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Abstract
Seventy-six FDA-approved oncology drugs and emerging therapeutics were evaluated in 25 multiple myeloma (MM)
and 15 non-Hodgkin’s lymphoma cell lines and in 113 primary MM samples. Ex vivo drug sensitivities were mined for
associations with clinical phenotype, cytogenetic, genetic mutation, and transcriptional profiles. In primary MM
samples, proteasome inhibitors, dinaciclib, selinexor, venetoclax, auranofin, and histone deacetylating agents had the
broadest cytotoxicity. Of interest, newly diagnosed patient samples were globally less sensitive especially to
bromodomain inhibitors, inhibitors of receptor tyrosine kinases or non-receptor kinases, and DNA synthesis inhibitors.
Clustering demonstrated six broad groupings of drug sensitivity linked with genomic biomarkers and clinical
outcomes. For example, our findings mimic clinical observations of increased venetoclax responsiveness in t(11;14)
patients but also identify an increased sensitivity profile in untreated patients, standard genetic risk, low plasma cell S-
Phase, and in the absence of Gain(1q) and t(4;14). In contrast, increased ex vivo responsiveness to selinexor was
associated with biomarkers of poor prognosis and later relapse patients. This “direct to drug” screening resource,
paired with functional genomics, has the potential to successfully direct appropriate individualized therapeutic
approaches in MM and to enrich clinical trials for likely responders.

Introduction
Although a combination of immunomodulatory drugs

(IMiDs) and proteasome inhibitors (PIs) is the current
gold standard therapy for multiple myeloma (MM) with
response rates in ~90% of newly diagnosed patients, deep
complete remission is only achieved in ~50%, and most
patients ultimately relapse, due to innate and acquired
drug resistance1–8. Two challenges immediately become
evident. Most urgent is the need to find alternatives for
patients in whom these potent drug classes eventually
fail1,2,9–13. Second, is to understand the mechanisms of

resistance and to seek methodologies, dosing strategies,
and new drug combinations that can prevent or overcome
relapse14–17.
Because MM evolves secondary to acquired genetic

events18, efforts toward individualizing treatments have,
until now, focused on sequencing strategies19–21. Such
early efforts have, however, failed to stimulate an era of
precision medicine since actionable mutations are rare,
subclonal, and lack matched therapeutics. Even when
actionable mutations are present and the appropriate drug
is utilized (e.g., treating BRAFV600E), clinical responses
have been incomplete and transient22,23.
Therapy selection based on a demonstration of ex vivo

individual sensitivity to a drug or drug combination offers
a novel, attractive approach to individualized cancer
therapy and is increasingly being explored in various
cancers24–31. This is particularly relevant in MM given the
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large number of therapeutic agents currently available,
either approved or under investigation, and the non-
curable nature of the disorder. In that light, advances in
functional drug screening technology and the rapid
expansion of US Food and Drug Administration (FDA)
approved oncology agents have now raised the prospect of
a “direct to drug” screening approach to tailor therapies
for MM. We therefore assembled a standardized MM
drug panel (MMDP) and screening platform for drug
profiling in both cell line models and primary samples.
Baseline clinical phenotype, cytogenetics, DNA muta-
tional profiles and RNA expression were recorded for
each patient. This compendium provides a data-rich asset
from which we explored clinical and genomic correlates
of drug sensitivity. We identified subpopulations of
patients with distinct drug sensitivity patterns linked to
genetic and mutational profiles, and to clinical outcomes.
These patterns illuminate vulnerabilities that can be
exploited for future mechanism of action studies and
combination therapy development.

Materials and methods
MM drug panel
The compounds of the MMDP were sourced from the

NIH developmental therapeutics program and from var-
ious commercial vendors (Supplemental Table 1), dis-
solved in 100% dimethyl sulfoxide (DMSO) at a 10mM
stock concentration.

Cell culture
All cell lines were provided by Dr. P. Leif Bergsagel’s

laboratory and were fingerprinted to confirm their iden-
tity and tested negative for mycoplasma. The human
myeloma cell lines (HMCLs) were maintained in RPMI-
1640 supplemented with 5% FBS, and 1% pen/strep except
for XG2, which was supplemented with 10% FBS and 1%
pen/strep. For the non-Hodgkin’s lymphoma cell lines
(NHLCLs), mantle and T-cell lymphoma subtypes were
maintained in RPMI-1640 supplemented with 10% FBS
and 1% pen/strep, while diffuse large B-cell lymphoma
(DLBCL) subtypes were maintained in IMDM media
supplemented with 20% human serum and 1% pen/strep.

Human samples
Primary human MM cells were recovered from bone

marrow aspirates collected from Mayo Clinic sites.
Informed consent was given in writing for collection and
research use under Institutional Review Board approval
(IRBs 919-04, 521-93, 15-009436, 18-003198, 2207-02) in
accordance with the Declaration of Helsinki. CD138+
cells were isolated by immunomagnetic bead selection
(RoboSep; Stemcell Technologies). A minimum viable
cell content of 500,000 cells and purity of 90% were
required for drug screening on the same day. Baseline

clinical characteristics were abstracted32, cytogenetics
recorded from fluorescence in situ hybridization reports,
and risk groups defined based on the mSMART 3.0
classification2.

Drug sensitivity profiling platform
Feasibility studies for determination of assay time points

and cellular density ranges were conducted in JJN3 cells
by monitoring the efficacy of dinaciclib in real time every
2 h over 72 h using a nonlytic cellular viability assay (Real
Time Glo, Promega). A lytic cellular viability assay (Cell
Titer Glo, Promega) was used for all other experiments.
For all cells amenable to culture (n= 40, Supplemental
Table 2), cell densities were titrated and optimal seeding
densities within linear ranges of luminescent signal were
established at 24 hour (h) and 72 h drug exposure, per
standard NIH assay guideline optimization criteria and
methods. At time of experiment, 30 µL of cells suspension
were plated onto assay-ready plates at optimal or con-
sensus density (2000–3000 primary cells per well). In cell
lines, the entire panel was tested at 24 h and 72 h drug
exposure in duplicate as 7-point log dilutions, covering an
assay concentration range of 0.01 nM–10 µM. In primary
patient samples, cells were dispensed in assay titer plate
wells covering the same assay concentration range, fol-
lowing the priority list of the MMDP until cells are
depleted, and incubated for 24 h. Internal plate controls
(positive control: wells treated with 10 µM staurosporine;
negative control: 0.1% DMSO) were used for background
subtraction and data normalization.
Since the screening assay was designed to potentially

evolve as a clinically validated assay, no stromal layer was
added in these initial analyses given the standardization
difficulties. A 24 h readout was also preferred and vali-
dated given the known rapid demise of many primary
MM cells in culture.

