo/chemoimmunotherapy regimens. As shown in
Fig. 4, multiple PFG were prognostic (P ≤ 0.05) for OS within each
therapy subclass; 25 with BTKi, 18 for chemo, and three for AB
therapy. Interestingly Metabolic Glucose and BCR PFG clusters have
survival disparities when treated with BTKi and chemoimmunother-
apy. The Metabolic Glucose PFG has two favorable (C2-C3) and two
unfavorable clusters (C1, C4) when treated with BTKi (Fig. 4 inner
plots). Remarkably, the two unfavorable clusters have nearly
opposite expression patterns of several glycolytic proteins (Supple-
mentary Fig. S18) but share low expression of PRKAA1.2.pT172,
implicating pathways activated by PRKAA1.2.pT172 in BTKi sensitiv-
ity or response. The SGs (Fig. 5) remain prognostic for OS regardless
of therapy group, and for TTST for the chemo group. Thus,
proteomic assignment is prognostic across therapy types at the level
of PFG and SG. Of note, SG-A had the poorest OS in both
chemotherapy and BTKi therapy types.

Table 1. continued

CLL patients Total A B C D E F

N= 795 (N= 40) (N= 44) (N= 198) (N= 102) (N= 215) (N= 196)

CD23 87 (±18) 80 (±27) 89 (±18) 88 (±15) 86 (±22) 88 (±18) 86 (±15) 9.95E-03

CD38 24 (±27) 21 (±27) 36 (±39) 30 (±29) 17 (±22) 21 (±25) 21 (±25) 0.01

CD79b 43 (±38) 50 (±37) 43 (±34) 45 (±31) 39 (±30) 52 (±52) 31 (±28) 2.68E-05

The top part shows the distribution of diagnoses for the overall population (CLL and MSBL cases) and stratified by Signature group. Below that the presented
information is based on only the CLL patients. Overall population and CLL Signature group descriptive statistics by diagnosis, age, race, gender, stage,
cytogenetics, clinical lab tests, and outcomes. Signature group associations (p-values in right column) were determined by using chi-square and Kruskal–Wallis
tests. Numbers represent the average and standard deviation. Percentages were calculated for data that was known. Significant statistical associations are
highlighted with bold p-values.
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Fig. 3 Outcomes of CLL signature groups. Kaplan–Meier plots of OS (left), TTFT (middle), and TTST (right) of CLL signature groups are shown.
Overall log-rank p-values (bottom left of each figure), and BH corrected individual comparison p-values are shown (tables at the bottom).
Signature groups A and C consistently have the lowest OS and TTFT compared to other groups.
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Lastly, we endeavored to identify those proteins that were
abnormally expressed within each SG with the hypothesis that this
would identify potential therapy targets for inhibition or replace-
ment. Differential expression of signatures versus the CD19 controls
was performed using an ANOVA followed by Tukey HSD (Supple-
mentary Table S4). The list of abnormally expressed proteins within

each SG is shown in (Fig. 6) As suggested by Supplementary Fig. S5,
CLL is characterized by more consistently downregulated proteins
than universally upregulated. Many of these proteins have agents
in development or clinical trial directed at them (Supplementary
Table S5). This analysis provides a list of proteins that can be used for
the development of targeted therapy strategies for each SG.

Table 2. Univariate and multivariate analysis of CLL prognostic factors for OS.

Variable Category OS Univariate (n= 794, number of
events= 88)

OS Multivariate (n= 773, number of
events= 85)

