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Development of expression-based
biomarkers of Dasatinib response in
hematologic malignancies
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Numerous collections of cancer cell lines provide oppor-
tunities to characterize genetic signatures that distinguish
response and resistance to a variety of drugs. The NCI-60,
Cancer Cell Line Encylopedia (CCLE), and the Genomics
of Drug Sensitivity in Cancer (GDSC) provide a wealth of
information that includes genomic sequences, mutational
status, gene expression, as well as response to panels
of drugs used in cancer therapies1–3. This offers a unique
opportunity to apply approaches that may provide genetic
profiles that define response and resistance, with the
potential to apply these as predictors in clinical decisions.
The GDSC is a collection of 1047 cell lines from diverse

tumor types that have been tested with 265 drugs1. The
data collection includes DNA sequence, mutation status,
and gene expression data that we have used to develop a
pipeline of computational approaches that predict response
and resistance. Drug response is determined by a 9 step
twofold serial dilution of drug concentration and measur-
ing cell viability. From these, two quantitative values are
provided: the drug concentration required to reduce via-
bility by 50% (IC50) and the area under the dose-response
survival curve (AUSC). Gene expression data is available
from the Affymetrix U219 gene array platform.
Because expression patterns may vary widely simply

based on tissue specificity, we chose to limit our initial
analysis to B-cell malignancies, represented by 71 cell
lines derived from leukemias, lymphomas, and myelomas.
Our approach comprises a series of steps in which we
classify response and resistance, develop a differential
classification profile of gene expression patterns, identify
features by pathway analysis, and validate on cell lines and

reported clinical outcomes. We demonstrate this
approach to stratify and predict response to the protein
tyrosine kinase inhibitor, dasatinib.
Dasatinib is a multi-target kinase inhibitor that has affinity

for about 50 kinases and is most widely used to manage
chronic myelogenous leukemia4, 5. For this report, we
develop an approach that identifies a five gene signature
distinguishing dasatinib response and resistance.
We arranged the 71 B-cell lines by response, using both

Area Under the Survival Curve (AUSC) and IC50. The
distribution of response favored non-response, with only 14
lines showing a strong response to low doses, and 11 lines
showing essentially no response. Specifically, we classified
Responders as lines that show an AUSC< 0.75, and an IC50
value less than the maximum drug concentration divided by
4 and Non-Responders were defined as having an AUSC>
0.98 and an IC50 greater than maximum dose tested. This
resulted in the 14 strong Responder lines vs. 11 highly
resistant (Non-Responder) lines, representing the extreme
ends of response and resistance. Our rationale was that
underlying this wide separation of response may be a
common expression signature or pathway(s) that can serve
as a predictive biomarker.
Differential gene expression between the Responder and

Non-Responder lines was performed using Significance
Analysis of Microarray (see Supplementary Methods),
with a false discovery rate limited to 10%. This resulted in
228 genes to further analyze for their relevance to the
dasatinib response.
The B-cell-receptor (BCR) pathway has been demon-

strated to be active at different stages of B-cell develop-
ment6–8. Activation of various oncogenes and tumor
suppressor genes gives rise to the malignancies at differ-
ent stages of B-cell development (Fig. 1). The distribution
of response to dasatinib along the B-cell differentiation
path indicates cancers arising from a pre- or early- B-cell
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may be more likely to respond than B cells or plasma cells
later in development that notably have decrease expres-
sion of BCR pathway genes.
Pathway analysis was conducted using ingenuity path-

way analysis (Qiagen) on the 228 differentially expressed
genes and their log-fold ratio data of Responders relative
to Non-Responders. Notably, the top canonical pathway
with a significant z-score was the BCR pathway (p-value
= 0.013). Using the log-fold ratio scores of Responders
relative to Non-Responders, molecules of the BCR path-
way reflected a uniquely activated pattern in the
Responders (Fig. 2a).
We further characterized the differentially expressed

genes of the BCR pathway between the Responders (high
expression) and Non-Responders (low expression). The
genes from the BCR pathway were analyzed using a
Mann–Whitney t-test between Responders and Non-
Responders. Genes that were significant (p-value< 0.05)
were further analyzed. This resulted in the identification
of five genes (Fig. 2b).
Intermediate response groups were included to identify

an expression trend across the full range of responses. We
reasoned that effective drug-response predictors would
also show a linear trend between Responders, inter-
mediate groups, and Non-Responders. These groupings

included cell lines with a partial response (AUSC between
0.75–0.85) and limited response (AUSC between
0.85–0.98). The five genes displaying the best separations
were chosen for use in a predictive scoring system
described below. Analysis of variances were performed
using all four groupings and indicated 4 of the 5 genes
showed highly significant differences between the
Responders and Non-Responders, and trends of decreas-
ing expression across the increasing resistance groupings.
Eleven cell lines not included in the differential expres-

sion analysis had available gene expression data (eight from
CCLE, three from GDSC), but not dasatinib response data.
These were tested in-house for dasatinib response. The
CCLE/GDSC expression platforms were then normalized
to one another to obtain comparable values (not shown).
During the validation phase, we used the AUSC as the sole
metric indicating response defining a Responder (AUSC<
0.8) and Non-Responder (AUSC> 0.8).
A simple algorithm was developed based on average

expression values of the Responders and Non-Responders
for each of the five genes, which we refer to as Response
Averages (RA). Lines that had expression lower than the
RA of CD19 were immediately binned as a Non-
Responder. Lines that had expression higher than that
of the CD19 RA were given a score of “1” for each

