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Molecular predictors of post-transplant
survival in acute myeloid leukemia
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Chao Wang1, Yijie Zhang8, Xiaoyan Ke2, Kailin Xu9, Jinlong Shi6,10,11 and Lin Fu1,2,9

Acute myeloid leukemia (AML) is a heterogeneous dis-
ease. Based on risk stratification at diagnosis, patients with
AML either receive consolidation chemotherapy or
undergo allogeneic hematopoietic stem cell transplanta-
tion (allo-HSCT) after attaining initial remission. It has
been shown that cytogenetic abnormalities at diagnosis
are associated with outcome after post remission therapy,
including allo-HSCT1. Based on cytogenetic risk stratifi-
cation, Koreth et al.2 undertook a systematic review and
meta-analysis of prospective trials, and concluded that
allo-HSCT had significant relapse-free survival and
overall survival (OS) benefit for intermediate- and for
poor-risk AML, but not for good-risk AML in first
complete remission. A growing number of recurrent
genetic abnormalities have been recognized in the revised
2016 World Health Organization (WHO) classification of
AML3. Acquired recurrent genetic abnormalities at
diagnosis are among the most important independent
factors used for diagnosis and prognostic stratification,
and deepens our understanding of the disease pathogen-
esis4. Whether recurrent genetic abnormalities are also
important markers that imply response to allo-HSCT is
unknown. To address this question, we examined samples
from patients with AML who had undergone allo-HSCT
to determine whether recurrent genetic abnormalities
were associated with long-term outcome after
transplantation.
This is a retrospective study. A total of 78 patients who

received allo-HSCT for AML (derived from The Cancer
Genome Atlas (TCGA) database (https://cancergenome.

nih.gov/) were included in our study. Median age of the
patients was 51 years (range, 18–72 years) and 45 (58%)
patients were males. FAB subtype data were available for
77 patients, which included M0 (n= 10; 13%), M1 (n=
23; 30%), M2 (n= 20; 26%), M3 (n= 3; 4%), M4 (n= 14;
18%), M5 (n= 5; 6%), M6 (n= 1; 1%), and M7 (n= 1; 1%).
The median WBC count at diagnosis for the entire cohort
was 28.55× 109/L (range, 0.6× 109/L–223.8× 109/L), and
five patients (6%) had WBC count of ≥100× 109/L at
diagnosis. The median bone marrow blast at diagnosis for
the entire cohort was 71.5% (range, 30–100%), and 65
patients (83%) had a bone marrow blast percentage of
≥50%. Cytogenetic data were available for 77 patients.
Eight patients (10%) belonged to the good-risk, 47 (60%)
to the intermediate-risk, and 22 (28%) to the poor-risk
groups. Donors included human leukocyte antigen
(HLA)-identical matched related donors (MRD, n= 33),
HLA-identical matched unrelated donors (MUD, n= 43),
and haploidentical related donors (HRD, n= 2). Twenty-
seven patients did not achieve complete remission (CR)
before transplantation. The median numbers of recurrent
genetic mutations at diagnosis was 5 (range, 0–12).
Seventy-seven patients had mutations in one or more
genes. NPM1 was the most frequently mutated gene (n=
21, 27%), followed by DNMT3A (n= 19, 24%), FLT3-ITD
(n= 17, 22%), IDH1 (n= 11, 14%), IDH2 (n= 9, 12%),
RUNX1 (n= 9, 12%), WT1 (n= 9, 12%), CEBPA (n= 8,
10%), MYH11-CBFB (n= 5, 6%), MLL-translocation (n=
5, 6%), MLL-PTD (n= 4, 5%), TET2 (n= 4, 5%), TP53 (n
= 4, 5%), KIT (n= 4, 5%), U2AF1 (n= 3, 4%), STAG2 (n
= 3, 4%), ASXL1 (n= 2, 3%), EZH2 (n= 2, 3%), BCR-
ABL1 (n= 2, 3%), and NUP98-NSD1 (n= 2, 3%). Clinical
and molecular characteristics are summarized in Supple-
mentary Table 1.
To assess the prognostic significance of these mutations,

