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Abstract
The clinical risk stratification of diffuse large B-cell lymphoma (DLBCL) relies on the International Prognostic Index (IPI)
for the identification of high-risk disease. Recent studies suggest that the immune microenvironment plays a role in
treatment response prediction and survival in DLBCL. This study developed a risk prediction model and evaluated the
model’s biological implications in association with the estimated profiles of immune infiltration. Gene-expression
profiling of 718 patients with DLBCL was done, for which RNA sequencing data and clinical covariates were obtained
from Reddy et al. (2017). Using unsupervised and supervised machine learning methods to identify survival-associated
gene signatures, a multivariable model of survival was constructed. Tumor-infiltrating immune cell compositions were
enumerated using CIBERSORT deconvolution analysis. A four gene-signature-based score was developed that
separated patients into high- and low-risk groups. The combination of the gene-expression-based score with the IPI
improved the discrimination on the validation and complete sets. The gene signatures were successfully validated
with the deconvolution output. Correlating the deconvolution findings with the gene signatures and risk score, CD8+
T-cells and naïve CD4+ T-cells were associated with favorable prognosis. By analyzing the gene-expression data with a
systematic approach, a risk prediction model that outperforms the existing risk assessment methods was developed
and validated.

Introduction
Diffuse large B-cell lymphoma (DLBCL) is the most

common lymphoma in the United States, accounting for
about one-third of adult cases of non-Hodgkin’s lym-
phoma1. Despite the high cure rates for DLBCL, outcomes
remain varied in part due to heterogeneity in the disease
at the clinical, pathological, and molecular
levels2–5. The clinical risk stratification of DLBCL patients
is currently assessed by the International Prognostic Index

(IPI) scoring system, which was developed more than two
decades ago and utilizes five clinical factors: age, perfor-
mance status, stage, number of extranodal sites, and
serum lactate dehydrogenase (LDH)6. However, IPI is
sub-optimal in its identification of high-risk DLBCL
patients as it does not differentiate low-risk and high-risk
stratification groups, especially when considering
response to first-line therapy7. To develop individualized
treatment strategies, increasing efforts have been directed
toward identifying prognostic factors for accurate risk
stratification of patients with DLBCL2,8,9. Strategies
involving mutation analyses and gene-expression profiling
have been employed to subtype the malignant cells in the
tumor. In particular, activated B-cell-like DLBCL and
germinal center B-cell-like DLBCL, and subgroup clusters
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defined by tumor sequencing have been shown to carry
prognostic significance10.
Emerging evidence highlights the important role of

tumor microenvironment (TME) in cancer initiation,
metastasis, progression, and response to therapeutic
agents11–13. In hematological cancers, malignant cells may
participate as part of the dysregulated immune milieu
through altered secretion of those cytokines that normally
keep proliferation in check. Understanding the types and
roles of immune cells in the TME is therefore key to
develop strategies aimed at targeting the tumor and
improving patient outcomes. The immune response to
cancer is characterized by numerous tumor-infiltrating
immune cells which interact with each other. Novel
therapies like anti-CD19 chimeric antigen receptor (CAR)
T-cells and NK (natural killer) cells have taken advantage
of this immune response to provide new treatment
options for patients with relapsed DLBCL14–16. Char-
acterization of the TME in previously untreated DLBCL
could offer important insights into the complex rela-
tionship between certain immune cell types, paving the
way for a more personalized approach to treatment
planning in DLBCL.
Recently developed computational methods to estimate

the relative proportions of immune cell types using gene-
expression data profiled from tissues such as bulk tumors
can aid in this effort17. CIBERSORT is a deconvolution
approach that has been shown to outperform other
existing methods in resolving closely related cell subsets,
unknown mixture content, and noise18. In this study, we
propose a comprehensive statistical framework designed
to identify the best-performing prognostic model for the
personalized risk prediction of DLBCL patients using
genetic and clinical features from a large RNA-seq data-
set. CIBERSORT was applied to profile the diversity and
landscape of tumor-infiltrating immune cells in DLBCL
and evaluate the relationship between immune cell
populations and prognostic outcomes.