Fig. 1 B-cell differentiation stages with malignancy and CD19 expression of cell lines. Maturation of B-cells is represented from left to right.
Malignancies arising from corresponding stages of B-cell development are depicted along with cell lines representing those malignancies in the
same vertical axis. Next to cell line names are either a red dot (Responders) or blue dot (Non-Responders) along with their corresponding log2
fluorescence intensity of CD19, the marker found most associated with dasatinib response
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Fig. 2 BCR pathway activated in extreme responders. a Genes of the BCR pathway represented as expression ratios of highly sensitive
Responders relative to Non-Responders. The darker the red-colored molecule represents a greater fold-change between groups. b Gene expression
signature that discriminates Responders from Non-Responders Cell lines are listed along the x-axis while the five genes most associated with
dasatinib response are on the y-axis. Expression values are represented as scaled as z-scores of the log2 transformed fluorescence intensities. The 14
extreme Responders are boxed in red on the left of the heatmap, the 11 extreme Non-Responders are boxed in blue on the right. The dynamic
ranges of each gene in the signature is not always reflective of its contribution to identifying response as can be seen in the case of PAX5. This gene
is highly significant (p < 0.0001) in differentiating response, but its absolute values vary subtly
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remaining gene (EBF1, PAX5, BTK, or BLNK) for which
the expression exceeded the RA. If a cell line’s score was
less than 3, they were binned as Non-Responders. This
scoring system accurately predicted the response of 9 of
the 11 previously untested lines.
As described above, the discriminating genes were ori-

ginally determined using the extreme Responders vs. the
extreme Non-Responders. When applying the scoring
system to the intermediate responding lines (that were
not included in the gene discrimination modeling), 30
lines were correctly predicted for an accuracy rate of 67%.
It should be noted low CD19 does place 23 out of 23 of
these cell lines in the Non-Responder category. Thus, low
CD19 is an effective discriminator of non-response.
Nevertheless, the five gene discrimination was very
accurate in distinguishing the highly sensitive from the
highly resistant lines. Despite the difficulty of determining
the response of the equivocal intermediate group, the
sensitivity of the test set, training set, and intermediate
group is 78.9% and specificity is 74.6%.
MM lines (plasma cells) rarely express CD19, and show

a low activation of the BCR pathway. Thus, our BCR gene
discrimination model would indicate poor response.
Indeed, a recent clinical study (NCT00429949) of
relapsed, refractory, or plateau phase MM patients was
discontinued after using dasatinib as a single agent in
which a partial response occurred in only 1 of 21 enrolled
in the study.
Waldenström’s macroglobulinemia (WM) is also a

plasma cell malignancy, but in contrast to multiple
myeloma, is CD19+, and has recently been described
to express an activated BCR pathway9. WM
primary patient lines exhibited good response to dasatinib
in primary patient samples (n= 32)9 supporting our
findings that the expression of CD19 and four other
molecules of the BCR pathway are associated with dasa-
tinib response.
Mantle cell lymphoma (MCL) is mid-stage B-cell

malignancy and may, or may not, express CD1910, 11. Kim
et al.12 showed acquired bortezomib resistance (BTZ-R)
was accompanied by a re-activation of the BCR pathway.
Along with this re-activation, a collateral sensitivity to
dasatinib was observed.
We wondered whether this relationship between bor-

tezomib and dasatinib would also be seen in the U266
multiple myeloma line. U266-P and U266-VR (Velcade
resistant) was developed in our laboratory and had
RNAseq data available13. The U266-VR line had a 2.8-fold
increase in FPKM reads for CD19. In addition, the U266-P
line had a dasatinib AUSC value of 0.91, whereas U266-
VR had an AUSC of 0.73. These data further support
that CD19 and the BCR pathway are consistent bio-
markers associated with B-cell lineage cells response to
dasatinib.

We show here that cell line expression and
drug response can be interrogated through
differential expression and pathway analysis to find
meaningful relationships and identify biomarkers of drug
response.
This is just one example of the use of available data

bases to develop response signatures. Similar approaches
may provide gene signatures across many other drugs
within the GDSC, CCLE, or similar large cell line data
bases.
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