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Myeloid malignancies with 5q and 7q deletions are
associated with extreme genomic complexity,
biallelic TP53 variants, and very poor prognosis
Beth A. Pitel 1, Neeraj Sharma1, Cinthya Zepeda-Mendoza1,8, James B. Smadbeck2, Kathryn E. Pearce1,
Joselle M. Cook3, George Vasmatzis2, Zohar Sachs 4, Rashmi Kanagal-Shamanna 5, David Viswanatha6, Sheng Xiao7,
Robert B. Jenkins1, Xinjie Xu1, Nicole L. Hoppman1, Rhett P. Ketterling1, Jess F. Peterson1, Patricia T. Greipp1 and
Linda B. Baughn 1

Dear Editor,
Acute myeloid leukemia (AML) is an aggressive myeloid

neoplasm representing the most common type of acute
leukemia in adults1,2. AML is classified into multiple
genetic subtypes based on recurrent structural variations
(SVs), copy number variations (CNVs), aneuploidies, and
single nucleotide variants (SNVs). These genetic subtypes
inform prognosis and influence clinical management3–6.
Cytogenetically visible deletions of chromosomes 5 and/

or 7 in the absence of a WHO-defined recurrent SV
represent a distinct subgroup associated with complex
karyotype, pathogenic TP53 variants, and adverse prog-
nosis4. Identification of this subtype relies upon conven-
tional cytogenetic techniques such as chromosome
studies and/or fluorescence in situ hybridization (FISH)4.
However, structural genomic complexity may be grossly
underestimated and imprecise by these conventional
chromosome studies and limited information is retrieved
from FISH testing due to the targeted nature of the assay7.
While genomic complexity has been explored using
chromosomal microarray studies8,9, structural complexity
profiling in AML by next-generation sequencing (NGS)
has been largely unexplored. The objective of this study
was to explore the relationship between 5q and 7q dele-
tions, genome-wide genomic complexity as determined by

NGS and conventional chromosome studies, TP53 var-
iants, and disease outcome.

Study characteristics
Following Mayo Clinic Institutional Review Board

approval, we searched our Mayo Clinic Genomics data-
base from 2017 and 2018 to identify patients that had a
myeloid clone with a 5q deletion and/or 7q deletion
identified by FISH and/or chromosomes studies (includ-
ing cases with monosomies of chromosomes 5 and/or 7).
We also identified cases with a normal karyotype (NK)
AML clone as a control for low genomic complexity
identified by conventional cytogenetics. A total of 103
cases had either a NK (NK, N= 52), 7q deletion (7q del,
N= 12), 5q deletion (5q del, N= 19), or 5q deletion and
7q deletion (5q/7q del, N= 20) [Fig. 1A, Table S1].
The majority of cases, 90 (87%) represented diagnostic