Methods
RNA-sequencing data analysis
The data from 775 preprocessed and aligned tumor

RNA-seq transcriptomes published by Reddy et al.2 was
used. RNA-seq data was collected from the fresh-frozen
paraffin-embedded tumor block collected prior to initia-
tion on a rituximab-containing standard regimen. Aligned
read counts were subsequently summarized and quanti-
fied using featureCounts program19. The built-in human
gene annotation of featureCounts was used as a reference
genome assembly. Exons were grouped into genes and the
read summarization was performed at the gene level. The
quantification was not strand specific and paired ends
were excluded from the quantification. The default
method (union) was kept, which selects the gene with the

strongest overlap if two genes are associated with a read.
Gene IDs were annotated to gene symbols using
MyGene20. Gene IDs without an associated symbol were
removed from further analysis. Duplicate gene symbol
entries were also filtered, favoring to keep the entry with
the greatest read strength.
To reduce the potentially adverse effects of noise in

statistical analyses, 35 samples with expression of fewer
than 12,000 genes was omitted; 22 samples with unknown
survival and censoring was also omitted. The remaining
718 patient cases were designated as the core set for the
statistical analyses. Gene-expression measurements were
normalized using the Trimmed Mean of M-values nor-
malization method of edgeR package and the data was
log2 normalized21. Differential expression analysis was
performed with edgeR. To determine deferentially
expressed genes, genes were identified according to a p-
value cut-off of 5% and then applied a fold-change cut-off
of 50% and then were selected. To interpret the differ-
ential expression results in biological context, gene
ontology (GO) enrichment analysis using the goana
function in edgeR with focus on the ontology of biological
process was conducted. To identify the functions under-
lying these genes, pathway enrichment analysis was per-
formed using the GOenrichmentAnalysis (GEA) method
of the Weighted Correlation Network Analysis package
(WGCNA)22. The WebGestalt (WEB-based Gene SeT
AnaLysis Toolkit) tool for Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway enrichment analyses of
the gene signatures23 was used. The pathways with p-
values < 0.05 (after FDR correction) were regarded as
significantly enriched.

Evaluation of tumor-infiltrating immune cells
In order to determine immune cell types and origin from

the tumor transcriptomes, CIBERSORT analysis using the
LM22 default reference was applied. Based on prior pub-
lications17,24, quantile normalization (QN) on RNA-seq
data25 was disabled. The LM22 reference matrix was
adapted to exclude B-cells from further study to represent
the TME instead of the total sample/biopsy. The tumor
immune infiltrate with and without B-cells, which we refer
to as tumor and TME, respectively, was measured.
To assess the association between immune infiltration

and prognosis, the relative proportions of the immune cell
types within subgroups of DLBCL patients by various
clinical traits and outcomes including age (≤60 vs. >60
years), sex (male vs. female), IPI (0–1 vs. 2 or more), the
cell of origin classification (ABC vs. GCB), response to
treatment, and survival outcome at 2 years from diagnosis
was compared. The changes in the proportion of immune
cell subtypes between groups were assessed by log2 fold-
change, where the poorer prognostic factor was selected
as the reference. In addition to these clinical risk groups,
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the changes in the immune infiltration across risk groups
with distinct survival outcomes (alive or dead) at 2 and 5
years from diagnosis was also evaluated, where the fold-
change was calculated as log2(base mean in alive/base
mean in dead) for each cell subtype.

Identification of gene-expression signatures
To identify gene-expression signatures associated with

survival in DLBCL, the analytical approach previously
described by Dave et al.26 was implemented. In this
approach, samples in the core set are first randomly
divided into two parts: a training set of 70% of the patients
and a validation set of 30% of the patients, which were
balanced with respect to the length of follow-up. Cox
proportional hazards models to identify genes that were
statistically associated with survival in the training set was
used. The genes with expression levels associated with
favorable and unfavorable prognosis were organized
separately with hierarchical clustering algorithms to
identify survival-associated signatures. Within each sig-
nature, member gene-expression levels were averaged to
create a genetic-expression signature for each patient.
Hierarchical clustering procedures on the training test