Drug sensitivity data analysis
Dose-response curves were fitted in TIBCO Spotfire

v7.0.0 after outlier removal, and curve maxima fixed to
100%. Curves were characterized by activity metrics
including maximum response and half-maximal effective
concentration. A compound was considered active fol-
lowing an inhibition of cellular viability greater than 20%
for any given sample. The normalized area under the
curve (AUC) was adopted as a unique metric for drug
sensitivity. AUCs were calculated using the trapezoidal
method implemented in GraphPad Prism v7.0.5 and
normalized to negative controls. The normality of drug
AUC distributions was tested using D’Agostino-Pearson
omnibus method (GraphPad Prism v8). Differential sen-
sitivities were evaluated based on the AUCs among classes
of interest using the Mann–Whitney (2 variables) and
Kruskal–Wallis (3 variables) tests as implemented in
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GraphPad PRISM v7.0.5 and TIBCO Spotfire v7.0.0. All
p-values were not adjusted for multiple comparisons.
Hierarchical clustering was performed using R package
ComplexHeatmap (v1.99.5)33.

Mutation and gene-expression profiling
Total RNA and DNA from the primary patient samples

were isolated using the AllPrep DNA/RNA Kit (Qiagen
#80204). We sequenced the entire coding regions of 139
genes using a customized 2.3Mb SureSelect gene panel
(M3P), covering 139 genes recurrently mutated, belonging
to relevant pathways, consisting of actionable targets, or
belonging to pathways targeted by the most commonly
used drugs (PIs, IMiDs, and corticosteroids) in MM
(Supplemental Table 3)34–37. Samples were paired-end
sequenced (150 bp reads), using Illumina HiSeq
4000 sequencer with 24 samples assigned per lane of flow
cell. The average coverage depth was >1000X per
nucleotide, allowing the detection of mutations with
variant allelic reads (VAR) as low as 1%. Raw variants
were annotated using GATK variant annotator for variant
quality38, somatic mutations were called using MuTect2
in tumor-only mode39, and Biological Reference Reposi-
tory (BioR)40 for variant annotation with allele frequency
available in public databases and for variant deleterious-
ness prediction. To remove germline mutations, common
variants were eliminated based on the minor allele fre-
quencies (>0.01%) available in one of the following
germline variant databases: 1000 Genomes Project, ExAC
and ESP6500, unless present in known MM mutation
hotspots or in COSMIC. Additionally, we filtered out all
variants with less than 10 supportive reads or found in less
than 1% VAR.
A RNA-seq analysis workflow (MAP-RSeq41, v.3.0.1)

was internally developed and used to perform a compre-
hensive analysis of raw RNA sequencing paired-end reads,
which were aligned using a fast and splice-aware aligner
(STAR42, v.2.5.2b) to the human genome build hg38.
Quality control analysis was performed with RSeQC43

(v.3.0.0). Raw gene counts were quantified with Feature-
Counts44 from the Subread package (http://subread.
sourceforge.net/, v.1.5.1) and Transcripts Per Kilobase
Million (TPM) were calculated.

Results
Creation of a phase 0 drug screening platform
A “direct to drug” strategy for drug sensitivity profiling

was developed with a panel of 76 pre-screened small
molecules comprising FDA-approved, cancer clinical
trial, or biologically relevant emerging therapeutics.
Since primary MM cell numbers can be limiting, com-
pounds were rank-ordered for screening priority by
likelihood of being clinically useful. The sensitivity of
this MMDP was first profiled in a panel of 25 HMCLs

(Supplemental Table 4) and then in a population of 113
primary myeloma patient samples (Supplemental Table
5). MM specificity was assessed in 15 NHLCLs (Sup-
plemental Table 4). The baseline clinical, cytogenetic,
and mutational profiles of the patient cohort were col-
lected (Table 1).
A feasibility study determined that dose-dependent

efficacy could be reliably detected at 24 h with early
detection of subsequent drug response correctly predicted
in 93% of the panel (Fig. 1). In HMCLs, activities of only
five drugs (7% of the MMDP), including IMiDs (pomali-
domide and iberdomide), bleomycin sulfate, decitabine,
and alisertib, were latent at 24 h and emerged only at 72 h.
All other drugs demonstrably active at 72 h had discern-
able activity at 24 h. Fifteen drugs were inactive in HMCLs
at both 24 h and 72 h, including the negative control,

Table 1 Summary of clinical and cytogenetic
characteristics for the patient cohort.

Clinical/

cytogenetic

category

Total number

of evaluable

samples

Classes Number of

samples per

class (%)

Diagnosis 113 Multiple

myeloma (MM)

99 (87.6%)

Smoldering

MM (SMM)

14 (12.4%)

Disease status 113 Untreated 49 (43.4%)

Early relapse 16 (14.1%)

Later relapse 48 (42.5%)

Risk group

(mSMART 3.0)

96 (MM) Standard-risk 36 (37.5%)

High-risk (HR) 60 (62.5%)

60 (HR MM) Double hit HR

myeloma

17 (28.3%)

Triple hit HR

myeloma

5 (8.3%)

Cytogenetics—

karyotype

104 Diploid 38 (36.5%)

Hyperdiploid 61 (58.7%)

Hypodiploid 5 (4.8%)

Cytogenetics—

aberrations

110 t(11;14)/t(6;14) 30 (27.3%)

110 Trisomies 57 (51.8%)

110 t(4;14) 11 (10.0%)

110 Del 17p 10 (9.1%)

110 Gain(1q) 17 (15.5%)

110 Del 13q 38 (34.5%)

110 Monosomy 13 47 (42.7%)

110 MYC aberration 17 (15.5%)
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unmetabolized cyclophosphamide. Drug profiling results
presented herein are for the 24 h incubation time point
unless specified.