HR 95% CI p HR 95% CI p

Signature Group Signature A 1 1

Signature B 0.12 0.03–0.44 1.26E-03 0.09 0.02–0.44 5.39E-04

Signature C 0.32 0.17–0.62 6.96E-04 0.27 0.13–0.57 4.29E-05

Signature D 0.10 0.03–0.28 1.47E-05 0.13 0.04–0.39 4.34E-05

Signature E 0.13 0.05–0.30 3.23E-06 0.12 0.05–0.31 2.20E-06

Signature F 0.11 0.05–0.22 2.63E-09 0.11 0.05–0.25 1.01E-08

Gender Female 1 1

Male 1.66 1.06–2.62 0.03 1.76 1.05–2.94 0.01

IGHV Mutated 1 1

Unmutated 2.46 1.39–4.35 0.002 1.30 0.68–2.51 0.61

Del 11Q Negative 1 1

Positive 1.85 1.07–3.21 0.03 2.63 0.93–7.43 0.60

Chromosomal Abnormalities Any 1 1

None 0.50 0.28–0.88 0.02 0.97 0.32–2.97 0.96

Trisomy 12 Negative 1 1

Positive 2.24 1.32–3.82 0.003 2.58 1.01–6.55 0.71

Del 13Q Negative 1.0

Positive 0.64 0.39–1.033 0.07

Del 17 P Negative 1.0

Positive 1.99 1.14–3.48 0.02

Any 17 Negative 1

Positive 2.48 1.00–6.16 0.05

Chr9 Negative 1

Positive 2.04 0.64–6.46 0.23

SF3B1 Positive 1

Negative 0.63 0.11–3.27 0.58

ZAP70 Negative 1 1

Positive 2.81 1.61–4.93 0.000296 2.06 1.13–4.34 0.02

Binet Stage A 1

B 1.14 0.64–2.30 0.68

C 1.60 0.96–2.56 0.05

Rai Stage 0 1 1

I 1.17 0.67–2.05 0.57 0.88 0.47–1.66 0.70

II 1.68 0.74–3.80 0.21 0.58 0.23–1.43 0.23

III 1.38 0.65–2.93 0.40 0.31 0.12–0.86 0.02

IV 2.22 1.15–4.26 0.02 0.82 0.36–1.88 0.63

Age 1.01 0.99–1.03 0.46

Lymphocytes 1.00 0.99–1.00 0.69

B2M 1.21 1.14–1.27 3.34E-11 1.19 1.09–1.31 0.0001

Platelets 1.00 0.992–0.999 0.013 1.00 0.99–1.00 0.45

Hemoglobin 0.85 0.77–0.94 0.002 0.89 0.77–1.03 0.12

Signature Groups, Chromosomal abnormalities, IGHV Status, Age, Gender, B2M, Lymphocyte counts, platelet counts, ZAP70 Status and Staging were evaluated.
Hazard ratios (HR), 95% HR Confidence intervals, and p-values are displayed for each variable. The multivariate model included: signature groups, gender, IGHV
status, Del 11Q, the presence of the four major chromosomal abnormalities in CLL, Del 17 P, ZAP70 status, Rai Stage, B2M, platelets, and hemoglobin levels.
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Identification of a unique subset of CLL
A key finding is the identification of subgroups of CLL patients
with a unique protein expression pattern (SG-A) that exhibits a
distinctly inferior response to chemotherapy and BTKi (Fig. 4). The
SG-A patients comprise 5% of all CLL patients. Also within this
group are the majority of hairy cell leukemia (15/16) and half of
the other small B-cell variant diseases (Fig. 3). Based on this we
have called this Hairy Cell Proteomic Like CLL (HPLC). Notably, this
group is not suggested by other traditional prognostic factors, as
SG-A has low B2M, more normal hemoglobin and platelet counts,
a lower percentage of adverse cytogenetics 17p and 11q
alterations, and IGHV-nonmutation. SG-A is defined by constella-
tions [1–3] that are minimally present in the other CLL, and by
lower BCL2 and CD19 expression. Signature Group A CLL patients
look like CLL histologically and immunophenotypically, but the
association ends there as clinically they don’t respond well to any
modality, while HCL is highly curable with the same. More
insights, attempting to discern why they are so resistant will
require future investigation.

Identification of a classifier set of proteins
In order to be able to utilize this information clinically, the means
to prospectively make a protein signature group assignment is
required. We, therefore, wanted to identify a limited set of
proteins that could be used to classify patients into signature
groups. Using Random forest, we identified a set of 30 proteins
that can distinguish between all signature groups (classification
error rate of 18.6%) (Supplementary Fig. S19). Using our current
model proteins, 77% of signature group A patients are classified

as A, while 23% of signature group A patients are misclassified as
other signatures (Supplementary Table S6). Misclassifying signa-
ture groups A and C patients into indolent groups (E and F) would
be harmful, as those patients could not be treated immediately
when necessary. However, there is minimal risk if signature
groups D-F are misclassified as among each other. Upon further
investigation of the misclassified patients, we found that
misclassified SG-A had improved OS (median 12.5 years) com-
pared to the accurately classified SG-A (median 6.9 years) and this
was similarly observed in SG-D patients (Supplementary Figs. S20,
S21). Additionally, we identified proteins driving outcome
distinctions between correctly classified and misclassified
patients (Supplementary Table S7) This misclassification serves
to distinguish which SG-A and SG-D patients will do worse
prognostically and the classifier set actually identifies an
extremely poor prognosis cohort.