to detect gene signatures was implemented and evaluated
the association between the gene signatures and survival
in the training and testing sets. For hierarchical clustering,
Pearson correlation to construct dissimilarity matrix and
average linkage method to define the distance between
clusters was used. Two different methods to detect gene
clusters— (1) clusters are defined by cutting off branches
using a constant cut-off value of dissimilarity (i.e., corre-
lation) and (2) clusters are defined by Dynamic Tree Cut
method27—were implemented. In the first method, which
from this point on will be referred to as predefined cut-off
clustering, each gene signature was defined as a cluster
such that within each cluster genes have inter-cluster
dissimilarities less than a predefined level of dissimilarity
(r > 0.4). To overcome the inflexibility of the first method
for cluster detection, the Dynamic Tree Cut method was
implemented, which is a top-down approach that detects
clusters through an iterative process of cluster decom-
position and combination on a dendrogram27. The clus-
tering methods are described in detail in the
Supplementary Material. When defining the final set of
gene-expression signatures, the gene signatures that were
significant predictors of survival only in the training set
and not in the testing set were excluded. The signatures of
poor and good prognosis genes are referred to as “unfa-
vorable” and “favorable”.

Construction of a gene expression profiling-based survival
predictor
To determine the best set of gene signatures for prog-

nostic prediction, the Lasso method was implemented to

identify the important gene signatures on the training set
and developed multivariable Cox models using these
signatures28. The Lasso method shrinks the regression
coefficients toward zero by penalizing the size of the
coefficients with L1 penalty term29. If the log partial
likelihood
is denoted as l(β), the penalized log partial likelihood

becomes l ðβÞ � λ
Pp

i¼1 βi
�
�

�
�, where p is the number of

predictors28 and λ is the tuning parameter determining
the amount of shrinkage. The Lasso variable was the
chosen selection method as it helps to increase the model
interpretability by eliminating irrelevant variables that are
not associated with the response variable, and therefore,
reduces over-fitting. To choose the tuning parameter λ,
10-fold cross-validation was performed on the training
set. The optimal tuning parameter was defined as the
value within one standard deviation of the minimum
cross-validated partial likelihood deviance to obtain the
most parsimonious model. The gene signatures with non-
zero coefficients at the optimal cross-validated log-like-
lihood were referred as survival signatures. The set of
survival signatures found using the predefined cut-off
clustering method is referred to as signature set 1 and the
set of survival signatures detected by the Dynamic Cut
Tree method as signature set 2.
Multivariable models of survival were developed using

signature sets 1 and 2 on the training set and validated the
prognostic ability of the multivariable models by calcu-
lating survival-predictor scores for the validation set cases
using the coefficients of the Cox models estimated on the
training set. Patients were stratified in the validation set
based on their risk scores into high- and low-risk groups
according to the optimal cut-off for the survival-predictor
score determined by the survminer package30. Log-rank
tests were used to determine whether there was a sig-
nificant difference between the Kaplan-Meier survival
curves for the resulting risk groups.
In addition to log-rank tests, the time-dependent area

(AUC) under the receiver operator curve (ROC) was used
to evaluate the prognostic accuracy of survival pre-
dictors31. Since the majority of adverse DLBCL events
occur in the first 2 years after diagnosis32, the ability to
accurately identify high-risk individuals could improve the
selection of appropriate treatment for these patients.
Therefore, the AUC of the time-dependent ROC was
evaluated at time points of 2, 5, and 10 years from diag-
nosis. To assess the independence of the risk groups
defined by the IPI and the outcome predicated on gene-
expression profiles, multivariable Cox regression analysis
was conducted.
To investigate whether certain tumor-infiltrating

immune cell sub-populations significantly impact prog-
nosis, the risk score was correlated derived from our gene-
expression prediction model with the relative proportions
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of immune cell types enumerated by the CIBERSORT
algorithm. The prognostic implications of this analysis
were further confirmed by assessing the correlation
between cell proportions and gene signatures.

Results
The landscape of immune infiltration in DLBCL
Figure 1 shows the mean relative abundances of tumor-

infiltrating immune cells estimated by the CIBERSORT
algorithm in the TME, defined as tumor in the absence of
B-cells, and tumor samples. B-cells were predicted to make
up >30% of the entire tumor sample. Neutrophils, CD4+
naive T-cells, CD8+T-cells, CD4+memory resting cells,
and M0 macrophages were notably visible in the TME.