Specificity of the MM screening panel
In HMCLs, the PIs (bortezomib, ixazomib, and carfil-

zomib), cyclin-dependent kinase inhibitor (dinaciclib),
exportin 1 inhibitor (selinexor), the redox inhibitor aur-
anofin, and histone deacetylating agents (HDACs: romi-
depsin, panobinostat) had the broadest cytotoxicity. Drug
classes with more heterogeneous, but often deep, sensi-
tivities in individual samples included bromodomain
inhibitors, DNA synthesis inhibitors and kinase inhibitors
(KIs), as captured on the HMCL-sensitivity map (Fig. 2).
Among the differentially sensitive drugs, we noted novel
MM target classes, notably PIKfyve inhibitors, which were
active in over 90% of HMCLs. Data specifically focused on
PIKfyve inhibition in hematological malignancies has
been subsequently published45–47.
To evaluate specificity of the MMDP for MM versus

other hematological malignancies, the panel was counter-
screened in 15 NHLCLs. The chemosensitivities of drugs
tested across all 40 cell lines were analyzed using unsu-
pervised hierarchical clustering (UHC). Two dominant
groups were distinguished by NHLCLs and HMCLs,
respectively (Fig. 3a). Thirty-three agents (43% MMDP)
had AUCs >5% lower in HMCLs than in NHLCLs, indi-
cating an increased sensitivity in MM. Differential
response analysis between MM and NHL confirmed sta-
tistical significance for 26 of these compounds. Of these,

18 were kinase inhibitors targeting MAPK, PDGFRs,
EGFR, ALK, FLT3, AKT, and CDKs (Fig. 3b, Supple-
mental Table 6). PIs were more active in MM and B-cell
NHLCLs than in T-cell NHLCLs (Fig. 3c). The BCL-2
inhibitor venetoclax was more sensitive in HMCLs and B-
cell NHL than in T-cell NHL. Nine agents were more
responsive in NHLCLs than HMCLs (significant for five).
These included three HDAC inhibitors (vorinostat,
panobinostat, and romidepsin) that were highly effica-
cious in both NHL groups, yet more sensitive in T-cell
NHLCLs.

The landscape of patient-derived MM cell drug sensitivity
The MMDP was then profiled at 24 h exposure in 113

primary patient samples. Drugs were screened ex vivo by
MMDP priority order until cells were depleted, and an
average of 58 drugs (76% MMDP) was tested per sample.
The AUC distributions, both global and at the individual
drug levels, were more similar for cell lines in vitro and
primary samples ex vivo than we would have initially
predicted (Fig. 3d, e). Consistent with the HMCLs, 14
drugs were active in <10% of primary samples at 24 h.
These included iberdomide, ibrutinib, decitabine, erloti-
nib, tofacitinib, vismodegib, idasanutlin, vemurafenib,
nelarabine, lenvatinib, paclitaxel, nintedanib, enasidenib,
and unmetabolized cyclophosphamide. The most potent
drugs with >40% samples presenting with an EC50 below
100 nM were the three PIs (bortezomib, carfilzomib, and
ixazomib), selinexor, venetoclax, panobinostat, romi-
depsin, dinaciclib, and auranofin. Eighteen drugs were

Fig. 1 Validation of the 24 h time point in HMCLs. Plot of the sensitivity per drug at 24 h and 72 h drug incubation time points. Sensitivity is
captured by the median AUC per drug, per time point (diamond for 24 h, triangle for 72 h). Drugs are rank-ordered by increasing sensitivity from left
to right, and activity classes annotated under the plot. Counts of the number of drugs per class are indicated in parentheses. Except for the latent
class, early detection of drug response at 24 h is found for 71/76 drugs in the panel (93%).
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Fig. 2 Heatmap of the drug sensitivities by unsupervised hierarchical clustering for the 25 HMCLs. The top section (resistant) includes the
drugs that are mostly inactive in HMCLs. These include decitabine, tofacitinib, vismodegib, vemurafenib, idasanutlin, nelarabine, lenvatinib,
fludarabine, and ruxolitinib. The bottom section (sensitive) includes broadly cytotoxic and very potent drugs in HMCLs, including proteasome
inhibitors, dinaciclib, venetoclax, HDAC inhibitors, selinexor, ALK inhibitors, and some RTK inhibitors. The center area (differential) includes rapalogues,
bromodomain inhibitors, MAPK inhibitors, some inhibitors of RTKs including FLT3, and PIKfyve inhibitors.
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active (albeit often at higher concentrations) in over 80%
of primary samples tested, including the PIs, selinexor,
venetoclax, HDAC inhibitors (panobinostat, romidepsin,

belinostat), arsenic trioxide, auranofin, and eight KIs
(dinaciclib, afuresertib, buparlisib, ceritinib, crizotinib,
crenolanib, ponatinib, and osimertinib).

