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Multiple myeloma (MM) patients with suboptimal response to induction therapy or early relapse, classified as the functional high-
risk (FHR) patients, have been shown to have poor outcomes. We evaluated newly-diagnosed MM patients in the CoMMpass
dataset and divided them into three groups: genomic high-risk (GHR) group for patients with t(4;14) or t(14;16) or complete loss of
functional TP53 (bi-allelic deletion of TP53 or mono-allelic deletion of 17p13 (del17p13) and TP53 mutation) or 1q21 gain and
International Staging System (ISS) stage 3; FHR group for patients who had no markers of GHR group but were refractory to
induction therapy or had early relapse within 12 months; and standard-risk (SR) group for patients who did not fulfill any of the
criteria for GHR or FHR. FHR patients had the worst survival. FHR patients are characterized by increased mutations affecting the IL-
6/JAK/STAT3 pathway, and a gene expression profile associated with aberrant mitosis and DNA damage response. This is also
corroborated by the association with the mutational signature associated with abnormal DNA damage response. We have also
developed a machine learning based classifier that can identify most of these patients at diagnosis.
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INTRODUCTION
There is an increasing appreciation that risk stratification is
important in the management of multiple myeloma (MM) [1].
Despite advancement of MM treatment in the past decades
following the introduction of proteasome inhibitors and immu-
nomodulatory drugs, which, together with autologous stem cell
transplantation (ASCT), have improved the median overall survival
from 3 to 8 years [2–4], there are still ~20% of patients who survive
for only ~3 years. Improving the outcome of these high-risk
patients is one of the most important current therapeutic
challenge in MM.
The current approach to risk stratification uses genetic

information from FISH, with t(4;14) or t(14;16) or del17p13 by
FISH identified as high-risk genetic abnormalities, as well as clinical
information such as serum albumin and beta-2 microglobulin and
lactate dehydrogenase (LDH), in the R-ISS staging system [5].
Recently, a specific entity named the double-hit MM with
del17p13 and TP53 mutation or 1q amplification (four or more
copies) and International Staging System (ISS) stage 3 has been
shown to have poor survival with median progression-free survival
(PFS) of 15.4 months and median overall survival (OS) of
20.7 months [6]. Many published and ongoing studies have also
evaluated MM gene expression signatures such as EMC92 [7],
GEP70 [8] to identify high-risk patients, although this has not been
routinely used in clinical practice. Some clinical characteristics
such as extramedullary plasmacytomas [9], presence of circulating
tumor cells [10] and renal failure [11, 12] have also been
associated with high-risk disease, but they have not been
consistently included as criteria for clinical trials.

Recently, a number of studies have highlighted that multiple
myeloma patients with suboptimal response to induction
therapy or early relapse have been shown to have poor
outcomes [13, 14].
A real-world outcome study of 1320 newly diagnosed patients

by Australian and New Zealand Myeloma and Related Diseases
Registry (MRDR) showed that 40% of patients with suboptimal
response to induction therapy died within 3 years of diagnosis,
and patients who had early disease progression within 12 months
of starting induction therapy had median OS of only 20.2 months
[13]. These patients are categorized as the functional high-risk
(FHR) MM patients. However, it is not clear how many of these
patients also have high-risk genetic features.
In this study, we assess the criteria of FHR patients with a more

refined definition including only those who either have sub-
optimal response to therapy or progress within 12 months of
starting induction therapy but yet do not have any of the clinically
applicable high-risk genetic features. In addition, we comprehen-
sively compare their genomic profiles (DNA mutations, mutational
signatures (MS), transcriptional signatures, copy number abnorm-
alities) with other MM patients to gain insights into what may
drive this phenotype of extremely poor outcome.