PFG provide candidates for WaW diagnostics
The indolent nature of some cases of CLL and lack of benefit from
early intervention trials has made “Watch and Wait” (WaW) a
standard approach for CLL patients that do not have indications
for treatment initiation. However, with improved therapies, and
better recognition of high-risk features, the appropriateness of
WaW for select patients is less certain. We, therefore, asked if
proteomic classification might identify subsets of patients that are
more or less appropriate for a WaW strategy? We addressed this
problem by evaluating PFG relationships with TTFT (Fig. 1A),
observing that 18 of each were predictive for the respective
outcome. For example, the GPCR, SMAD, and STP-regulation
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clusters were distinct in TTFT outcomes. In two of these PFGs
(GPCR and STP regulation), shorter TTFT is being driven by low
ANXA1 (Annexin1) and TFRC (transferrin receptor) expression,
whereas high expression of SMAD2 and SMAD2.p245 drive similar
outcomes within the SMAD PFG clusters (Fig. 7A–B). Since, ANXA1,
TFRC, and SMAD2.p245 were prognostic individually (Fig. 7C), we
tested whether they can be used in combinations to predict TTFT.
Not only were they prognostic overall (Fig. 7D), but they were
especially prognostic in early stage (Rai 0 and I) patients (Fig. 7D).
Patients with ≤1 negative level of either of the proteins have a
median TTFT of 14.59 years, whereas patients having 2–3 have a
median of 5–6.27 years (P, 0.0001).

Leukemia protein atlas
As a resource for others to interrogate and use we have posted all
of the material from this study at the Leukemia Protein Atlas
website: https://www.leukemiaatlas.org The dataset as well as
figures for Protein functional group expression heatmaps, out-
come Kaplan Meier curves, and Cytoscape networks from this
study as well as from other RPPA based proteomic studies of
leukemia can be found there.

DISCUSSION
Our main goal was to conduct proteomic profiling of CLL in a large
cohort of patients to determine if we could establish a proteomic-
based classification of CLL, and whether this would provide useful
clinical information. Prior studies, using Mass spectrometry
methodology in small cohorts (N= 14 and 16) suggested that
proteomics could be informative in CLL, but lacked sufficient size
for classification and prognostication [15, 19, 21]. Herein, we have

presented data on the largest proteomic-based study of CLL with
795 unique CLL patients, using RPPA technology, probed for 384
antibodies. Importantly 21% of the antibodies were directed
against PTM, enabling assessment of protein or pathway
activation status, as well as total protein levels. Use of RPPA lacks
the unbiased discovery potential of MS-based proteomics but
allows for larger cohorts to be analyzed more rapidly. Protein
expression in CLL was minimally affected by the time between
diagnosis and sample collection, sample source, or whether the
protein was prepared from fresh or cryopreserved cells. When
normalized against normal CD19+ B-cells 16% of proteins had
negligible expression across all patients, and while overexpression
was common for many proteins, universal overexpression was
uncommon (six proteins) At this gross level, we can conclude that
proteins expression in CLL is markedly different from that of
normal B-cells. There are many key findings from this study.
First, we confirm that we can classify CLL based on proteomics

recognizing six signature groups, including a unique subgroup SG-
A comprising 5% of cases, with resistance to all therapy modalities.
Proteomic classification was largely independent of most demo-
graphic, clinical, and laboratory features typically assessed in CLL.
It is not tightly correlated with Rai or Binet staging, but early
stages were more common in SG-B, D, and advanced stages in SG-
A and SG-C. The classification was also independent of laboratory
measurements like serum β2M or LDH, or blood counts. There was
more association with molecular events. Favorable IGHV-mutation
status was significantly less common in SG-C (62% unmutated)
and less common in SG-A, -B, and -D, and unfavorable Zap70
positivity higher in the prognostically adverse SG-C and E. The
adverse cytogenetic finding of del 11q was uncommon in SG-A
and del 17p was more common in SG-C, and while common
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cytogenetic events 13q and trisomy 12 were statistically
significantly imbalanced between the groups, all events were
seen across all groups. This observation that all these common
molecular events occur in all groups may reflect that proteomics is
assessing the net cumulative result of the sum of events in a given
patient, and that this integrated signal, rather than the proteomic
consequence of a single event is more relevant for classification. It
is highly unlikely that this could be replicated by gene expression
profiling from mRNA expression arrays or from RNA-seq as those
assays cannot capture PTM, and as numerous studies in various
cancers, (gastric, esophageal, AML, ALL) have shown, correlation is
low (17–28%), therefore, proteomics is required to achieve this
classification [22–25].
Second, we demonstrate that proteomic knowledge is highly