specimens and 13 (13%) were relapsed AML. Specifically,
48 (47%) were de novo AML, 37 (36%) were secondary
AML (31 had AML with myeloid-related changes (MRC)
and 6 were therapy-related). We also included five addi-
tional high-grade myeloid neoplasms with 5q del and/or
7q del including three patients with MDS (one with
therapy-related MDS with 6% blasts, two with MDS with
excess blasts; 12–20% blasts and 10–15% blasts) and two
cases with an unspecified myeloid malignancy [Table S1,
Table S2]. The median age was 68 years (range 9–90) with
a slight male predominance of 53% [Table S1]. The Eur-
opean Leukemia Net (ELN) 2017 prognostication of
patients in the NK subgroup depended largely on their
SNVs4 [Table S1]. Nineteen (37%) NK samples could not
be stratified due to incomplete sequencing data. Of 33 NK
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Fig. 1 Myeloid clones with 5q and 7q deletions have complex genomes, biallelic pathogenic/likely pathogenic TP53 variants and poor
overall survival. A Schematic of cohort. One hundred and three cases from patients with a diagnosis of a myeloid malignancy and with
conventional chromosome and/or FISH studies demonstrating either normal karyotype (NK), 7q deletion (7q del), 5q deletion (5q del), 5q and 7q
deletion (5q/7q del). Eighty-nine patients had sequencing (NGS or PCR-based) to identify sequence variants, 69 had MPseq to identify CNV and SV,
and 95 samples had data available for assessment of overall survival. B Circos plots depicting CNVs and SVs detected by MPseq in each subtype. The
outermost histogram (red) displays genomic losses, with axes rings representing the 20, 40, 60, 80, and 100% number of events per 1Mb window. The
next histogram (blue) displays genomic gains, with axes rings representing the 20, 40, 60, 80, and 100% number of events per 1Mb window. Inner
links (black) represent translocation and inversion events, with lines indicating positions along the chromosome. C TP53 deletion determined by FISH
or MPseq and single nucleotide variant (SNV) status. Biallelic status requires evidence of deletion and SNV, or two pathogenic/likely pathogenic SNVs
or one SNV over 80% VAF. D Overall survival probability using NK, 5q and 7q patient status (N= 95 samples) and in E. TP53 variant status (N= 81).
Survival curves analysis was done using the Kaplan–Meier method and Log rank (Mantel–Cox) was run to determine the difference in the survival
distribution among all four study subtypes. Eight patients were removed due to lack of follow-up data. Survival and AML diagnosis date was obtained
from the medical record. The date of diagnosis reflects the original AML diagnosis. In D, 5q/7q del (blue line), 5q del (green line), 7q del (red line), and
NK (purple line). In E, biallelic TP53 variants (blue line), monoallelic TP53 variants (green line), and normal TP53 status (red line).
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cases with ELN prognostication data, 10 were favorable,
11 were intermediate, and 12 were adverse. Of the
remaining 51 cases that did not have NK, 48 cases had
adverse risk due to identification of monosomy 5, 5q del,
monosomy 7, complex karyotype and/or pathogenic/
likely pathogenic variants (deletions or SNV) [Table S1].
While monosomy 7 is classified as high risk by ELN, 7q
dels are classified as intermediate risk in the absence of
other high-risk abnormalities. Two cases were classified as
intermediate with a 7q del, a non-complex karyotype and
no high-risk variants. One case had a 7q del, but evalua-
tion for high-risk SNVs was incomplete [Table S1].
Sixty-nine cases had available DNA from bone marrow

(BM) or peripheral blood (PB) for analysis by mate-pair
sequencing (MPseq), a form of NGS optimized for the
detection of SVs and CNVs7. Additional materials and
methods details are in “Supplementary Information”. By
MPseq, the minimum deleted region of chromosome 5q was
~6Mb from 5q31.1 to 5q31.2 (chr5:134132000–139782000
[GRCh38]), encompassing EGR1, and the minimum deleted
region of chromosome 7q was ~10Mb from 7q32.1 to 7q34
(chr7:128933000–138962000 [GRCh38]) [Fig. 1B, Fig. S1].
No large deletions in the critical regions of chromosome 5q
and 7q were identified by MPseq in NK samples [Fig. 1B,
Fig. S1]. Genome-wide SVs and CNVs demonstrated overall
increased genomic complexity of 5q del and 5q/7q del
subtypes in comparison to NK and 7q del subtypes, with the
greatest genomic complexity identified in the 5q/7q del
subtype [Fig. 1B]. The median number of genome-wide CN
gains, CN losses, and SVs were lower in NK (2.0, 5.0, and
4.0) and 7q del (2.0, 8.0, and 6.0) and higher in 5q del (11.5,
14.5, and 17.5) and 5q/7q del (14.0, 24.0, and 60.0), a dif-
ference that was significant among the 4 subtypes in each
category (p < 0.001) [Table S3]. There was also an increased
overall copy number burden (CNB) in cases with 5q/7q del,
even when excluding any CN abnormalities involving 5q
and 7q [Table S4]. Overall CNB correlated with karyotype
complexity determined from the conventional chromosome
results [Fig. S2]. Most 5q del and 5q/7q del subtypes were
characterized by chromoplexy, chromothripsis, or pro-
gressive complexity with enrichment of SV involving chro-
mosomes 5, 12, and 17, features absent in NK and 7q del
cases [Fig. S3].
We next evaluated the incidence of pathogenic/likely

pathogenic TP53 variants (deletions and SNVs). TP53
deletions were identified in 20/96 (21%) cases [Fig. 1C,
Fig. S4]. None of the NK subtypes had a TP53 deletion, 1
(9%) 7q del, 8 (44%) 5q del, and 11 (55%) 5q/7q del cases
had a TP53 deletion. Pathogenic/likely pathogenic TP53
SNVs were identified in 28/89 (31%) cases. One NK case
had a TP53 SNV (~5% VAF), 2 (17%) 7q del, 7 (70%) 5q
del, and 18 (95%) 5q/7q del had TP53 SNVs. Monoallelic
TP53 variants were found in 7/83 (8%) cases and biallelic
TP53 variants were found in 22/83 (27%) of cases [Fig. 1C,