METHODS
We evaluated genomic sequencing and high-throughput molecular assay
data of newly diagnosed MM patients in the CoMMpass dataset (IA13a
version), a publicly available dataset from the Multiple Myeloma Research
Foundation (MMRF).
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We divided the patients into three groups: genomic high-risk (GHR)
group for patients with t(4;14) or t(14;16) or complete loss of functional
TP53 (bi-allelic deletion of TP53 or mono-allelic deletion of 17p13
(del17p13) and TP53 mutation) or 1q21 gain and International Staging
System (ISS) stage 3; FHR group for patients who had no markers of GHR
group but were refractory to induction therapy or had early relapse within
12 months; and standard-risk (SR) group for patients who did not fulfill any
of the criteria for GHR or FHR.
To categorize the patients into their respective risk groups, we used the

following CoMMpass data: translocations of IGH locus and their partners
using RNA-seq data for canonical Ig translocation, copy number
aberrations (CNAs) using CNA segmentation data, response to the first
line therapy using per patient treatment response data, ISS staging
information using per patient aggregate of clinical information, and
disease progression information using per patient survival data.
We analyzed the transcriptome data to obtain clues of underlying

molecular mechanisms driving FHR or GHR. We first identified differentially
expressed genes (DEGs) using SAM [15] for multiple groups and then
queried top DEGs to DAVID [16] to infer their functional consequences. To
account for the distortion introduced during the selection of top DEGs, we
also employed gene set enrichment analysis (GSEA; v4.1) [17] and captured
transcriptomic changes in the genome-wide scale. We also used the
following gene expression signatures to investigate the utility of these
signature indices in identifying FHR patients based on transcriptomic data:
centrosome index (CI) [18], chromosomal instability (CIN) index by Carter
et al. (CIN70) [19], CIN index from sarcoma study (CINSARC) [20], CIN index
of our own (CINGEC) [21], 92-gene survival index from HOVON-65/GMMG-
HD4 study (EMC92) [7], 7-gene survival index from an MM cell line study
(HMCL7) [22], a signature of cell death genes affected by homozygous
deletion (HZDCD) [23], 15-gene survival index from Intergroupe Franco-
phone du Myeloma study (IFM15) [24], proliferation index (PI) [25], a gene
signature index proliferation associated genes from HOVON-65/GMMG-
HD4 study (PR) [7], 70-gene and 80-gene survival index from University of
Arkansas Medical School (UAMS70 [8], UAMS80 [26]).
We evaluated the copy number aberrations (CNAs) to uncover CNA

features associated with FHR or GHR. Starting from the segmentation data
provided in the CoMMpass data portal, we determined optimal threshold
values for different CNA status as well as minimal segment size to retain and
applied them to the segmentation data to determine CNA status for each
segment. Subsequently, CNA status was transformed into a matrix format
(Supplementary Fig. 1). The CIN index [21] we had developed before was also
employed to see if there could be any difference in CIN and hence the
biological mechanism to ensure chromosomal integrity among different risk
groups. Mutation status of each patient was also analyzed to identify genes
and pathways that were preferentially mutated among risk groups using non-
synonymous (NS) mutation data compiled in CoMMpass. MS were also
assessed and examined for difference in propensity among risk groups using
tools and data compiled in COSMIC (v3.2) [27].

To build a predictive model to identify FHR patients using machine
learning, we generated six sets of data for each patient based on various
features: the number of mutations for each of 15,633 genes that harbored
at least one NS mutation (mutation_matrix; 15,633 features), the number of
all NS mutations for each of 44 chromosomal arms (mutation_count_-
by_arm; 44 features), the CNA status for each of 13,155 genes that
harbored at least one CNA (cna_by_gene_reduced; 13,155 features), the
CNA status for each of 44 chromosomal arms (cna_by_arm; 44 features),
transcriptome data of 25,554 genes from RNA-seq where each gene’s
expression profile was normalized against its median level (gep_normed;
25,554 features), and six parameters including age, gender, creatinine level,
ECOG status, ISS staging, and proliferation index (clinical_parameters; 6
features). In determining cna_by_gene_reduced and cna_by_arm, if
multiple CNA statuses appear in a gene or a chromosomal arm, we
selected the CNA status of dominant span in a gene or a chromosomal
arm. The details of these features are listed in the Supplementary Table 1
and Supplementary File 1.
We undertook the following pre-processing of the six datasets. We first