Deconvolution analyses stratified by clinical risk groups
Heatmaps in Fig. 2 summarize differences in immune

environment when cases were stratified by clinical features
and overall survival. Favorable clinical features such as age
<60 years, low IPI score, being female, and Germinal B-cell
(GBC) subtype tended to show greater naive CD4+T-cells,
memory CD4+T-cells, follicular helper T-cells, regulatory
T-cells, CD8+T-cells, and M0 macrophages. There was
also a decrease in monocytes and M1-M2 Macrophages.

Overall survival at 2 years similarly showed an increase in
CD8+T-cells and CD4+T-cell subsets, while at 5 years
there was an increase in follicular helper and regulatory T-
cells. Overall, there was evidence of T-cell activation with
favorable clinical features. This was consistent with findings
from Reddy et al.2 where signatures, in the stromal and
immune response groups, such as the regulatory T-cells
were associated with improved survival outcomes. Follicular
T-cells were not included in the analysis performed by
Reddy et al.

Survival signature analysis
The clinical characteristics of 718 patients with com-

plete overall survival information are summarized in
Table S1. A total of 1989 genes were identified by uni-
variate Cox models as being associated with survival in the
training set at a significance level of p < 0.1 using a Wald
test. The genes associated with good prognosis (1139
genes) and poor prognosis (850 genes) in the training set
were clustered separately via hierarchical clustering
algorithms. The predefined cut-off clustering method
identified six gene signatures among the genes predicting
good prognosis and six signatures among the genes pre-
dicting poor prognosis (Table S2 and Figs. S1–S3). The

Fig. 1 TME Immune Cell Content. The overall immune cell content within the TME and tumor.
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Dynamic Cut Tree method identified 11 gene signatures
among the genes predicting good prognosis and 10 sig-
natures among the genes predicting poor prognosis
(Tables S3, S4 and Figs. S4, S5). The gene-expression
signatures were named on the basis of the association of
each signature with survival (favorable/unfavorable). All
the gene signatures detected by clustering the two
methods were predictive of survival on the training set (all
p < 0.005, Table S5). The three signatures detected by the
predefined cut-off clustering method and seven signatures
detected by the Dynamic Cut Tree method that were not
significant predictors of survival on the testing set at the
significance level of p < 0.05 were omitted from further
analyses. The three signatures with 0.05 < p < 0.06 were
kept on the testing set.
Based on the Lasso feature selection method, four sig-

natures comprised signature set 1 (Favorable 3 and 4,
Unfavorable 1 and 2) and signature set 2 (Favorable 1 and
2, Unfavorable 1 and 2). Multivariable Cox models were
developed with signature sets 1 and 2 on the training set.
The patients in the training set were recruited into the
high- and low-risk groups according to the optimal cut-
off for survival-predictor scores (0.41 and −0.20 for sig-
nature sets 1 and 2 models, respectively). As depicted in
Fig. 3, patients with high score showed significantly worse
overall survival than those with low score (p < 0.0001).
The AUC of the 2-, 5-, and 10-year ROC curve achieved
0.69, 0.68, and 0.65 for signature set 1, and 0.78, 0.78, and
0.80 for signature set 2, respectively. The AUC of the ROC
curve in the entire set at time points of 2, 5, and 10 years

were 0.68, 0.68, and 0.68 for signature set 1 and 0.75, 0.75,
and 0.78 for signature set 2, respectively.
Kaplan-Meier plots of overall survival (Fig. 3) showed

distinct differences among the risk groups in the test and
entire datasets for survival (p < 0.02). The survival-
predictor scores from these models were highly pre-
dictive of survival in validation sets (p < 0.001). Moreover,
the survival-predictor scores from signature set 2 model
resulted in a larger log-likelihood in the validation set,
reflecting a higher degree of association with survival
(p < 0.001). Therefore, signature set 2 was used for further
predictive modeling analyses. Each unit increase in the
gene expression-based predictor score was associated
with an increase in the relative risk of death by a factor of
2.04 (95% CI: 1.49−2.78) in the validation set and by a
factor of 2.45 (95% CI: 2.10−2.95) in the entire set.
The performance of the gene expression-based score

was examined in the known clinical risk groups defined by
the gene-expression markers (cell of origin, MYC, and
BCL2 expression). The gene expression-based method
was able to distinguish patients with significantly distinct
outcomes across subsets, demonstrating the survival-
predictor score’s greater prognostic power as compared
with that derived from the use of clinical subgroups of
DLBCL (Fig. 4).