Fig. 3 Drug sensitivity profiling in HMCLs and NHLCLs highlights MM specificity of the MMDP and high similarity of drug sensitivity
landscapes in HMCLs and in MM primary samples. a Hierarchical clustering analysis of drug sensitivities (AUCs) identifies two dominant cell line
clusters (column clusters A and B) defining seven major drug subgroups (row clusters 1–7). Individual drug sensitivity distributions are inserted as box
plots on the right side of the heatmap. The heatmap shows that for most drug classes except the broadly cytotoxic ones (row clusters 6 and 9), the
MMDP drugs are overall more sensitive in MM than in NHL. b Scatter plot of the drug sensitivity (AUC) by cell line subgroup; horizontal bars represent
the median AUC. The ALK inhibitor ceritinib, the AKT inhibitor afuresertib, and the PDGFR/FLT3 inhibitor crenolanib are highly sensitive in HMCLs
while they are poorly sensitive in NHLCLs. The dataset of all drugs with significant differential sensitivity in HMCLs versus NHLCLs is provided in
Supplemental Table 6. c Scatter plot of the drug sensitivity (AUC) by cell type; horizontal bars represent the median AUC. The PIs bortezomib and
carfilzomib were more sensitive in plasma cell (HMCLs) than in T-cell NHLCLs but less than in B-cell NHLCLs; Ixazomib was more specific to MM
overall. d AUC density plots using Gaussian kernel for HMCLs (red) and 99 primary samples in our cohort with MM diagnosis (MMPT, cyan). AUCs fall
in the 0~1.0 interval for the most, and distributions are consistent with each other for both sample types, which may imply that the drugs perform
similarly on myeloma primary patient samples as they do on the cell lines. e Comparative plot of the interquartile range per drug in HMCLs (left) and
MMPTs (right); circles represent the median AUC for each drug, while right and left triangles indicate the value of their first and third quartiles,
respectively. Drugs are rank-ordered from top to bottom by increasing median AUC value in HMCLs, i.e., by decreasing sensitivity. The ex vivo
sensitivity by drug follows the trends observed in vitro, with interquartile ranges slightly broader in primary samples. While this can partly originate
from a higher intrinsic ex vivo assay noise and higher heterogeneity of primary samples as compared to cell lines, this can also importantly pinpoint
shifts in differential responses associated with cytogenetic aberrations and occurrence of mutations. Two such cases are highlighted on the plot with
red stars for idelalisib and bleomycin, for which our statistical analysis demonstrated that sensitivity of primary patients to these drugs is higher in
presence of IDH mutations.
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For PIs specifically, primary patient samples were more
sensitive to carfilzomib (median EC50 0.92 nM; median
maximum response 85.76%) than to bortezomib and
ixazomib (median EC50 10.19 nM and 95.32 nM; median
maximum response 79.89% and 79.00%, respectively). A
deep response for carfilzomib, with EC50 < 10 nM and
maximum response >80%, was observed for 72% of
samples, a number that drops to 21% for bortezomib.
Additionally, 51% of samples had partial bortezomib
response (<80% inhibition), as compared to 17% for car-
filzomib. Ixazomib was the least active PI with all EC50s >
100 nM, 13% of which were in micromolar range, as
compared to 5% for bortezomib and none for carfilzomib.
Another commonly employed agent, dexamethasone, was
tested in 89 samples. Of these, 24 showed response with
efficacies at <10 nM and variable response depths (%
cellular inhibition) ranging from 20 to 60% (n= 18) to
>60% (n= 6). Overall dexamethasone sensitivity dis-
tributions at 24 h exposure were similar in HMCLs and
primary samples, thus our 24 h assay results collectively
indicate that our platform could identify highly sensitive
responders to dexamethasone.

Phenotypic correlation with ex vivo sensitivity
Baseline profiles were abstracted, creating a compen-

dium inclusive of clinical disease status, risk groups, and
chromosomal aberrations for each patient (Supplemental
Table 7). Mutations were captured for 73 primary samples
in which DNA was available (Supplemental Table 8). Six
patients lacked mutations in the studied genes, while 67
cases (92%) had an average of three mutations each. The
most frequently mutated genes per sample were: KRAS
(36%), NRAS (22%), ATM (18%), ZFHX4 (14%), TP53
(12%), FAM46C (12%), DIS3 (11%), BRAF (10%), IRF4
(7%), and CUL4B (5%).
For each panel drug, a global analysis of differential drug

sensitivity demonstrated significant patterns of enhanced
or reduced sensitivity linked to clinical groups, and pre-
sence/absence of chromosomal aberrations and mutations
(Fig. 4a, Supplemental Table 9).
First, we noted that active MM samples were sig-

nificantly more sensitive than smoldering MM (SMM)
samples to all studied HDAC inhibitors, selinexor, the
signal transduction inhibitors targeting ALK (ceritinib),
MAPK (cobimetinib, trametinib), CDKs (dinaciclib),
RTKs (sunitinib, ponatinib), and AKT (afuresertib).
Second, we determined that later relapse MM samples,

defined as >2 relapses, appeared more sensitive than
untreated disease to kinase inhibition across all classes
represented in the panel (26/40 inhibitors), to selinexor
and four of the DNA synthesis inhibitors. Venetoclax and
bromodomain inhibitors were more potent in standard
genetic risk MM, while selinexor was more potent in high
genetic risk MM samples.

Finally, differential drug response across cytogenetic
classes revealed significant sensitivity changes based on
the presence of genetic aberrations, including higher
sensitivity of venetoclax in t(11;14), described in detail
below. CDK inhibitors (dinaciclib and palbociclib) and
DNA synthesis inhibitors (cladribine and clofarabine) had
stronger efficacy in samples with 17p deletion48. Double
hit MM samples had lower sensitivity than single hit,
high-risk samples to cabozantinib, pazopanib, ponatinib,
and vorinostat, while triple hit MM samples appeared
exquisitely sensitive to seven KIs, CPI0610, and raloxifene
(Fig. 4b).
We also examined the associations between drug sen-

sitivity and mutational profiles. For statistical significance,
our analysis was restricted to the 25 genes with mutations
in three or more patient samples. Mutations of ACTG1,
BRAF, NRAS, KRAS, TGFBR2, and ATM genes appeared
detrimental to overall sensitivity while mutations of IDH2,
IRF4, and TLR4 led to favorable chemosensitivity changes
(Fig. 4c), as compared to the non-mutated samples in each
class. Notably IRF4 mutation has previously been asso-
ciated with good clinical outcomes, an observation that
lends credence to our findings.