removed highly correlated features from each dataset to reduce the overall
feature space and to concentrate on the features that had more
meaningful information. We used an absolute correlation threshold of
0.5, and, for some datasets, we performed a significance test to further
limit the feature space. In training and testing machine learning models,
each dataset was divided into two subsets using a 70–30 rule where 70%
of the data were used for training models whereas the remaining 30%
were used for testing. During data division, we took a special effort to
maintain the distribution of positive and negative cases in both testing and
training datasets.
As CoMMpass data is greatly affected by severe class imbalance, we

employed a widely used oversampling technique called Synthetic
Minority Oversampling Technique (SMOTE) [28] to reduce the bias
towards the majority class during the modeling stage. SMOTE creates
synthetic minority class samples using KNN technique and potentially
performs better than simple oversampling [29]. It has been used in
several studies such as breast cancer detection [30], miRNA gene
prediction [31, 32], and for the identification of the binding specificity of
the regulatory proteins [33].
We used the random forest algorithm for predicting FHR cases in this

study. Random forest is an ensemble decision tree-based technique where
each tree registers a vote for the most prevalent class and the final
decision is made on consensus majority votes [34]. Despite its algorithmic
simplicity, it is known to perform fairly well and has been widely used in
bioinformatics e.g. for the classification of mRNA microarray data [35], to
detect biomarkers for prostate cancer progression [36] and more. The
performance of prediction results on test datasets were evaluated for all six
individual models on multiple measures such as specificity, sensitivity,
false-negative rate (FNR), False positive rate (FPR), accuracy, F1-Score, and
Matthews correlation coefficient (MCC) (Supplementary Fig. 2).

Table 1. Baseline characteristics.

SR (N= 345) (%) GHR (N= 106) (%) FHR (N= 61) (%)

Gender Male 186 (53.9) 67 (63.2) 39 (63.9)

Female 159 (46.1) 39 (36.8) 22 (36.1)

Age Median (year) 62 61 65

ISS Stage I 142 (41.2) 31 (29.2) 17 (27.9)

Stage II 115 (33.3) 42 (39.6) 20 (32.8)

Stage III 88 (25.5) 33 (31.1) 24 (39.3)

Revised-ISS Stage I 111 (32.2) 1 (0.9) 13 (21.3)

Stage II 211 (61.2) 74 (69.8) 43 (70.5)

Stage III 23 (6.7) 31 (29.2) 5 (8.2)

Treatment class PI/IMiD combination-based 367 (48.1) 99 (46) 50 (42.7)

PI-based 233 (30.5) 68 (31.6) 43 (36.8)

IMiD-based 126 (16.5) 39 (18.1) 18 (15.4)

Others 37 (4.8) 9 (4.2) 6 (5.1)

SR Standard Risk group, GHR Genomic High-Risk group, FHR Functional High-Risk group, ISS International Staging System, PI Proteasome Inhibitor, IMiD
Immunomodulatory Drug.
Data are number (%).
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RESULTS
FHR patients had the worst survival
Of the 512 evaluable patients, there were 345 patients in the SR
group, 106 patients in the GHR group, and 61 patients in the FHR
group. The available baseline clinical characteristics of these
patients were listed in Table 1. As expected, there are more ISS III
and Revised ISS III patients in the GHR group. Interestingly, there
are no unique clinical characteristics to FHR patients, in particular,
very few are R-ISS III. Most patients had proteasome inhibitor (PI)
and immunomodulatory (IMiD) drug combination as first line
treatment, while a smaller proportion of patients had PI-based or
IMiD-based treatment. The treatment received across the three
groups were similar.
On the survival analysis, both FHR and GHR groups had

significantly poorer outcomes compared to the SR group, with
FHR group being the worst. The median OS for the FHR group was
27.6 months, while the median OS was 44.7 months for the GHR
group, and not reached for the SR group (FHR: HR= 5.19, p=
3.42 × 10−11; GHR: HR= 3.55, p= 3.5 × 10−8) (Fig. 1A). Similar
patterns were seen for these group of patients when treated with
PI-based and PI/IMiD combination induction therapies (Fig. 1B–F).

