
REVIEW ARTICLE OPEN

Generative artificial intelligence: synthetic datasets in dentistry
Fahad Umer 1 and Niha Adnan 1✉

© The Author(s) 2024

INTRODUCTION: Artificial Intelligence (AI) algorithms, particularly Deep Learning (DL) models are known to be data intensive. This
has increased the demand for digital data in all domains of healthcare, including dentistry. The main hindrance in the progress of AI
is access to diverse datasets which train DL models ensuring optimal performance, comparable to subject experts. However,
administration of these traditionally acquired datasets is challenging due to privacy regulations and the extensive manual
annotation required by subject experts. Biases such as ethical, socioeconomic and class imbalances are also incorporated during the
curation of these datasets, limiting their overall generalizability. These challenges prevent their accrual at a larger scale for training
DL models.
METHODS: Generative AI techniques can be useful in the production of Synthetic Datasets (SDs) that can overcome issues affecting
traditionally acquired datasets. Variational autoencoders, generative adversarial networks and diffusion models have been used to
generate SDs. The following text is a review of these generative AI techniques and their operations. It discusses the chances of SDs
and challenges with potential solutions which will improve the understanding of healthcare professionals working in AI research.
CONCLUSION: Synthetic data customized to the need of researchers can be produced to train robust AI models. These models,
having been trained on such a diverse dataset will be applicable for dissemination across countries. However, there is a need for the
limitations associated with SDs to be better understood, and attempts made to overcome those concerns prior to their widespread
use.
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INTRODUCTION
Digitization of healthcare has enabled Artificial Intelligence (AI)
methods to integrate big data for effective patient management
[1]. AI models particularly deep learning algorithms such as
Convolutional Neural Networks (CNNs), vision transformers, and
Large Language Models (LLMs) require large amounts of training
data to achieve acceptable performances [2–5]. This has increased
the demand for digital data in all domains of healthcare, including
dentistry [6]. Healthcare data available for training AI models
includes Electronic Health Records (EHRs), radiographs, clinical
photographs, etc [1]. This extensive patient data can be curated to
form large-scale datasets for training AI on healthcare-related
problems.
However, some pertinent concerns prevail with AI models trained

on these “traditionally acquired” datasets. An obvious hurdle is that
of patient privacy that makes dataset acquisition difficult for
researchers [7]. Other problems are those of representation of
populations; due to unavailability of widespread data, some
communities may remain under-represented. AI models trained
on such datasets are not generalizable to the global population. For
example, a widely used AI algorithm in healthcare underestimated
the treatment needs of African Americans and failed to triage them
for necessary care due to a lack of sufficient data instances [8].
Another facial recognition software was biased towards Caucasians
and failed to identify dark-skinned individuals [9]. Moreover,
healthcare data is in a constant state of “shift” due to changes in
medical practices as well as patient behavior requiring constant
upgrade of data to ensure the real-time applicability of an AI model

trained on this information [10]. Therefore, there is a need for
dynamic and representative datasets to ensure the universal
applicability of AI models [11].
One possible solution is the production of “synthetic” hetero-

genous datasets by using generative AI [12]. Recently, interest in
generative AI has amplified since the advent of LLMs such as
ChatGPT (OpenAI) and diffusion models such as DALL-E (OpenAI)
and Midjourney (Midjourney Inc.) [5, 13, 14]. If translated into
healthcare, this technique holds great promise for overcoming
challenges associated with the need for diverse and inclusive
datasets without privacy concerns [15]. Generative AI techniques
can be streamlined into research to develop broad-ranging
Synthetic Datasets (SDs) that simulate real-life healthcare data.
These generative models learn patterns from the input (training
data) and produce synthetic data as outputs [15].
The following narrative describes challenges faced by research-

ers in the curation of traditional datasets. It further explains the
mechanism of some generative AI techniques that can be used to
generate SDs.

CHALLENGES OF “TRADITIONALLY ACQUIRED” DATASETS
Data privacy and ethical concerns
On an organizational level, healthcare data is costly and is
associated with a deep-seated resistance to data sharing between
institutions since it is considered hospital property [2]. Data transfer
agreements, including the Portability and Accountability Act of
1996 in the United States, have set strict regulations to ensure
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patient confidentiality [15]. These regulations make it exceedingly
difficult for researchers to access medical data, leading to a lack of
diversity in the currently available datasets. Additionally, erasing the
metadata associated with medical images does not ensure patient
privacy, which can still be compromised, making it challenging to
share data across institutions [15].

Data annotation
The curation and annotation of large-scale datasets is a time-
consuming and resource-intensive task [3]. It requires subject
experts to manually label all features in an image, spending valuable
time developing the dataset. This cumbersome task prevents
researchers from investing time in performing experiments [3, 11].
Moreover, errors can be incorporated into these labels, decreasing
the accuracy of the AI model trained on this data. The generation of
synthetic and fully annotated data can potentially eliminate
laborious annotations, accelerating AI research.