Comparison of the gene expression-based survival
predictor and the IPI
There were 593 patients with IPI scores available in the

core set: 414 patients in the training and 179 patients in

Fig. 2 Clinically Stratified Immune Cell Type Assessment. Heatmaps showing the differential assessment of the immune contexture within clinical
risk groups.
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the validation sets. In the multivariable Cox models that
combined both the IPI scores and the gene expression-
based scores from signature set 2, the gene expression-
based score was an independent predictor for overall
survival in the validation sets (Table 1). Each unit increase
in the gene expression-based score increased the relative
risk of death on the entire dataset by a factor of 2.23 (95%
CI: 1.88−2.66). Kaplan-Meier plots of overall survival
showed the independence of the IPI score and the gene
expression-based predictor score (Fig. 5).
To evaluate the impact of integrating the gene

expression-based predictor score and the IPI score on the
prognostic accuracy, time-dependent ROC analysis was
conducted using the survival-predictor scores based on
the multivariable model developed on the training set
with these two predictors. The AUC of the ROC curve on
the entire set at time points of 2, 5, and 10 years were 0.79,
0.78, and 0.83, respectively, indicating that the

combination of the gene expression-based predictor score
with the IPI score improved discrimination on the entire
set over the gene expression-based predictor score alone.
Moreover, the survival-predictor scores from the model
with the gene expression-based predictor score combined
with the IPI score resulted in a larger log-likelihood in the
validation set, reflecting a higher degree of association
with the survival (p < 0.001). Based on these findings, the
IPI was included together with the gene expression-based
predictor score in our final model.

Biological implications of survival gene signatures
Systems biology analysis revealed endocytosis, focal

adhesion, cytokine–cytokine receptor interaction, and
MAPK signaling pathway as the major enriched biological
pathways for the favorable signatures (Table S6). Similarly,
the major enriched biological pathways for the unfavorable
signatures were metabolic pathways, spliceosome, RNA

Fig. 3 Overall Survival Analysis of Gene Signature Sets 1 and 2. The overall survival among the patients in the training, test, and entire sets
according to the optimal cut-offs for the gene expression-based survival-predictor scores obtained from the models with signature sets 1 and 2.
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transport, and aminoacyl-tRNA biosynthesis. KEGG
pathway-enrichment analyses demonstrated that Favor-
able signature 1 was remarkable for overlap with T-cell
dysregulation, particularly CD4+T-cells, as seen with the
CIBERSORT analysis (Table S6). Unfavorable signatures
demonstrated findings related to RNA transport and
metabolic pathways.
To get extract biological insights into the connection

between the gene signatures and cell-of-origin, we
investigated whether the components of the survival
predictor were differentially expressed between ABC and
GCB (Fig. 6). The Favorable signature 2 was more com-
monly found in GCB than in ABC. The Unfavorable

signature 1 was more common in ABC than in GCB. The
level of expression of the Favorable signature 1 was
similar among these subgroups. The gene expression-
based score was higher in ABC than in GCB, supporting
our earlier finding that the predictor score could be used
to subdivide DLBCL patients in ABC and GCB into dis-
tinct risk groups.
Genes in the unfavorable signatures tended to activate

the acute immune system response and angiogenesis.
Genes in the favorable signatures were enriched for
hematopoiesis, and activate Wnt signaling while
downregulating adaptive immune response systems
(Tables S7–S9).

Fig. 4 Gene Expression-Based Survival Model. The gene expression-based survival model significantly stratifies survival within ABC and GCB
subtypes, and MYC and BCL2 high-expression groups (log-rank test).
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Prognostic implications of immune composition
Table S10 and Figs. S6 and S7 present the correlation

between the immune cell subtypes and gene signatures
identified by the Dynamic Cut Tree method that had the
most significant correlation. Resting CD4+ memory T-
cells, regulatory T-cells, and M0 macrophages were
positively correlated with the favorable signatures. The
correlation between the immune cell content and the risk
score revealed similar patterns (Fig. S8). KEGG pathway-
enrichment analyses demonstrated that activated den-
dritic cells, neutrophils, eosinophils, mast cells, mono-
cytes, and M1/2 macrophages were correlated inversely
with the favorable signatures or positively with the unfa-
vorable signatures (all p < 0.0001).