FHR patients cannot be easily identified using known high-
risk gene expression signatures or combination of high-risk
genetic features
We applied established gene expression signatures of high-risk
disease, including proliferation (PI), chromosomal instability (CIN70,
CINSARC, CINGEC), centrosome (CI), cell death (HZDCD), and others
(EMC92, HMCL7, IFM15, UAMS70, and UAMS80), to see if these FHR
cases are characterized by them. Interestingly, most of the FHR
patients do not have these high-risk gene expression signature (Fig.
2A). In fact, when compared across the three groups (SR, GHR, and

FHR), these signatures are not significantly different between SR and
FHR (HMCL7, UAMS80, UAMS70, EMC92, IFM15, and CINGEC) or
between GHR and FHR (PI, HZDCD, CINSARC, CI, CIN70, and PR),
although the indices associated with chromosomal instability
(CINSARC, CI, and CIN70) or tumor aggression (PI and PR) appear
to be generally higher in the FHR patients (Fig. 2B). We also used
several different combinations of high-risk features including the PR
index, gain1q21+ del1p, gain1q21+ del17p13, gain1q21+MMSET,
gain1q21+MAF, ISS3+ gain1q21, ISS3+ del1p, ISS3+ del17p13,
ISS3+MMSET, and ISS3+MAF, to evaluate if they could identify
these FHR patients. These combinations of markers are rarely present
in FHR patients (Fig. 2A).
This suggests that the FHR patients are generally not

characterized by known high-risk signatures that have been
described.

What are the genomic features of FHR MM patients?
We next explored the mutational, transcriptional and copy
number landscape of these patients to see if unique molecular
and genomic abnormalities can be identified.

Mutation analysis. We analyzed the NS mutations in the
CoMMpass data and evaluated the prevalence of mutation for
genes known to be frequently mutated in MM (KRAS, NRAS, and
FAM46C) between different risk groups using the Fisher’s exact
test. There was no obvious concentration of mutations in any risk
group. However, we uncovered that the GHR group had higher
mutational load (p= 0.00331), and genes such as FGFR3 (p=
1.63 × 10−11), PRKD2 (p= 2.82 × 10−7), and TP53 (p= 8.7 × 10−6)
were predominantly mutated in GHR group as compared with
others. On the other hand, KIAA1549L, LUZP2, and BMPR1B were
predominantly mutated in FHR (Fig. 3).

Fig. 1 Survival curves for FHR, GHR, and SR MM patients in CoMMpass dataset. A Overall (B) FPI-based induction treatment and (C) PI/IMiD-
based induction treatment. Survival curves for patients treated with PI and PI/IMiD in (D) SR, (E) GHR, (F) FHR groups, respectively. P-values
indicate Cox regression test of PI/IMiD treatment against PI treatment.
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We then assessed whether the mutated genes were enriched
for any gene sets in each risk group, and analyzed the differences
with Wilcoxon’s rank-sum test. In the FHR group, the IL6-JAK-
STAT3 pathway was found to be significantly enriched (p=
0.00924), while estrogen response (p= 0.000369), KRAS (p=
0.000417), and WNT β catenin (p= 0.000447) signaling pathways
were found to be enriched in the GHR group.