prognostic in CLL, regardless of whether this is being evaluated at
the level of individual proteins, related functional groups, or the
system-wide signature, and is true for all three outcome
measurements: OS, TTFT, or TTST. Among individual proteins, for
OS, 15–18 times as many proteins were prognostic at a stringent P
< 0.01 cutoff than random chance (n= 3.84) would predict, with
similar findings for TTFT (~14x) and TTST (~3x). This greatly builds
on findings from previous CLL studies as we identified several
known (i.e., H3K27Me3, MCL1, and BCL2L11) and novel (i.e.,
NCSTN, SGK3, HSPD1, VTCN1, TRAP1, SOD1, and TAZ) proteins
prognostic for OS, TTFT, and TTST [26–29]. Separate manuscripts
for selected individual proteins are in process. These newly
identified prognostic proteins suggest possible new potential

therapeutic targets. The prognostic impact was greater when
proteins were placed into functionally related groups and
simultaneously evaluated. Among the PFGs, 78% were prognostic
for OS, 45% for TTFT, and 48% for TTST, vastly exceeding chance at
a P < 0.05 statistical cutoff. Analysis of individual PFGs reveals
differential utilization of many therapeutically targetable protein
groups, notably apoptosis and signal transduction pathway
regulation and utilization. Finally, at the system-wide level, we
identified six different signature groups, which again were
prognostic for all three endpoints.
The prognostic impact of proteomics superseded that of other

traditional prognostic features. Protein SG membership was still
prognostic within each Rai stage group, but the converse was not
true as Rai staging was not predictive within an individual SG.
Within each SG IGHV-mutation status was not further predictive of
OS but remained highly predictive for TTFT. SG membership also
prognosticated for OS within all CLL-IPI classification groups
except for low-risk patients, whereas IPI classification groups
remained prognostic within signatures for TTFT. This demon-
strates that the proteomic classification supersedes clinical-based
staging and confirms the additive prognostic importance of
protein signature classification to existing classifiers. In a multi-
variate model for OS, SG membership was independently
predictive, while traditional prognostic factors, cytogenetic
abnormalities, IGHV status, and stage were not. The protein SG
also maintained prognostic significance when stratified by therapy
class (antibody, chemo/chemoimmunotherapy, or BTKi), in

Fig. 6 Potential therapeutic targets for CLL signature groups. A–F Proteins differentially expressed (p < 0.05) between CD19 controls and
signature groups (designated by bold titles at the top of each panel). Upregulated proteins (adjacent to red arrows), that could serve as
targets of inhibition, are represented with red–green–yellow colors based on median expression in each signature. Downregulated proteins
(adjacent to blue arrows), which could serve as targets of replacement, are represented with cool blue colors.
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contrast to many historical prognostic markers, which have lost
significance with modern therapy.
Limitations of this study include a biased selection of proteins,

small numbers of patients treated with modern modalities, and a
lack of experimental validation of our findings. These weaknesses
diminished our potential findings for therapy responses. The
limitations can be overcome by repeating our analyses in a CLL/
MSBL cohort, that is representative of disease population
demographics and treated with modern therapy paradigms, using
a broader number of target proteins.
Thus, in summary, proteomic classification provided new

prognostic information, beyond that from traditional prognostic
factors, relevant to both historical and modern therapy, for OS,
TTFT, and TTST. The next critical step involves taking this
information and translating it to the clinic. To do so first requires
a means to rapidly classify patients at the time of diagnosis.
Toward this end, we have developed a classifier based on the
expression of 30 proteins that is 77% accurate for identifying SG-A
and 87.5% for SG-C, the two most critical calls. We are working on
developing a clinical kit for rapid clinical classification.
The second step needed for clinical utilization is selecting how