Biases
Bias may be quantified as the differential impact of a healthcare
process on a particular subgroup [16]. AI may be considered free
of human bias due to its self-learning nature, however, biases in AI
development can be introduced at any stage of the algorithm
development process [16]. This is due to the black-box nature of
contemporary AI systems [17].
Due to the upsurge of AI in developed countries, the datasets

produced are not representative of the global population, which
has led to data-driven biases such as those of socioeconomic
standing and ethnicity [18]. Another type of bias that may be
incorporated into traditional datasets is due to the acquisition of
images from a specific machine. All images in this dataset have
distinct dimensions limiting variations in data required to develop
a generalizable AI model. Moreover, the presence of “class
imbalances” in datasets, such as the lack of sufficient examples
of a rare disease in dataset gathered from a population, inculcates
sample selection bias that also hinders the real-life applicability of
AI models trained on these datasets [18]. It is therefore imperative
that data from as many countries as possible be included.

GENERATIVE AI TECHNIQUES
There are various AI techniques for generating synthetic datasets.
The mechanisms of more common ones have been described in
the following text.

Variational Autoencoders (VAEs)
VAEs are an advanced version of a deep generative model
known as Auto Encoder (AE), that can learn complicated
patterns in training data. AE consists of two parts: an “encoder”
and a “decoder”; the encoder takes high-dimensional input data,
such as an image or a text sequence, and maps it to a lower-
dimensional representation known as “latent space”. This space
is a compressed version of original input data, capturing the
most relevant features in a simplified form for easier processing
[19, 20]. The decoder then employs this compressed latent
space data and reconstructs it back to its original form. However,
AEs are deterministic, meaning that no “new’ data is generated,
and these can only reconstruct the original data [19, 20]
(Fig. 1a, b).
VAEs extend the concept of AEs by introducing statistical

techniques, such as probability distributions (a mean value and
standard deviation), into the latent space. This probabilistic
approach allows VAEs to learn a range of possible values for each
encoded input, meaning that VAEs can reconstruct original data
by creating new and similar data points of the original data,
leading to the production of synthetic data [21, 22].
VAEs have been used in medicine and dentistry, enabling the

generation of realistic medical images and health records,
improving lung sound classification, and overcoming data
limitations in medical imaging analysis. Their effectiveness in
generating clinical sounds, images, and realistic EHRs shows
promise in advancing data-driven medical care delivery [23].

Generative Adversarial Networks (GANs)
GANs comprise two neural networks: a “generator” and a
“discriminator” [20, 24]. The generator uses random noise
(gaussian) and produces an image which closely resembles the
real images. The discriminator receives the images with the task of
distinguishing between “real” and “fake” ones [20]. As the name
suggests, these models are trained in an adversarial way; the
generator is trained to generate images closely mimicking real
images to mislead the discriminator. On the other hand, the
discriminator is educated to progressively improve at distinguish-
ing real images from the false ones. The generator improves at
generating realistic images as the training goes on, while the
discriminator improves at detecting fraudulent ones. In this
concept there is always a winner and loser in which the loser
will update its internal parameters for the next iteration, thus
ensuring constant improvement (Fig. 1c).

Fig. 1 Generative AI techniques. a Auto Encoder—A high-dimensional input image processed through the latent space with deterministic
variables to produce a low-dimensional output image. b Variational Autoencoder—A high-dimensional input image processed through the
latent space with probabilistic variables to produce a “new” high-dimensional output image. c The workflow of a generative adversarial
network, showing the working of generator and discriminator models. Incorrect predictions lead to the generator and discriminator model
adjusting their internal parameters to improve their performance after each iteration. d The forward and backward passes of a diffusion model
which uses Gaussian noise to generate a “new” image.
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Researchers have used GANs to generate two-dimensional
cephalograms from Cone Beam Computed Tomography and
improve landmark detection [25]. GANs have been utilized to
generate highly realistic intraoral images which experienced pediatric
dentists were unable to distinguish as either fake or real [26].

Diffusion models
Recently, diffusion models have gained popularity as generative AI
that can yield superior results compared to GANs and VAEs [27]
(Fig. 1d). These models create new data using a two-step process:
the “forward pass” (encoder) and the “backward pass” (decoder).
During the forward pass, noise (gaussian) is progressively added
to the data (pictures, radiographs, etc) in an iterative manner. This
means that at each step of the process, noise is introduced into
the image. In the backward pass, the model reverses this process
and attempts to remove noise from the image. This allows the
model to learn the relationship between different pixels in an
image. Thus, the models “corrupt” training image by adding noise
and then learn to recover the data during the denoising process.
The model can therefore be trained to generate new images using
prompts [27].
In healthcare research, diffusion models have been utilized to

generate realistic chest X-ray, Magnetic Resonance Imaging and
histology images [28].

CHANCES OF SDS
SDs can add further value to the following healthcare domains.