Copy number aberrations. Of the 471 evaluable patients, 224
(47.6%) were non-hyperdiploid and 247 (52.4%) were hyperdi-
ploid. Interestingly, FHR group was predominantly hyperdiploid
(57.9% vs 42.1% non-hyperdiploid) while GHR group was mostly
non-hyperdiploid (90.8% vs 9.2% hyperdiploid). GHR group also
had more pronounced 13q deletion, and increased 1q21 gain

compared to FHR (p= 1.45 × 10−10) and SR groups (p < 2.2 ×
10−16). The SR group had more hyperdiploid (64.9% vs 35.1% non-
hyperdiploid) patients, which was statistically insignificant com-
pared to the FHR group (p= 0.369) (Fig. 3 and Supplementary Fig.
3). Therefore, the copy number profile of FHR patients were similar
to that of SR patients.
We also estimated CIN using CNAs over autosomal chromo-

somes. There were no statistically significant differences between
FHR and SR groups (p= 0.194) or between GHR and SR groups
(p= 0.516), or between FHR and GHR groups (p=0.427) (Supple-
mentary Fig. 4).

Differentially expressed genes and enriched pathways. Using the
RNA-seq data, we evaluated the DEGs. The DEGs in FHR and GHR

Fig. 2 FHR MM patients and known high-risk signatures. A Each column indicates individual FHR patient. For gene expression signatures—
PI, CIN70, CINSARC, CINGEC, CI, EMC92, HMCL7, HZDCD, IFM15, UAMS70, UAMS80, PR—we arbitrarily set patients with top 20% signature
indices as high risk (black square). For other combination high-risk genetic markers—Gain1q:Del1p, Gain1q:Del17p, Gain1q:MMSET, Gain1q:
MAF, ISS3:Gain1q, ISS3:Del1p, ISS3:Del17p, ISS3:MMSET, ISS3:MAF—the presence of such combination markers was indicated (black square).
Individual genetic markers are as follow: gain1q (gain of 1q), del1p (deletion of 1p), del17p (deletion of 17p), MMSET (dysregulation of
MMSET), MAF (dysregulation of MAF/MAFB/MAFC), and ISS3 (ISS stage 3). B Gene expression signature box plots. Symbols above each risk
group indicate statistical significance (*: 0.01 < p ≤ 0.05; **: 10−3 < p ≤ 10−2; ***: 10−4 < p ≤ 10−3; ****: 10−5 < p ≤ 10−4; *****: p ≤ 10−5) of
comparison between a specific group and all the rest. Symbol colors indicate whether the mean level of a specific group is above (red) or
below (blue) that of all the rest.
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groups were distinct. The list of DEGs from SAM are listed in
Supplementary File 2.
In order to understand the biological processes implicated by the

list of DEGs, we queried the functional annotations using DAVID for
top 200 genes from the comparison between FHR and SR groups but
excluding those turned out to be significant from the comparison
between GHR and SR groups (Supplementary File 3). FHR patients
were found to be enriched for genes linked to mitotic cell cycle and
DNA replication, C2H2 zinc finger, and DNA repair. For instance, the
first, second, and several of the top sixth and eighth annotation
clusters were composed of highly significant terms such as
centromere, mitotic cell cycle, and DNA replication, displaying the
significant association of mitotic cell cycle processes to FHR. The third
annotation cluster was composed of mostly C2H2 zinc finger related

terms that are rather too generic to infer further biological context
directly. However, a recent publication [37] links the recruitment of
C2H2 zinc finger domain to cereblon (CRBN) and the induction of the
ubiquitination and proteasomal degradation of genes targeted by
small molecules thalidomide and its analogs, lenalidomide and
pomalidomide, thereby suggesting potential relevance of this cluster.
The fourth, fifth, and top of seventh annotation clusters were
associated with DNA repair.
We also queried the functional annotations using the top 499

genes from the comparison of GHR and SR but excluding those
significant between FHR and SR groups (Supplementary File 4) to
DAVID. GHR patients were enriched for genes linked to ribosomal
RNA/protein and protein translation initiation and Ig subtype clusters.
To mitigate the limitation of functional annotations due to

CCND1
CCND2
CCND3
MMSET
FGFR3
MAF
MAFB
chr1q21
chr3
chr5
chr6p
chr7
chr9
chr11q
chr15q
chr19
chr21q
chr1p
chr13q
chr14q
chr16q
chr17p13
chr22q
KRAS
NRAS
FAM46C
DIS3
FGFR3
PRKD2
TP53
KIAA1549L
LUZP2
BMPR1B
CI
CIN70
CINSARC
CINGEC
EMC92
HMCL7
HZDCD
IFM15
PI
PR
UAMS70
UAMS80