to treat patients based on protein expression and SG membership.
In general, it is easier to interfere with an upregulated protein than
to replace the function of a protein that is under-expressed, so the
six universally overexpressed proteins CHEK1.pS345, GAB2,
IGFBP2, S100A4, WEE1.pS642, and ZAP70 are potential targets

for investigation. CHEK1 and WEE1 are cell cycle proteins whose
expression is commonly dysregulated in multiple cancer types
[21, 30–32]. Phosphorylation of CHEK1 (serine residue 345) and
WEE1 (serine residue 642) promotes the activation of DNA repair,
cell cycle progression, and apoptosis. Previous studies have
implicated the role of CHEK1 in CLL cell survival and proposed it
as a potential therapy target for patients with 11q and TP53
mutations [33–36]. CHEK1 and WEE1 activation is required to
initiate cell cycle arrest to give cancer cells enough time to recover
from damage accrued from therapeutic agents [37]. As WEE1 is
activated downstream of CHEK1, inhibition of either target would
result in cumulative DNA damage and mitotic lethality. Since
chemotherapeutic agents have cytotoxic effects, WEE1 and CHEK1
inhibitors could potentially be used in combination with them to
increase efficacy. Due to the observed universal upregulation
across all SGs, we propose CHEK1 not only be investigated as a
target candidate for patients harboring 11q and 17p deletions but
for all CLL patients. Prexasertib, a promising CHEK1 and CHEK2
inhibitor tested in ovarian cancer patients would be a candidate
for treating CLL [38]. GAB2 is a GRB2-associated binding protein
that normally promotes PI3K-AKT, MAPK, and MEK/ERK signaling
in B and T cells [39]. Targeting GAB2 may serve as an alternative to
mitigating PI3K/AKT signaling in addition to, or instead of, existing
PI3K inhibitors Idelalisib and Duvelisib, perhaps with less
problematic side effects. Both S100A4, a calcium-binding protein,
and IGFBP2, an insulin-like growth factor-binding protein have
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Fig. 7 TTFT outcome disparities within GPCR, SMAD, and STP-regulation PFGs. Kaplan Meier plots of PFG clusters (A) and heatmaps of PFG
protein members expression (B) TTFT Kaplan Meier Plots of ANXA1, TFRC, and SMAD2.p245 stratified by median (C). Low expression of ANXA1
and TFRC and high expression of SMAD2.p245 result in shorter TTFT. Kaplan Meier plots of the Accumulation of poor prognosis protein
expression (ANXA1, SMAD2.p245, TFRC) (D). Groups represent the presence of 0–3 negative prognostic expression patterns (low ANXA1 or
TFRC and high SMAD2.p245). The presence of two or more of these expression patterns results in shorter TTFT in all CLL (top), Rai stage 0
(middle), and Rai stage I (bottom) patients.
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roles in a multitude of cancer hallmarks including proliferation,
angiogenesis, migration, invasion, and epithelial‑to‑mesenchymal
transition, but their roles in CLL have not been characterized
[40, 41]. This is the first study to propose IGFBP2, GAB2, and
S100A4 as target candidates for CLL. As each has roles in
promoting pathways essential to CLL pathogenesis, their inhibi-
tion would be problematic for CLL cell survival. ZAP70 is a tyrosine
kinase with a role in T cell development and activation,
proliferation, and migration [5, 42]. Targeting ZAP70 has been
debatable as it is challenging to solely target the ZAP70 positive
CLL cells to prevent the inactivation of anti-tumor T and NK cell
responses [43].
Finally, we could also look to target proteins at the SG-level to

facilitate this we generated lists of significantly over or under
expressed proteins for each SG. This list can be cross-referenced
with agents in development to identify overexpressed, or
preferably significantly more activated (e.g., phosphorylated or
other PTM) proteins, for each SG. This might suggest rational novel
combinations to evaluate in selected subsets of patients. For
example, in SG-A, AKT1.AKT2.AKT3.pT308, ANXA1, and FN1 are
overexpressed and would make ideal target candidates.
CLL patients that do not require treatment are allocated to a