Discussion
In this study, supervised and unsupervised machine

learning methods were implemented to identify gene-
expression signatures that were associated with survival
and subsequently used to construct a multivariable
regression model for predicting the overall survival of
DLBCL patients. The gene expression-based predictor
scores and the IPI scores were both independent prog-
nostic indicators, and the combination of the two scores
improved the identification of high-risk DLBCL patients.
In the risk prediction model, Favorable signature 2 and

Unfavorable signature 1 were independent predictors for
overall survival (Table 2). The deconvolution analysis of
Favorable signature 2 showed a negative correlation of
resting NK cells with the genetic signature while the
systems biology analysis showed association with stress-
activated MAPK signaling cascade and phospholipid
translocation. The genes in Unfavorable signature 1 were
significantly enriched in pathways associated with IgG
binding, neutrophil activation, degranulation, and cell-
mediated immunity, supporting an inflammatory malig-
nancy like DLBCL33. The negative correlation of this
signature with CD4+ naive T-cells, follicular helper T-
cells, and activated NK cells may imply the need for

successful therapeutic interventions to activate these cell
subtypes.
When the deconvolution findings were correlated with

the gene signatures and the risk score, three subsets of
cells stood out: CD8+T-cells, naive CD4+T-cells, and
activated dendritic cells. The former two conveyed a
favorable prognosis while the latter was associated with
poorer prognosis. To explain this pattern of which cells
are preferable, cell signaling and interleukin activity were
looked into further and the following was inferred as a
possible explanation. In non-pathological environments,
antigen presenting cells tend to produce IL-12, a pro-
inflammatory cytokine with anti-tumor properties that
binds to the IL-12R heterodimeric receptor consisting of
IL-12Rβ1 and IL-12Rβ234. Both subunits of the receptor
are expressed in activated T-cells and NK cells but only
IL-12Rβ1 is expressed on naive T-cells34. When the IL-
12Rβ1 subunit is combined with the Ebi3 subunit, it
becomes an immunosuppressive unit activated by IL3535.
IL-35, a pro-tumor member of the IL12 cytokine family, is
overexpressed in DLBCL36 and suppresses naive T-cell
activation37. In a phase II clinical trial for non-Hodgkin’s
Lymphoma and Hodgkin’s Lymphoma, IL12 administra-
tion increased circulating CD8+ T-cell presence but had
no effect on CD4+ T-cell presence38. Alternately,
IL35 suppression will likely increase T-cell activation and
presence.
CD8+T-cells are usually suppressed in the TME

through an enhanced TGF-β pathway39, which suppresses
the immune response and enhances inflammatory signals
and carcinogenesis40. We found that TGFB1I1 gene,
which codes for the first subunit of the TGF-β1 protein,
was part of the good prognosis signature 2 gene set and
warranted further attention. Li and Flavell41 published a
three-cell model for T-cell regulation from the TGF-β1
pathway. Per this model, Tregs secrete latent TGF-β1
after activation by antigen presenting dendritic cells. The
latent protein is processed by av8 integrins on the cell
membranes of dendritic cells into the active TGF-β1

Table 1 Multivariate Cox regression analysis with the gene expression-based predictor score and the IPI for the overall
survival of DLBCL patients.

Training set (n= 414) Test set (n= 179) Entire set (n= 593)

Variables HR 95% CI p-value HR 95% CI p-value HR 95% CI p-value

IPI

Low 0.31 0.17−0.55 6.92 × 10−5 0.2 0.085−0.47 0.0002 0.26 0.16−0.42 3.3 × 10−8

Intermediate 0.64 0.42−0.96 0.032 0.69 0.40−1.19 0.18 0.64 0.46−0.88 0.007

High 1 (reference) 1 (reference) 1 (reference)

Survival-predictor score 2.41 1.96−2.97 <2 × 10−16 1.86 1.33−2.56 0.00025 2.23 1.88−2.66 < 2 × 10−16

Abbreviations: CI confidence interval, HR hazard ratio.
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form, which inhibits the differentiation of naive CD4+ T-
cells into Th1 or Th2 cells. Instead, TGF-β1 promotes the
differentiation of naive CD4+ T-cells into regulatory T-
cells and Th17 cells through a SMAD1-dependent path-
way41. TGF-β1 inhibits the production of IL-1242. In
DLBCL, TGF-β pathway is inactivated at the level of