Research
Since the performance of an AI model is dependent on the
amount and variation of data used for training, SDs can lead to the
development of robust models [3]. Traditionally, data augmenta-
tion is carried out by simple modifications to the training dataset
such as flipping, rotation, translation, etc but these alterations add
limited new features to the dataset [29]. The generation of
synthetic images allows for augmentation at a wider scale by
adding images of greater variance to the dataset.
The potential of generative AI is being considered for producing

new types of data for researchers to conduct experiments. For
example, in drug discovery, where AI can be utilized to generate
candidate molecules for pharmaceuticals to create new compounds

for lab testing [30]. Synthetic Minority Oversampling Technique
(SMOTE) can be used where specific rare examples of disease can be
generated and purposefully combined into SDs to include all
possible features of data [31]. SMOTE can also potentially mitigate
“shifts” in data, by adding synthetic examples of new emerging data
features within populations. This will ensure that the SDs remain
applicable and generalizable with the constantly changing medical
practices [32].

Education
SDs can also be developed for creating simulations for training
dental and medical students [1]. These simulations can be
customized to the individual needs of every student, helping
train them in their areas of deficiency [33]. With the current pace
of advancements in generative AI, a virtual instructor with
generated characters seems likely in the near future. Educational
chatbots specific to different fields of study are already emerging,
with sure improvements in the future.

CHALLENGES OF SDS
The extensive use of SDs is not without its shortcomings which
may have a negative impact on patient care.

Confidentiality
Due to its ability to learn the original distribution of data,
generative AI may still lead to patient re-identification by
associating the image with information such as patient visit date
and time of exposure [23]. Therefore to mitigate this issue, any
patient identifiers need to be manually removed from the training
images to prevent “privacy leakage” [23].

Metrics for “syntheticism”
There is a lack of research relating to the evaluation of these
generative AI models. Standardized evaluation metrics are needed
to determine the level of syntheticism of SDs [34]. The images
should be “synthetic” enough to avoid any resemblance to real
images, and “realistic” enough to be applicable to real-world
scenarios. Before SDs can be employed for training AI, its realism
needs to be determined by a subject expert [1, 35]. Moreover, it
has been shown that synthetic images of lower resolution are
difficult to distinguish and exhibit more “realism” than those with

Fig. 2 Challenges and biases in the entire AI cycle. Denoted are the aspects that can be managed with the use of SDs.
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higher resolutions [26]. One such metric for evaluating the realism
of SDs include “fidelity” that measures the structural similarity
between original and synthetic images [36].

Biases
Despite the advantage of reduced biases associated with SDs,
generative models can still retain some of the biases [36]. Since
humans are involved in the production of synthetic data, the
inherent risk of incorporating human bias remains an area of
concern. Similar to “provider bias” where a physician may be
prejudiced against a certain racial group for example, these biases
invariably translate into AI models [36]. If these biases are not
addressed at an early stage of AI development, it can lead to
inaccurate results that are not representative of the population
[37]. For the elimination of biases, it is crucial to identify all
possible biases as well as the cause of their incorporation during
the “AI cycle” (Fig. 2). One method includes the bioethical analysis
of AI cycles from the initial developmental stages through
deployment [36]. The identification and mitigation of biases
improve “AI fairness”; this implies the equal performance of the AI
model across all subgroups in a population [38]. Some measures
to ensure clinical AI fairness include panels of AI researchers,
clinicians, and ethicists proactively overseeing the process of
dataset curation and model training to ensure a clinically fair AI
model [32]. Detailed discussions on mitigation of biases in AI is
beyond the scope of this paper and can be found elsewhere [36].

False synthetic data
Generative AI can purposefully be used for the production of false
data also known as “deepfakes” [39]. These synthetically altered
images are a threatening advancement in AI that can potentially
cause harm to individuals as well as industries [39].
Hallucination is a pertinent issue that has surfaced with the

widespread use of generative AI. This refers to the phenomenon
of production of synthetic images with factual errors, much like
the incorrect information that has been produced by ChatGPT
[39]. Since synthetic healthcare data is representative of authentic
data that is used to treat humans, the incorporation of data with
errors such as incorrect anatomy or false illustration of disease can
be detrimental. Further research is required to better understand
the implication of hallucinations and deepfakes in synthetic
medical and dental data. The reliability of SDs is difficult to
determine as there are no evaluation metrics so far since this
aspect of AI is still under development. One possible way to
determine the robustness of SDs is to involve subject-level experts
such as doctors for medical images, to validate the accuracy of the
images before utilization and is an area of future research.

CONCLUSION
VAEs, GANs and diffusion models have been utilized in healthcare
research to generate SDs. Synthetic data customized to the need
of researchers can be produced to train robust AI models. These
models, having been trained on such a diverse dataset will be
applicable for dissemination across countries. However, there is a
need for the limitations associated with SDs to be better
understood, and attempts made to overcome those concerns
prior to their widespread use. Of greater importance is the need
for AI governance to ensure that generative AI is being
implemented in a way that is beneficial to society [40].
Transparency in AI development and adherence to strict standards
is a prerequisite for this technology to make a noticeable impact in
healthcare settings.
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