WaW strategy. The proteomic classification identifies patients
likely to have a shorter interval until treatment is required. Given
the improvement in responses to modern therapy, it might be
reasonable to offer to patients in those groups an early therapy
intervention, when the disease is expected to have fewer
resistance-associated mutations. When examining TTFT, we
observed that disparities in the SMAD, GPCR, and STP-regulation
clusters were driven by ANXA1 (low), TFRC (low), and SMAD2.p245
(high) expression. Notably, these proteins can be used in
combination as a diagnostic tool to identify patients who will
need to be treated sooner. Patients with abnormal expression of 2
or more of these proteins had a median TTFT of 5 years whereas
patients with <2 had a median of 14.5 years. Therefore, we
propose TFRC, ANXA1, and SMAD.p245 as biomarker candidates
for WaW determinations.
The final major observation was that there is a small group, SG-

A, comprising 5% of all CLL cases with a different proteins
expression signature that appears like that of HCL. Outcomes for
patients in this group for CLL as well as for PLL and MCL patients
were worse than patients in the other SG. This suggests that
proteomics is needed to identify this highly adverse group [44].
There is a paradox as HCL is nearly uniformly responsive to the
purine analog cladribine or anti CD20 antibody rituximab, yet
these CLL, PLL, and MCL patients with the same proteomic profile
are not. The HPLC patients also do poorly with BTKi therapy,
suggesting the need to identify these patients and triage them to
novel therapies.
Finally, this report only covers a tiny portion of the information

that was generated. We have placed all of this data online at our
Leukemia Protein Atlas website for all to explore as a public resource.
We look forward to assisting others with analyzing this data.

METHODS
Patient population
Frozen (n= 744) and fresh (n= 127) blood (n= 799) and bone marrow
(n= 71) samples were acquired from patients diagnosed with CLL(n=
795), HCL(n= 12), HCLV(n= 4), LGL-T(n= 4), MBL(n= 4), MCL(n= 12), MZL
(n= 12), PLL(n= 4), Richter’s (n= 8), T-cell PLL(n= 16) at MD Anderson
Cancer Center (MDACC) between 2005 and 2019. The samples were
collected under protocols Lab01-473, LAB03-0893, Lab 04-0678, Lab08-
0431 and Lab07-0719 in accordance with protocols approved by the
Institutional Review Board (IRB) of M.D. Anderson Cancer Center. Informed
consent was obtained in accordance with the Declaration of Helsinki.
Samples were collected within a year (n= 435), 5 years (n= 286), 10 years
(n= 91), after 10 years (n= 52), and >20 years (n= 7) after initial diagnosis.
These incudes patients who were never treated (n= 527) or treated within

100 days (n= 45), a year (n= 45), 1–2 years (n= 43), 2–5 years (n= 115),
and >5 years (n= 93) after diagnosis. As the Richter’s cases are intermixed
with the CLL cases, this suggests that the proteomics of the circulating CLL
cells, in a patient that has developed Richter’s transformation, have not
been markedly changed.

RPPA methodology
RPPA was used to create proteomics profiles of 871 patient samples (as
described above) and five CD19+ controls (derived from five healthy
donors). Proteins were isolated from PBMCs in frozen (n= 744) and fresh
patient samples (n= 127). Fresh samples were processed by being layered
on Ficoll and centrifuged to remove neutrophils and red blood cells,
washed in PBS, centrifuged, and counted. Frozen samples were initially
processed in the same manner except they were later thawed, placed in
fresh media, layered on Ficoll and centrifuged to remove dead cells,
washed with PBS and centrifuged and counted. The cells were lysed to
produce whole cell lysates as previously described and normalized to a
concentration of 1 × 104 cells/μL [45]. CLL sample lymphocyte purity
(median, 97%) after Ficoll separation was estimated using lymphocyte
counts (Supplemental Fig. S22). Five serial two-fold dilutions (1:1, 1:2, 1:4,
1:8, 1:16) of each patient, cell line, or control sample was printed onto
slides. The slides were probed with 384 strictly validated primary
antibodies and a secondary antibody conjugated to an infrared molecule
to amplify and detect the signal. Antibodies that had been previously
validated (n= 377) were selected based on potential relevance to CLL,
other leukemias, or other cancers and five newly validated antibodies
relevant to CLL (i.e., BTK, ZAP70, SF3B1, phospho-SF3B1, phospho-BCL2.
pSer15) were also validated using previously described methods [46]. The
384 antibodies targeted: 302 total protein, 72 phospho-proteins, four
cleaved proteins (CASP3, CASP7, NOTCH1, and PARP), and six targeting
Histone 3′ methylation sites. A “Rosetta Stone” list of all antibodies used,
the catalog number, manufacturer’s name, HUPO name, and the
concentrations of primary and secondary antibodies used are shown in
Supplementary Table S8. Stained slides were quantitated using Micro-
vigene software (Version 3.4, Vigene Tech).