FHRGHRSR

Fig. 3 Composite heat map combining gene expression, copy number aberration, mutation, and gene expression signatures. Top panel
(CCND1, CCND2, CCND3, MMSET, FGFR3, MAF, MAFB) shows the median-normalized gene expression profiles of important TC class marker
genes. For each gene, expression above/below the median level is indicated as red/blue, and the median level is indicated as white. The
second panel comprises chr1q21, chr3, chr5, chr6p, chr7, chr9, chr11q, chr15q, chr19, chr21q which displays gain of the respective
chromosomal regions. Single copy gain is indicated as red and two or more copy gain is indicated as dark red. The GHR group clearly shows
the dominance of non-hyperdiploid cases while the SR and FHR groups show prevalence of hyperdiploid cases. The third panel comprises
chr1p, chr13q, chr14q, chr16q, chr17p13, chr22q which exhibits loss of respective chromosomal regions. Single copy loss is indicated as blue
and two-copy loss is indicated as dark blue. The GHR group clearly shows the dominance of chr13q deletion, possibly indicating the
involvement of RB1. The fourth panel comprises KRAS, NRAS, FAM46C, DIS3, FGFR3, PRKD2, TP53, KIAA1549L, LUZP2, and BMPR1B which
shows presence of NS mutations for the respective genes. KRAS, NRAS, FAM46C, and DIS3 are known to be frequently mutated in MM.
However, FGFR3, PRKD2, and TP53 genes are found to be mutated specifically in the GHR group, while KIAA1549L, LUZP2, and BMPR1B genes
are found to be mutated specifically in the FHR group in this study. The bottom panel comprises CI, CIN70, CINSARC, CINGEC, EMC92, HMCL7,
HZDCD, IFM15, PI, PR, UAMS70, and UAMS80 which represents gene expression signatures. Here, patients with top 20% respective indices are
marked as high-risk.
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artificial selection of top DEGs, we additionally performed GSEA.
Compared to the SR group, FHR group showed enrichment in a
number of gene sets of the hallmark group known to be
involved in MM (P < 0.05 & FDR < 0.25), including E2F Targets,
G2M Checkpoint, MTORC1 signaling, Glycolysis, Unfolded
protein response, Myc targets, DNA repair, while no significant
gene set enrichment were found for the SR group (Table 2). The
full list of GSEA result is shown on the Supplementary File 5. For
the GHR group, five gene sets were found enriched (Androgen
response, Estrogen response, Glycolysis, UV response, and IL2-
STAT5 signaling) as compared to the SR group (Table 3). The full
list is shown on the Supplementary File 6.

Mutational signatures. We also analyzed the MS using the
SigProfiler with Catalogue Of Somatic Mutations in Cancer
(COSMIC) reference catalogue [38]. SBS1 and SBS5 were highly
specific to SR. SBS3 was highly specific to the GHR and FHR
groups. SBS6 was very specific to GHR (Fig. 4). There was therefore
no MS specific only to FHR.

Machine learning based predictor for FHR patients
It is clear that none of the current signatures or high-risk features
can identify majority of these FHR patients very well. We therefore
used machine learning methodology to develop a classifier.
Our machine learning based predictor showed that perfor-

mance of the individual model was not optimal (Supplementary
Table 2). In order to improve the model and to obtain results that
are more robust and useful, we decided to stack multiple models
(Supplementary Table 3).
For the highest accuracy, a model with the combination of

mutation matrix, gep_normed and clinical parameters, with an
accuracy of 0.75, specificity of 0.76, sensitivity of 0.67, false
negative rate of 0.33, false positive rate of 0.23, Area Under the
Receiver Operating Curve (AUC-ROC) of 0.71, F1 score of 0.34, and
MCC score of 0.28, can be used (Supplementary Fig. 5). To ensure