Drug sensitivity confirms venetoclax contextual sensitivity
As a “proof of concept” validation of the panel’s

potential clinical utility, cellular efficacy of single agent
venetoclax was first measured in 25 HMCLs. After 24 h
drug incubation, 92% of HMCLs demonstrated dose-
dependent response to the drug, with mid-point EC50

ranging from <0.1 to >10000 nM and AUCs varying
widely from 0.03214 to 0.9187. Twenty-two HMCLs had
known IgH translocations, four of which harbored a
t(11;14). Significant differential activity profile was
demonstrated between HMCLs harboring t(11;14) (4
HMCLs; median AUC 0.1153) and lacking t(11;14) (18
HMCLs; median AUC 0.5499) (p= 0.0074).
Venetoclax sensitivity was then measured in 113 pri-

mary patient samples, 28 of whom harbored a t(11;14) and
64 of whom were relapsed patients that had received a
median of three therapies (range 1–15) prior to the
ex vivo drug screen. As seen with HMCLs, most samples
(93%) exhibited a dose-dependent response to the drug; a
broad mid-point EC50 range was observed (<0.1 to
>10000 nM) and AUCs varied from 0.03584 to 0.9327.
The global potential of venetoclax in MM was demon-
strable with 49% of patient samples exhibiting efficacies
<100 nM and only 7% of samples classified as completely
inactive (Fig. 5a).
Clinical features, including disease status and cytoge-

netics, were associated with ex vivo venetoclax sensitivity
(Fig. 5a). As expected, samples from patients harboring
t(11;14) had increased ex vivo sensitivity to the drug when
compared to patients lacking the translocation (Fig. 5b).

Bonolo de Campos et al. Blood Cancer Journal           (2020) 10:54 Page 7 of 16

Blood Cancer Journal



Fig. 4 Clinical stratification, genetic aberrations, and mutational status modulate sensitivity to MMDP agents in MM. a Differential sensitivity
heatmap of the statistically significant associations between drugs and clinical stratification, chromosomal aberration status, and mutational profiles.
Red indicates gain of sensitivity in the class under consideration (versus reference or absence of aberration), while blue indicates a loss of sensitivity.
The more intense the color, the larger the sensitivity difference. Data are reported for all differential activities with statistical significance (p < 0.05);
numerical data and individual box plots are provided in Supplemental Table 9. Signal transduction inhibitors targeting ALK, MAPK, PI3K/AKT, CDKs,
and RTKs, as well as HDAC inhibitors and selinexor, had enhanced sensitivity in MM as compared to SMM. KIs across all classes, DNA synthesis
inhibitors, and selinexor were more sensitive in later relapse MM samples while venetoclax was more sensitive in untreated samples. Venetoclax,
crizotinib, cabozantinib, vorinostat, and bromodomain inhibitors were less responsive in high-risk MM than in standard risk, while selinexor and
dinaciclib had increased sensitivity for high-risk samples. b Histogram of differential drug sensitivity (difference of mean AUC between present/absent
classes) for double hit high-risk samples (blue) and triple hit high-risk samples (red). Positive values indicate a lower sensitivity while negative values
reflect a higher sensitivity in the hit class as compared to high risk (no hit). Double hit high risk is generally associated with drug resistance while triple
hit high risk favors drug sensitivity. c Volcano plot of the differential drug sensitivity (difference of mean AUC between present/absent classes) for
ATM, IRF4, and TLR4 genes. Positive values indicate a lower sensitivity, while negative values reflect a higher sensitivity in the mutated class as
compared to non-mutated class. Drugs with p < 0.05 are labeled on the plot. Mutations in ATM were overall detrimental to sensitivity while mutations
in IRF4, and TLR4 were overall favorable to sensitivity. A loss of sensitivity of BET inhibitors CPI0610 and otx-015 was observed in presence of
mutations of DNA damage repair associated ATM gene. Inversely, mutations of IRF4 and TLR4 genes associated with a broad increase in sensitivity
across multiple drug classes involving signal transduction through receptor and non-receptor kinases. Indeed, samples harboring IRF4 mutations,
which have previously been linked to better prognosis were exquisitely sensitive to ALK inhibitors ceritinib and crizotinib as well as 3 out of the 5
tested MAPK inhibitors (cobimetinib, dabrafenib, and doramapimod). When compared to non-mutated samples, samples with TLR4 mutations had
better sensitivity to all three tested ALK inhibitors as well as 4 out of 5 PI3K/mTOR inhibitors.
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Fig. 5 Venetoclax sensitivity in 113 MM ex vivo primary patient samples. a Heatmap showing cellular efficacy of single agent venetoclax
response following a 24 h drug exposure in 113 primary patient samples rank-ordered by drug sensitivity, associated to clinical data including
diagnosis, MM disease status, mSMART 3.0 risk group classification for active MM, flow cytometry S-Phase analysis, and FISH cytogenetics. Missing
data are colored in gray. b–h Plots of venetoclax differential sensitivity by class showing: b increased ex vivo sensitivity of venetoclax in presence of t
(11;14) (n= 28; median AUC 0.1491) when compared to samples lacking the translocation (n= 82; median AUC 0.3644) (Mann–Whitney test; p=
0.0013); c increased ex vivo sensitivity to venetoclax associated to newly diagnosed MM (n= 35; median AUC 0.1977) when compared to relapsed
MM (n= 64; median AUC 0.4025) (Mann–Whitney test; p= 0.0041); d increased ex vivo sensitivity to venetoclax associated to standard risk (n= 36;
median AUC 0.2324) when compared to high risk (n= 60; median AUC 0.4025) (Mann–Whitney test; p= 0.0199); e increased ex vivo sensitivity to
venetoclax associated to low plasma cell S-Phase (n= 65; median AUC 0.2697) when compared to high S-Phase (n= 31; median AUC 0.4353)
(Mann–Whitney test; p= 0.0035); f increased ex vivo sensitivity to venetoclax associated to samples lacking Gain(1q) (n= 63; median AUC 0.2788)
when compared to samples with Gain(1q) (n= 47; median AUC 0.4047) (Mann–Whitney test; p= 0.0383); g increased ex vivo sensitivity to venetoclax
associated to samples lacking t(4;14) (n= 99; median AUC 0.3070) when compared to samples harboring the translocation (n= 11 samples; median
AUC 0.5514) (Mann–Whitney test; p= 0.01); h a trend towards significance with MYC rearrangements associated to lower venetoclax sensitivity (n=
17; median AUC 0.4940) when compared to samples without rearrangements (n= 93; median AUC 0.3238) (Mann–Whitney test; p= 0.0658).
i–j Transcriptomic ratios of anti-apoptotic BCL-2 family members, showing: i BCL2 expression was significantly increased in the lower quartile
(responders) when compared to the upper quartile (non-responders) (t-test, p= 0.0036), with a significant difference in BCL2/MCL1 ratio
(Mann–Whitney test; p= 0.0019) and BCL2/BCL2L1 ratio (Mann–Whitney test; p= 0.0106) between the two groups. j Ex vivo venetoclax response
distinguished responders and non-responders in samples harboring t(11;14). BCL2 expression was also significantly increased in the t(11;14)
responders (t-test, p= 0. 0.0379) when compared to the t(11;14) non-responders. Increased BCL2/MCL1 and BCL2/BCL2L1 ratios were associated with
the responders; however, statistical significance was not reached likely due to the relative low number of samples in each subgroup.