SMAD143,44 such that downstream enhancement of this
pathway would likely benefit survival outcomes.
Genes in the unfavorable signatures tended to activate

the acute immune system response and angiogenesis,
both of which are associated with metastatic disease and
poor prognosis through a constitutively activated STAT3

Fig. 5 Overall Survival Stratified by IPI Risk Groups. The overall survival among patients in the various IPI risk groups in the training, test, and
entire datasets, stratified according to the optimal cut-off for the gene expression-based survival-predictor score.
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pathway45. Genes in the favorable signatures tended to
promote organ development and hematopoiesis, which
may be associated with cell differentiation, and activate
Wnt signaling while downregulating adaptive immune
response systems. Wnt signaling in conjunction with
TGF-pathway is associated with the development of
mature hematopoietic stem cells46, which has therapeutic
implications in hematological malignancies such as
DLBCL. For instance, harvesting stem cells from healthy
bone marrow donors and transplanting them into the
patient allows for new healthy development of all blood
cell lines which were likely depleted46. Correlating these
signaling processes with the deconvolution analysis
assists in putting perspective to the findings.
A number of genetic signatures and prognostic models

have been published in the last few years2,3,9,47,48. Prog-
nostic algorithms which are genetically focused on the

malignant cells and do not incorporate the TME in their
validation are at risk of being inaccurate and misleading
because signaling between the tumor and its micro-
environment can affect the nature and progression of the
malignancy49. For instance, Hazlehurst et al.50 showed
TME-induced resistance by fibronectin to cell adhesion-
mediated therapeutic intervention in myeloma. The TME
and tumor co-evolve in B-cell malignancies, allowing for
multiple routes of tumor growth and progression,
immune evasion, and cell death resistance51. Indeed,
modulating the TME can have profound effects and can
be exploited therapeutically as in the case of lenalidomide
in follicular lymphoma or PD-1 blocking antibodies in
Hodgkin Lymphoma52.
Our algorithm incorporates IPI scores and is sup-

ported by CIBERSORT, something which has not been
done by other published models. Ciavarella et al.53

Fig. 6 Gene Expression Levels of the Survival-prediction model. The level of expression of gene signatures in the survival-prediction model and
the predictor scores in ABC and GCB.

Table 2 Multivariate Cox regression analysis with survival gene signatures for the overall survival of DLBCL patients.

Training set (n= 414) Test set (n= 179) Entire set (n= 593)

Gene-expression variables No. of genes HR 95% CI p-value HR 95% CI p-value HR 95% CI p-value

Favorable signature 1 86 0.66 0.53−0.81 <0.001 0.78 0.58−1.05 0.097 0.68 0.57−0.80 <0.001

Favorable signature 2 82 0.49 0.35−0.68 <0.001 0.62 0.36−1.06 0.078 0.53 0.40−0.70 <0.001

Unfavorable signature 1 92 1.83 1.37−2.43 <0.001 1.5 0.95−2.37 0.08 1.73 1.36−2.20 <0.001

Unfavorable signature 2 72 2.38 1.64–3.45 <0.001 2.26 1.32−3.86 0.003 2.26 1.68−3.03 <0.001

Abbreviations: CI confidence interval, HR hazard ratio.
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attempted to incorporate CIBERSORT into their algo-
rithm which worsened prognostic prediction in the
context of formalin-fixed paraffin-embedded tissue
samples. Biccler et al.54 constructed a prognostic
“stacking” model which takes advantage of established
prognostic models and builds on them. Similar to our
construct, they compared their stacking model with the
Cox proportional hazard model with the IPI variables
(CPH-IPI) and found that the stacking model was
superior when non-IPI clinical factors were included in
the algorithm. When considering real-life application of
an algorithm, gaining insight on the TME and esti-
mating survival outcomes is more beneficial, which our
algorithm provides.
In conclusion, we developed and validated a robust

survival-prediction model which may facilitate the prog-
nostic evaluation and risk stratification of patients with
DLBCL. Our analysis of immune cell subsets in DLBCL
has revealed important associations with the clinical
outcomes. Coupling the changes noted in immune cell
content of the TME with the reliable risk predictions can
aid personalized decision making regarding individual
disease course and treatment outcomes.
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