that we do not give unnecessary treatment to non-FHR patients
and avoid harm, we may want use the model with highest
specificity with lowest false positive rate with a combination of
cna_by_gene_reduced, mutation_matrix, gep_normed, and clin-
ical parameters, which has an accuracy of 0.78, specificity of 0.80,
sensitivity of 0.60, false negative rate of 0.4, false positive rate of
0.2, AUC-ROC of 0.70, F1 score of 0.35, and MCC score of 0.28.
However, if the treatment proposed for the FHR patients is not
likely to increase harm and can also benefit non-FHR patients, we
may want to use a model that gives maximum sensitivity with
lowest false negative rate, using a combination of gep_normed
and mutation matrix. This model has an accuracy of 0.65,
specificity of 0.63, sensitivity of 0.87, false negative rate of 0.13,
false positive rate of 0.37, AUC-ROC of 0.75, F1 score of 0.33, and
MCC score of 0.30.

DISCUSSION
In this study, we showed that the FHR MM patients that do not
have any of the known clinically applied high-risk genetic factors
have very poor outcomes. Most of these patients also do not
harbor other high-risk characteristics that have been published. As
these FHR MM patients are defined based on poor response to
induction treatment and early disease progression, there is
currently no easy way to identify them at diagnosis. There is
much interest to design clinical trials specifically targeting high-
risk patients as they need a different therapeutic strategy.
However, our current definition of high-risk would have failed to
identify these FHR patients. In this study, we developed a machine
learning classifier that allows us to identify FHR patients a priori.
Understanding the genomics and biology of these FHR patients

may also provide insights into potential therapeutic strategy. New
therapeutic approaches are needed for these patients as current
approaches have not improved their outcomes significantly. FHR
patients seem to have increased mutations affecting the IL-6/JAK/

Table 2. Top hallmark gene sets (P < 0.05 & FDR < 0.25) enriched in FHR group.

Term ES NES P-value FDR Size

Hallmark_E2F_Targets 0.72 1.77 0.00412 0.165 197

Hallmark_G2M_Checkpoint 0.65 1.74 0.01030 0.118 195

Hallmark_MTORC1_Signaling 0.54 1.70 0.00795 0.110 196

Hallmark_Glycolysis 0.45 1.66 0.00877 0.124 198

Hallmark_Unfolded_Protein_Response 0.57 1.66 0.01170 0.100 109

Hallmark_MYC_Targets_V1 0.62 1.59 0.02760 0.141 194

Hallmark_Bile_Acid_Metabolism 0.42 1.54 0.00952 0.171 110

Hallmark_Fatty_Acid_Metabolism 0.45 1.54 0.02650 0.158 156

Hallmark_DNA_Repair 0.54 1.51 0.02330 0.171 146

Hallmark_Peroxisome 0.44 1.47 0.03650 0.203 104

Hallmark_Estrogen_Response_Late 0.33 1.40 0.01760 0.205 198

ES Enrichment Score, NES Normalized Enrichment Score, FDR False Discovery Rate.

Table 3. Top hallmark gene sets (P < 0.05 and FDR < 0.25) enriched in GHR group.

Term ES NES P-value FDR Size

Hallmark_Androgen_Response 0.46 1.64 0.01300 0.233 98

Hallmark_Estrogen_Response_Early 0.39 1.64 0.00515 0.160 198

Hallmark_Glycolysis 0.41 1.49 0.04490 0.218 198

Hallmark_UV_Response_DN 0.37 1.43 0.04280 0.226 142

Hallmark_IL2_STAT5_Signaling 0.35 1.43 0.04950 0.207 198

ES Enrichment Score, NES Normalized Enrichment Score, FDR False Discovery Rate.
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STAT3 signaling pathway. The IL-6/JAK/STAT3 signaling has been
shown to drive the proliferation, survival, invasiveness, and
metastasis of cancer cells, while suppressing the antitumor immune
response [39]. The IL-6/JAK/STAT pathway is also important in
myeloma and may be a good therapeutic target in myeloma [40]. We
have previously shown that IL6-STAT activation may drive high-risk
phenotypes via promotion of aberrant RNA editing through
upregulation of ADAR1 [41] and also upregulation of a high-risk
phosphatase, PRL-3 [42]. Some studies showed that MM cells with an