we focused on 14 genetic mutations which were detected
in 5% or more of the patient population (NPM1,
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DNMT3A, FLT3-ITD, IDH1, IDH2, RUNX1, WT1,
CEBPA, FLT3-ITD+/NPM1-, MYH11-CBFB, MLL-PTD,
TET2, TP53, and KIT). Factors including age (<60 vs.
≥60), WBC count (<100× 109/L vs. ≥100× 109/L), bone
marrow blast percentage (<50% vs. ≥50%), cytogenetic
risk (poor vs. others), donor type (MRD vs. MUD), disease
state (CR vs. not in CR) as well as numbers of recurrent
genetic mutations (<5 vs. ≥5). The results are summarized
in Table 1. Based on univariate analyses, MLL-PTD was
unfavorable for both OS (P= 0.024; Fig. 1g) and EFS (P<
0.001; Fig. 1h). Mutations in RUNX1 (P= 0.029; Fig. 1c)
and TP53 (P= 0.011; Fig. 1d) negatively affected OS,
while mutations in WT1 (P= 0.033; Fig. 1e) were identi-
fied as unfavorable for EFS. Patients with genotype “FLT3-
ITD+/NPM1-” showed a trend of poor EFS compared with
those without the cytogenetic characteristic, but it did not
reach statistical significance (P= 0.089; Fig. 1f). OS also

appeared shorter in patients who did not achieve CR
before transplantation (P= 0.051; Fig. 1a) and those
having ≥5 recurrent genetic mutations (P= 0.071; Fig. 1b)
whereas statistical significance was not achieved. Other
clinical parameters, including age, WBC count, bone
marrow blast percentage, cytogenetic risk, and donor
type, were not associated with survival.
We conducted multivariate COX regression analyses to

identify independent risk factor for OS and/or EFS in the
cohort. The four recurrent genetic mutations with
demonstrated adverse effects on OS and/or EFS (RUNX1,
WT1, TP53, and MLL-PTD, each of which showed sig-
nificant associations with OS/EFS) and age (<60 vs. ≥60),
WBC count (<100× 109/L vs. ≥100× 109/L), bone mar-
row blast percentage (<50% vs. ≥50%), cytogenetic risk
(poor vs. others), disease state (CR vs. not in CR), as well
as number of recurrent genetic mutations (<5 vs. ≥5)

Table 1 Univariate and multivariate analysis for EFS and OS

Univariate analysis Multivariate analysis

P Log rank χ2 test P HR (95% CI)

OS

Age (<60 vs. ≥60 years) 0.200 1.640 0.451 0.783 (0.414–1.481)

WBC (<100×109/L vs. ≥100×109/L) 0.429 0.626 0.211 0.495 (0.164–1.490)

BM blast (<50% vs. ≥50%) 0.710 0.138 0.790 0.908 (0.445–1.851)

Cytogenetic risk (poor vs. others) 0.737 0.113 0.949 0.978 (0.489–1.921)

Disease state (CR vs. not in CR) 0.051 3.792 0.096 0.619 (0.352–1.089)

Mutated recurrent genes (<5 vs. ≥5) 0.071 3.271 0.348 0.741 (0.396–1.387)

RUNX1 0.029 4.768 0.199 0.569 (0.241–1.345)

WT1 0.196 1.675 0.276 0.624 (0.267–1.457)

TP53 0.011 6.482 0.012 0.202 (0.059–0.700)

MLL-PTD 0.024 5.096 0.060 0.316 (0.095–1.050)

EFS

Age (<60 vs. ≥60 years) 0.907 0.014 0.886 0.953 (0.497–1.828)

WBC (<100×109/L vs. ≥100×109/L) 0.571 0.321 0.331 0.584 (0.198–1.726)

BM blast (<50% vs. ≥50%) 0.711 0.137 0.631 1.191 (0.548–2.428)

Cytogenetic risk (poor vs. others) 0.901 0.015 0.756 1.115 (0.561–2.215)

Disease state (CR vs. not in CR) 0.311 1.026 0.545 0.842 (0.482–1.470)

Mutated recurrent genes (<5 vs. ≥5) 0.528 0.399 0.873 0.951 (0.517–1.753)

RUNX1 0.281 1.161 0.777 0.879 (0.359–2.152)

WT1 0.033 4.521 0.138 0.509 (0.208–1.242)

TP53 0.245 1.353 0.167 0.425 (0.126–1.430)

MLL-PTD 0.000 14.865 0.016 0.204 (0.056–0.746)