Fig. S4]. Biallelic TP53 variants were predominantly
identified in cases with 5q del (70%) and 5q/7q del (78%).
Fourteen of 16 cases (88%) with a TP53 monoallelic
deletion that were evaluable for TP53 SNV had a TP53
SNV. Two samples with a TP53 deletion did not have a
TP53 SNV demonstrating that TP53 deletion status is
often predictive of a TP53 SNV on the remaining allele. In
contrast, 14 of 28 (50%) cases with a TP53 SNV had a
TP53 deletion; the remaining 14 had a TP53 SNV without
a TP53 deletion. No TP53 pathogenic/likely pathogenic
variants were identified in 5 complex karyotype-AML
samples without 5q del and/or 7q del (data not shown).
The type and location of each TP53 SNV are shown in Fig.
S5. Since TP53 variants have been reported to associate
with chromosome instability in myeloid cells8,10,11, cases
with TP53 SNVs had a higher median number of CN
gains (14.0 vs. 2.0), CN losses (19.5 vs. 5.0), and SVs (51.0
vs. 4.0) compared to cases with normal TP53, with the
greatest fold change (13-fold) was observed in the number
of SVs in association with TP53 variants [Fig. S5].
We next evaluated the contribution of 5q and 7q dele-

tions, TP53 variant status and genomic complexity on
overall survival (OS). The median OS was significantly
shorter for patients with 5q/7q del (100 days, 95%CI,
0–217 days, p < 0.0001) or 5q del (231 days, 95%CI,
2–460 days, p= 0.017) compared to NK (608 days, 95%CI,
300–918 days) and between 5q/7q del compared to 7q del
(502 days, 95%CI, 0–1203 days) (p < 0.0001) [Fig. 1D] similar
with prior reports11,12. No significant difference in OS was
observed between 5q/7q del and 5q del and between NK and
7q del. The median OS was also significantly shorter for
patients with biallelic (175 days, 95%CI, 102–247 days, p <
0.0001) or monoallelic TP53 variants (150 days, 95%CI,
140–160 days, p= 0.050) compared to patients with normal
TP53 (608 days, 95%CI, 304–912 days). No significant dif-
ference in OS was observed between biallelic and mono-
allelic TP53 categories, as previously reported8 (p= 0.608)
[Fig. 1E]. Patients with high genomic complexity identified
by MPseq and complex and monosomal karyotypes had a
significantly shorter median OS compared to patients
without these features (p < 0.0001) [Fig. S6]. The greatest
risk of death was found in 5q/7q del (univariate risk ratio
3.39, p < 0.0001; 95%CI: 1.94–5.92 and multivariate risk ratio
2.58, p= 0.003; 95%CI: 1.36–4.88) in comparison to cases
with only 5q del (univariate risk ratio 1.61, p= 0.124; 95%CI:
0.88–2.97). Cases with 7q del (univariate risk ratio 0.68, p=
0.306; 95%CI: 0.32–1.42) and NK (univariate risk ratio 0.46,
p= 0.002; 95%CI: 0.28–0.75) had reduced risk of death
compared to 5q/7q del [Table S5]. Improved OS of 7q del
cases may be explained by 10 of 12 (83%) of 7q del cases had
a simple karyotype, with <3 cytogenetic abnormalities, in
contrast to 5q del or 5q/7q del cases, similar to previously
published observations11. Similar OS between the 7q and
NK cases may be due to the incorporation of NK cases with
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less favorable ELN risk categories based on mutation status
(Table S1), further narrowing the OS gap between the NK
and 7q del cohorts.
In summary, we describe the use of genome-wide NGS in

the characterization of genomic complexity in AML, with
the potential to reframe our understanding of complex
genomic events. To our knowledge, very few studies have
specifically evaluated the structural complexity incorpor-
ating both CNVs and SVs of AML genomes by NGS13–15.
Here we show that myeloid malignancies with deletions of
5q and 7q are associated with additional complex genomic
findings not appreciated by conventional chromosome
studies including increased copy number burden, chro-
mothripsis, chromoplexy, progressive genomic complexity,
and very poor overall survival.
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