IL-6-activated JAK/STAT3 pathway are particularly sensitive to heat
shock protein 90 (Hsp90) inibitors [43], making this a potential
therapeutic target for the FHR MM patients.
The DEG and MS point to the importance of genomic instability,

aberrant centromere, mitosis, and abnormal DNA damage repair.
Chromosome instability has been known to be a hallmark in MM
[44]. Centromeres and their associated kinetochores play an
important role in affecting cell mitosis and therefore chromosomal
integrity [45]. Along with the context of mitosis, centrosome

Fig. 4 Mutational Signatures for SR, GHR, and FHR groups. A For each patient, respective contributions of component MSs are indicated
with different color codes. B For individual MSs, respective level of contributions among all MSs per patient are compared among the three
risk groups using Kruskal-Wallis test. Here, whether the distribution of respective level of contributions in one risk group is particularly
different from those of the other risk groups is tested. SBS5 is more prominent in the SR group than in the GHR and FHR groups (p= 2.31 ×
10−25), while SBS3 is more prominent in the GHR and FHR groups (p= 1.04 × 10−43) . SBS2 (p= 1.67 × 10−11) and SBS6 (p= 2.23 × 10−21) are
more prominent in the GHR group.
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amplification has also been shown to have prognostic implication
in MM. A gene expression-based centrosome index (CI) of more
than 4, which was calculated by adding the normalized expression
value of the expression levels of genes encoding for the proteins
in the centrosomes, has been previously shown to be associated
with short survival in MM [46]. The Intergroupe Francophone du
Myelome (IFM) from France showed that overexpression of genes
involved in mitosis was associated with high-risk disease resulting
in poor survival [24]. Similarly, a study from the United Kingdom
showed that mutations in the DNA damage pathways are
associated with poor outcomes [47]. Recently, we have showed
that NEIL1, a gene involved in DNA damage repair, is hyperedited
in MM patients with poor outcome and leads to aberrant DNA
damage response in these cells [48]. Synthetic lethal approach to
exploit DNA damage repair abnormalities in MM has been studied,
showing an addiction in these cells to ATR inhibition [49, 50]. In
our recent studies, we showed that targeting CHEK1 is also a
synthetic lethal approach in high-risk disease with abnormal DNA
damage repair phenotype [51].
However, what is most striking is how little distinguished FHR

patients are from GHR and SR patients genomically in terms of
transcriptomics, MS, copy number, and genes affected by
somatic mutations. The lack of distinguishing genomic profile
in FHR patients might also suggest that factors outside of the
tumor cells such as the immune dysregulation or tumor
microenvironment may play an important role in FHR patients.
This will need to be addressed in future studies. There are two
important implications. First, understanding the differences
outside of the tumor cells may allow the development of more
effective strategies against the FHR patients as current therapies
targeting the traditional myeloma vulnerabilities are ineffective.
Second, while our current artificial intelligence (AI) model is
better than existing tools in identifying FHR patients, the
additional knowledge about the immune dysregulation and
tumor microenvironment may add to the model to make the
model even better or in fact may simplify the model if the
differentiating power is greater.
In summary, we have shown that FHR MM patients, even

without any high-risk genetic factors, have very poor outcomes,
and we developed a machine learning based classifier that can
identify most of these patients at diagnosis. These patients are
characterized by increased mutations affecting the IL-6/JAK/STAT3
pathway, and a gene expression profile associated with aberrant
mitosis and DNA damage response. This is also corroborated by
the association with the MS associated with abnormal DNA
damage response. Targeting the STAT pathway and taking
advantage of synthetic lethal addictions to the abnormal DNA
damage response may lead to novel therapeutic strategies to
explore for these patients.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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