The variables selected in the Cox proportional hazard model: age, WBC count, bone marrow blast, cytogenetic risk, disease state, mutated recurrent genes, and
mutations (including mutations with frequency ≥5% and have poor OS or EFS based on univariate analyses: RUNX1, WT1, TP53, and MLL-PTD)
BM bone marrow, CR complete remission, EFS event-free survival, HR hazard ratio, OS overall survival, WBC white blood cell
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were incorporated in the analysis. Age (<60 vs. ≥60),
WBC count (<100× 109/L vs. ≥100× 109/L), bone mar-
row blast (<50% vs. ≥50%), cytogenetic risk (poor vs.
others), and number of recurrent genetic mutations (<5
vs. ≥5) had similar OS and EFS. TP53 mutation was an
independent risk factor for OS (HR, 0.202; 95% con-
fidence interval, CI, 0.059–0.700, P= 0.012). MLL-PTD
was an independent risk factor for EFS (HR, 0.204; 95%

CI, 0.056–0.746, P= 0.016). The results of the multi-
variate analysis are summarized in Table 1.
In this study, we examined the prognostic significance

of recurrent genetic mutations and other clinical para-
meters in post allo-HSCT AML patients. Previous studies
had controversial findings about how FLT3-ITD muta-
tions affected the prognosis of AML patients after allo-
HSCT5,6. RUNX1 mutations were found in 8 and 16% of

Fig. 1 Kaplan–Meier curves of OS and EFS. a Patients did not achieve CR before transplantation tended to have shorter OS than those
transplanted in CR. b Patients with ≥5 mutations appeared to have shorter OS than those with <5 mutations. c, d Patients with RUNX1 and TP53
mutations had worse OS than wild-type groups. e Patients with WT1 mutations had worse EFS than wild-type groups. f Patients with genotype
“mutated FLT3-ITD without NPM1” showed poor EFS compared with those without these mutations. g, h Patients with MLL-PTD mutations had
worse OS and EFS than wild-type groups. Overall survival (OS) and event-free survival (EFS) were stratified by univariate prognostic factors. P-value
was estimated by the log-rank test
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younger and older patients with cytogenetically normal-
AML (CN-AML), respectively, and they had lower CR
rates and shorter disease-free survival (DFS), OS, and EFS
than wild-type RUNX1 patients7. It was found in a study
that patients with WT1 mutations had shorter DFS and
OS than patients with wild-type WT1(ref. 8). Compared
with these studies, our results show that mutations in
these genes were not associated with survival. We
assumed that allogeneic hematopoietic stem cell trans-
plantation in our cohort might have reversed the unfa-
vorable influences of mutations in these genes.
A recent study observed no significant difference in

either OS or DFS between MLL-PTD+ and MLL-PTD−

patients9. The authors postulated that intensive con-
solidation therapy, which included autologous stem cell
transplantation in first complete remission, might have
contributed to the better outcome of this historically
poor-prognosis group of CN-AML patients. TP53 gene
mutations have been associated with monosomal kar-
yotype and complex karyotype in myeloid malignancies10.
The karyotype of the leukemic cells is by far the strongest
prognostic factor for both response to induction therapy
and survival11,12. A recent analysis of 858 AML patients
demonstrated poor OS in patients with TP53 mutation13.
In our study, we demonstrated that the TP53 and MLL-
PTD mutations were independent predictors for inferior
survival in post allo-HSCT patients. Our analyses indi-
cated that evaluating the mutational status of the TP53
and MLL-PTD genes would be necessary before planning
allo-HSCT for AML patients.
Older age was traditionally associated with poorer

outcomes in AML patients, but age has not been shown to
be the most important predictor for either transplant-
related mortality or resistance to therapy. Our study
concurred with the previous study by showing that the OS
and EFS of patients ≥60-year-old were similar to those
<60-year-old and age was not an independent prognostic
factor in multivariate analysis. Quality of life is an
important outcome for hematopoietic cell transplantation
recipients. Particularly physical functioning and func-
tional well-being may provide independent prognostic
information beyond standard clinical measures in allo-
HSCT recipients14.
Previous studies suggest that heavier mutation burdens

might be associated with poorer prognosis in myelodys-
plastic syndromes15. It is possible that mutation burden
also influences the survival of AML patients. We found
that OS appeared to be shorter in patients having mutated
recurrent genes ≥5 based on univariate analyses, but did
not show statistical significance. Further studies are war-
ranted to validate this hypothesis.
Our study has two important limitations. First, the

relatively small number of patients is the major limitation
of our study. Retrospective study designs are generally

considered inferior to prospective study designs; this is
the second limitation of our retrospective analysis.
Nevertheless, our data suggest that assessing TP53 and
MLL-PTD mutational status may be valuable for pre-
dicting survival in post allo-HSCT AML patients.
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