Bonolo de Campos et al. Blood Cancer Journal           (2020) 10:54 Page 9 of 16

Blood Cancer Journal



The two samples from patients harboring t(6;14) (which
also upregulates a cyclin protein) also demonstrated
exquisite sensitivity to venetoclax, with mid-point EC50 of
47.1 nM and 50.5 nM and AUCs of 0.2806 and 0.2513,
respectively.
Increased ex vivo sensitivity to venetoclax was demon-

strated in newly diagnosed MM samples when compared
to relapsed MM (Fig. 5c), and in standard risk when
compared to high risk (Fig. 5d). Other cytogenetic char-
acteristics associated with increased venetoclax sensitivity
were low plasma cell S-Phase (Fig. 5e); samples lacking
Gain(1q) (Fig. 5f); and samples lacking t(4;14) (Fig. 5g).
Finally, there was a trend towards significance with MYC
rearrangements associated with decreased venetoclax
sensitivity (Fig. 5h).
In acute myelogenous leukemia (AML), IDH1/2 muta-

tions causing BCL2 dependence related to venetoclax
sensitivity has been reported49. In our study, three
patients harboring IDH mutations exhibited profound
venetoclax sensitivity, i.e., one patient sample with an
IDH1 mutation had an AUC of 0.0979, and two patients
with IDH2 mutations had AUCs of 0.0358 and 0.3200.
Finally, samples with DIS3 mutations trended to nega-
tively associate with venetoclax response (9 samples; AUC
0.4539) when compared to samples without mutation
(63 samples; AUC 0.307) (p= 0.0628).
We next investigated the predictive value of anti-

apoptotic BCL2 family member transcriptomic ratios as
biomarkers of venetoclax sensitivity. RNA-seq analysis
was available in 38 of the 99 MM primary patient samples.
We first selected the nine most (median AUC 0.09409)
and least (median AUC 0.7195) sensitive samples to
venetoclax. Overall BCL2 expression was significantly
increased in responders when compared to non-
responders. In addition, non-responders had an
increased BCL2L1 and MCL1 expression, leading to a
significant difference in BCL2/MCL1 and BCL2/BCL2L1
ratios between the responder and non-responder groups
(Fig. 5i).
Although the presence of t(11;14) was significantly

associated with venetoclax sensitivity, there were outlier
samples harboring t(11;14) that were poorly responsive
(Fig. 5b). Therefore, we further evaluated the BCL2 family
transcriptomic ratios in seven t(11;14) samples. The
responders had a significantly increased BCL2 expression
and decreased BCL2L1 and MCL1 expression when
compared to non-responders, resulting in increased
BCL2/MCL1 and BCL2/BCL2L1 ratios (Fig. 5j).

Clinical outcomes highlight potential clinical utility
Two relapsed MM patients harboring t(11;14) and

one hyperdiploid patient were treated with venetoclax
immediately after the drug screen. The hyperdiploid
patient was most interesting. This patient was in fifth

relapse, with previous treatment protocols including
lenalidomide, pomalidomide, bortezomib, carfilzomib,
and daratumumab. Unexpectedly, given the lack of
t(11;14), venetoclax was the most potent agent within
the screen (AUC of 0.3277). The patient was treated
with venetoclax, achieving a partial response that lasted
for ten months. This case exemplifies the significant
clinical impact that ex vivo drug screening can have for
drug selection and clinical outcome, especially in
advanced stage of disease with limited therapeutic
options.
Although the ex vivo screen results in t(11;14) patients

predicted only moderate sensitivity, with AUCs of 0.3380
and 0.3575 (at the 53rd and 57th percentile of venetoclax
sensitivity distribution in the studied population) both
had a partial response to combination therapy. One
patient had relapsed for the second time and was treated
with venetoclax and dexamethasone. The other had
relapsed for the eighth time and was treated with the
combination of venetoclax, carfilzomib, and dex-
amethasone, which was considered not evaluable for
single agent response.

Selinexor sensitivity is higher in poor prognosis patients
In another deep dive to examine the recently FDA-

approved drug selinexor, we explored additional
potential predictive biomarkers of response to this drug.
While 90% of the 113 primary patient samples exhibited
dose-dependent response to selinexor, characterized by
broad EC50 ranges (<1 to >10000 nM), 55% of samples
had efficacies <100 nM, with poor prognosis clinical
characteristics associated with increased selinexor
response (Fig. 6a). SMM samples were less sensitive to
selinexor when compared to MM samples (Fig. 6b),
while later relapse MM samples were significantly more
sensitive than first relapse samples (Fig. 6c). Increased
sensitivity was also found in samples from high-risk
patient samples (Fig. 6d) and high plasma cell S-Phase
(Fig. 6e). We also noted a trend towards significance
indicative of increased selinexor sensitivity in samples
harboring t(4;14) (Fig. 6f) or 17p deletion (Fig. 6g).
Finally, selinexor sensitivity was higher in samples with
TP53 or ZFHX4 mutations (Fig. 6h, i), known to nega-
tively impact MM50.