Data processing, normalization, and quality control
The SuperCurve R package was utilized to calculate a single value of
protein concentration from the five serial dilutions on a log 2 scale [47].
The quality of the staining procedure was further assessed by examining
the Supercurve images and identifying and eliminating slides without
sufficient variation in signal or which lacked the expected sigmoidal curve.
Loading control and topographical normalization procedures were
performed to account for protein concentration and background staining
variations. The data were normalized by subtracting the median of the
rows and columns across all samples to ensure that sample protein
expression estimated from different slides can be compared [48]. Lastly,
the median of CD19 control proteins was subtracted to normalize values to
a normal median of zero enabling recognition of whether expression in the
patient was within, above or below that of normal.

Computational analysis
The data was considered at three different levels: as individual proteins,
within functionally related groups, and collectively to generate a “systems
biology” approach utilizing the Metagalaxy method similar to previous
studies [45, 49–51]. The 384 antibodies were sorted into 40 protein
functional groups (PFG), based on functions reported in the literature or
based on expression correlation with other proteins. The progenyClust R
package (version 1.2), a bootstrapping and stability-based method, and
k-means clustering were used to identify the optimum number of unique
protein functional group expression patterns in the patient population.
Linear discriminant (LDA) and principal component analyses (PCA) were
used to compare the patient clusters to the normal CD19 B control samples.
To build the Metagalaxy, encompassing all the protein data at the PFG

level, a matrix was created by assigning patients binary classifications
(1 for present, 0 for absent) based on their protein functional group
expression patterns. Block clustering (version 4.4.3) was used on the data
matrix to identify repetitive co-occurring PFG expression patterns
(constellations) and groups of patients with a similar combination of
constellations to recognize signatures. The optimal number of protein
constellations and signatures were obtained by calculating the largest
sum of the squared difference between the expected and observed
values, divided by the expected value of each box (coordinate between a
signature and a constellation). The expected value was defined as the sum

T.L. Griffen et al.

12

Blood Cancer Journal           (2022) 12:43 



of cluster membership within a constellation, divided by the proportion of
patients in a given signature. Patient signatures were further classified
into “signature groups” based on similarities in their constellations and
clinical outcomes.
At each analysis level, individual protein, PFG, Metagalaxy, relationships

between categorical, and numeric clinical characteristics were evaluated
using Chi-square, Fisher exact, and the Kruskal–Wallis tests. Prior to
applying non-parametric statistics, we determined that our numeric clinical
traits, being compared across the signature groups, were not normally
distributed nor had equal variance using the Shapiro–Wilk and Levene tests.
For outcome analysis Kaplan–Meier was used to assessing signature group
and PFG cluster relationships with overall survival (OS), time to first
treatment (TTFT), and time to second treatment (TTST). P-values from
multiple testing of proteins and PFGs were false discovery rate (FDR)
corrected. To evaluate whether signature groups prognosticate within CLL-
IPI risk groups and vice versa, we first used the CLL-IPI point system
criterion to categorize CLL patients into low (0–1), intermediate [2, 3], high
[4–6], and very high [7–10] risk groups and used a Kaplan Meier test [52].
Patients with missing age, stage, IGHV status, β2M, or 17p deletion
information were excluded from the CLL-IPI analysis. A similar analysis was
performed for signature groups using Rai stage, IGHV status, and
mutational groups (11q and 17p). Prognostication of individual proteins
was tested and validated by iterative testing (n= 200) of optimum cox
hazard models (median, tertile, sextile, or continuous) on randomized
training (66%) and test (33%) sets of CLL RPPA data. Random forest was
used to bin patients into expression groups (median, tertiles, sextiles) based
on the training data. The optimummodel was determined based on Harell’s
c-index. Differential expression between the signature groups and CD19
controls was performed using a one-way ANOVA and Tukey honest
significant difference test. Differentially expressed proteins were visualized
in Cytoscape. Random forest was used to select proteins that can be used
to classify patients into signature groups (randomForest v 4.6–14). All the
statistical tests and plots were generated in R (Version 3.6.1).

CODE AVAILABILITY
Code for progenyclust and Metagalaxy are available on the Leukemia atlas website:
https://www.leukemiaatlas.org/code.
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