Ex vivo profiling identifies patterns of drug sensitivity
To further identify more subtle drug response patterns,

an ex vivo data subset from 68 primary samples tested
against 70 MMDP agents (without missing data) was
examined by clustering analysis. As shown in Fig. 7a, six
response groups were delineated (A–F) based on drug
sensitivity profile similarities across patient samples. Dif-
ferential chemosensitivity analysis by groups showed that
samples in group A had exquisite sensitivity to selinexor
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(Fig. 7b) while concomitantly having the lowest sensitivity
to venetoclax (Fig. 7c). This patient subpopulation was
enriched with later relapse MM samples, with high-risk
genomic abnormalities including t(4;14) (n= 4) and/or
Gain(1q) (n= 4), i.e., poor prognosis factors which we had
associated with increased selinexor sensitivity but were
detrimental to venetoclax sensitivity. Differential chemo-
sensitivity profiles are further shown in Fig. 8. These
promising results suggest that as our sample numbers
increase and additional multi-omics are integrated, sub-
populations of outstanding or poor responders and their
contextual vulnerabilities could be isolated by this
platform.

Discussion
Advances in screening technology and clinical availability

of a large arsenal of oncology drugs have enabled “direct to
drug” screening as a route to individualized therapy for
MM. To this end, we have assembled a comprehensive
database of in vitro and ex vivo sensitivities in cell lines and
patient primary cells each exposed to the MMDP, a panel of
select oncology drugs with MM significance. Additionally,
for each patient sample, a baseline clinical dataset was
collected, incorporating clinical demographics, genetic
subtype, disease staging, and prior drug exposure. DNA
mutation and RNA expression profiles were acquired for
each patient tumor sample where material was available.

Fig. 6 Selinexor sensitivity in 113 MM ex vivo primary patient samples. a Heatmap showing cellular efficacy of single agent selinexor response
following a 24 h drug exposure in 113 primary patient samples rank-ordered by drug sensitivity, associated to clinical data including diagnosis, MM
disease status, mSMART 3.0 risk group classification for active MM, flow cytometry S-Phase analysis, FISH cytogenetics, and TP53 and ZFHX4 mutation
status. Missing data are colored in grey. b–i Plots of selinexor differential sensitivity by class showing: b increased ex vivo sensitivity to selinexor
associated to samples from patients with MM (n= 99; median AUC 0.4198) when compared to patients with SMM (n= 14; median AUC 0.6029)
(Mann–Whitney test; p < 0.0001); c a trend towards statistical significance of increased ex vivo sensitivity to selinexor associated to relapsed MM (1st
and ≥2 relapsed groups combined; n= 64; median AUC 0.3844) when compared to newly diagnosed MM (n= 35; median AUC 0.4570)
(Mann–Whitney test; p= 0.0647) and a significant increase in sensitivity in patients at a second or further relapse (n= 48; median AUC 0.3518) when
compared to the first relapse (n= 16; median AUC 0.4974) (Mann–Whitney test; p= 0.0046); d increased ex vivo sensitivity to selinexor associated to
high mSMART risk (n= 60; median AUC 0.3804) when compared to standard risk (n= 36; median AUC 0.4573) (Mann–Whitney test; p= 0.0289); e
increased ex vivo sensitivity to selinexor associated to high plasma cell S-Phase (n= 31; median AUC 0.3840) when compared to low S-Phase (n= 65;
median AUC 0.4738) (Mann–Whitney test; p= 0.0305); f a trend towards statistical significance of increased ex vivo sensitivity to selinexor associated
to samples harboring t(4;14) (n= 11; median AUC 0.2796) when compared to samples lacking the translocation (n= 99; median AUC 0.4465)
(Mann–Whitney test; p= 0.0676) or g in samples presenting a 17p deletion (n= 17; median AUC 0.3542) when compared to samples without the
deletion (n= 93; median AUC 0.4559) (Mann–Whitney test; p= 0.0883); h increased ex vivo sensitivity to selinexor associated to samples with TP53
mutations (n= 9; median AUC 0.2814) when compared to samples without the mutation (n= 64; median AUC 0.4480) (Mann–Whitney test; p=
0.0212); i increased ex vivo sensitivity to selinexor associated to ZFHX4 mutations (n= 10; median AUC 0.2527) when compared to samples without
the mutation (n= 63; median AUC 0.4475) (Mann–Whitney test; p= 0.0197).
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To minimize loss of clonal plasma cell populations
over time and enable clinical implementation, we
developed a rapid screening platform to measure
ex vivo sensitivity of the MMDP in CD138+MM

primary cells with 24 h drug exposure. Our in vitro
and ex vivo data were highly concordant, detecting
dose-dependent drug sensitivity for 93% of the MMDP
drugs.

Fig. 7 (See legend on next page.)
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We acknowledge that primary MM cells would likely
prove generally less sensitive in the presence of adherent
marrow stroma but believe that the overall validating
conclusion, e.g., with respect to venetoclax, proteasome
inhibition, selinexor, and IDH mutation, compellingly
highlights the utility and knowledge gained from the assay
even without stromal elements. Indeed the system was
designed with clinical utility in mind; with short turn-
around time, this approach is appealing to routine clinical
practice whereas standardizing a stromal microenviron-
ment for quality-controlled, reproducible clinical utility
would be challenging, if not impossible. Our current
screening system was also not able to incorporate
immune therapies, such as monoclonal antibodies and
checkpoint inhibitors, which have shown promising anti-
MM activity18,51. While the bone marrow microenviron-
ment was not captured in our assay, patterns of sensitivity,
as seen for PIs, dexamethasone, venetoclax, and selinexor,
validated the potential clinical utility even without artifi-
cial support systems. However, drugs requiring longer
incubation times, including notably the IMiDs, were
generally not interpretable at 24 h. A parallel 72 h or 96 h
ex vivo assay was recently deployed for these drugs;
however, currently an insufficient number of samples
studied under these conditions were available for inclu-
sion and will be reported later. By contrasting the MMDP
sensitivities in HMCLs versus NHLCLs, we noted that
43% of the drugs had discernible differences in sensitivity
between MM and lymphoma but the highest MM speci-
ficity was observed for signal transduction KIs.
By linking our ex vivo drug sensitivity data to clinical,

cytogenetic, and mutational profiles, our study provided
further insights into contextual sensitivities that may be
revealing of MM vulnerabilities and could point to novel
opportunities for future drug development. For example,
in the case of IRF4 mutations, known to associate with a

favorable overall survival50, increased sensitivity to MAPK
and ALK inhibitors was prominent. We also found that
targeting cell cycle with CDK and DNA synthesis inhibi-
tors may be advantageous for samples harboring 17p
deletions.
Furthermore, our deeper look into venetoclax

responses indicated an increased sensitivity in MM
patients classified as newly diagnosed, standard risk,
with low plasma cell S-Phase, harboring t(11;14), and
lacking Gain(1q) or t(4;14). Ex vivo functional testing as
an alternative approach to predict clinical response to
venetoclax had been previously reported52. Our data
added depth to previous reports of BCL2 family profiles
as a paramount predictor of response to venetoclax53–55,
supporting BCL2 expression, BCL2/MCL1, and BCL2/
BCL2L1 transcriptomic ratios as crucial determinants of
ex vivo response. Our results additionally highlighted
less common non-t(11;14) tumors with sensitivity,
which was confirmed in at least one patient through
clinical study, strengthening the rationale for an
evidence-based therapeutic approach integrating ex vivo
and genomic primary sample profiling to guide ther-
apeutic selection for MM.
Our platform also revealed contextual sensitivities for

the exportin 1 inhibitor selinexor. Although the drug has
shown notable activity, including in penta-refractory MM
cases, its reported adverse effect profile may be clinically
limiting56–60. Therefore, “direct-to-drug” strategies for
patient selection may avoid unnecessary toxicity in
patients unlikely to benefit and potentially retain sensi-
tivity at lower doses in highly sensitive responders.
Increased sensitivity was identified in samples with spe-
cific biomarkers of poor prognosis, supporting the use of
selinexor in heavily pretreated MM patients.
Hierarchical clustering highlighted six patient sub-

populations with distinct drug sensitivity patterns, one

(see figure on previous page)
Fig. 7 Ex vivo drug sensitivity profiles of 70 drugs in 68 patient samples define sample subgroups with differential chemosensitivity and
illuminate contextual susceptibilities to MM drugs. a Unsupervised hierarchical clustering analysis of drug sensitivities measured by AUCs
identified nine drug clusters (rows) defining six major patient clusters (columns, A–F). Group A was sensitive to the most drug classes (mean AUC(A)
0.5697). Groups D and E had intermediate sensitivity (mean AUC(D) 0.6409; mean AUC(E) 0.6761) with very similar chemosensitivity profiles, followed
by group F (mean AUC(F) 0.7301). Clusters B and C were the most drug resistant (mean AUC(C) 0.7881; mean AUC(B) 0.8209). The clinical profile,
cytogenetic classification, and mutational profile by sample group are annotated above the heatmap and summarized in Supplemental Table 10.
Row cluster 1 is enriched in HDAC inhibitors. Row cluster 3 isolated venetoclax as a singleton, revealing the unique drug sensitivity profile of this
drug. PIs were grouped in row cluster 4. Row clusters 2, 5, 6, and 9 contained kinase inhibitors targeting ALK, MAPK, EGFR, and PI3K/mTOR, which had
enhanced sensitivity in group A as compared to resistant groups B and C. Group A was also more sensitive to DNA synthesis inhibitors and was
enriched by later relapse MM samples characterized also by high risk genomic abnormalities including t(4;14) and/or gain of chromosome 1q. The
most resistant groups B and C in contrast were enriched for untreated or early relapse samples with high risk stratification. They primarily differed
from each other by t(11;14) status (Mann–Whitney test; p= 0.0132) and sensitivity to PIs. HDAC inhibitors and select KIs also had differential
chemosensitivity profiles between these two resistant groups (Fig. 8). The three intermediate sensitivity groups (clusters D, E, and F) retained
sensitivity to ALK inhibitors and BET inhibitors lost in resistant groups B and C (row cluster 6). (B-C) Box plots of the drug sensitivity (AUCs) by sample
subgroup, showing: b Differential sensitivity of selinexor by sample group, with exquisite selinexor sensitivity of samples in cluster A as compared to
resistant groups B and C, and to intermediate groups E and F; c Differential sensitivity of venetoclax by sample group, with group A trending as the
least sensitive of all.
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of which was enriched in relapsed samples with genetic
aberrations reflective of poor prognosis, including
t(4;14) and Gain(1q). These samples had the highest
selinexor sensitivity and the lowest venetoclax sensi-
tivity. This patient subpopulation was also con-
comitantly sensitive to DNA synthesis inhibitors and
signal transduction inhibitors targeting various kinases
including MAPK. These results corroborate a previous
report, who postulated that these susceptibilities could
point to escape routes for MM survival in refractory
disease26.

We have initiated a chemogenomic resource capturing
nascent associations between clinical and genomic MM
profiles and their susceptibility to drugs with clinical
utility in MM. As the resource grows, we anticipate that
the mosaic of drug sensitivity and associated clinical
phenotypes will fuel a personalized medicine engine,
which will produce novel targets, novel combinations,
novel use cases, and a valuable database for drug devel-
opers to access for potential development of clinical
biomarkers of response. This work also lays the founda-
tion for future clinical trials exploring this approach.

Fig. 8 Volcano plots of the differential drug sensitivity between UHC groups. Volcano plots identify drugs with differential sensitivity between
patient subpopulations (mean AUC difference between two classes). The upper panel identifies drugs, which are more sensitive in resistant group B
than C (left) and inversely more sensitive in group C than B (right); the bottom panel provides the same analysis for groups D versus E. Drug
annotation is provided in Supplemental Table 1. Group B has significantly higher sensitivity to HDAC inhibitors, while group C has higher sensitivity
than B to agents inhibiting PI3K/mTOR, cell cycle, and the proteasome. Group D is more sensitive than E to dexamethasone, HDAC inhibitors, PI3K/
mTOR inhibitors, and to agents targeting MAPK and EGFR, while group E is more sensitive than D to melphalan.
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