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OBJECTIVE: The purpose of this study was to construct a facial deformity dataset and a network model based on heatmap
regression for the recognition of facial soft tissue landmarks to provide a basis for clinicians to perform cephalometric analysis of
soft tissue.
MATERIALS AND METHODS: A 34-point face marker detection model, the Back High-Resolution Network (BHR-Net), was
constructed based on the heatmap regression algorithm, and a custom dataset of 1780 facial detection images for orthognathic
surgery was collected. The mean normalized error (MNE) and 10% failure rate (FR10%) were used to evaluate the performance of
BHR-Net, and a test set of 50 patients was used to verify the accuracy of the landmarks and their measurement indicators. The test
results were subsequently validated in 30 patients.
RESULTS: Both the MNE and FR10% of BHR-Net were optimal compared with other models. In the test set (50 patients), the
accuracy of the markers excluding the nose root was 86%, and the accuracy of the remaining markers reached 94%. In the model
validation (30 patients), using the markers detected by BHR-Net, the diagnostic accuracy of doctors was 100% for Class II and III
deformities, 100% for the oral angle plane, and 70% for maxillofacial asymmetric deformities.
CONCLUSIONS: BHR-Net, a network model based on heatmap regression, can be used to effectively identify landmarks in
maxillofacial multipose images, providing a reliable way for clinicians to perform cephalometric measurements of soft tissue
objectively and quickly.
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INTRODUCTION
Orthognathic surgery aims to address issues with dental function
[1] and facial esthetics and to improve the symmetry and
coordination of facial structures. As patients’ esthetic require-
ments have continuously increased, treatment concepts guided
by esthetics have gradually become more common in orthog-
nathic surgery. Normal facial shape is the basis for normal social
communication. Patients with dentofacial deformities (DFDs) often
have social difficulties and can even suffer from feelings of
inferiority and depression [2, 3]. Therefore, orthognathic surgeons
should determine the treatment targets of orthodontic and
surgical operations based on esthetic evaluation of the degree
of dental deformity.
Esthetically evaluating the face primarily depends on the

measurement and analysis of soft tissue. The advent of soft tissue
cephalometric changed the treatment philosophy of orthognathic
surgery to a focus on “the coexistence of harmonious facial
features and good function” [4, 5]. This change in philosophy
suggests that clinicians should fully consider the morphology of
soft tissues when making surgical plans [6, 7]. Analysis of soft
tissue morphology and structure is important for evaluating facial
esthetics and postoperative effects [5], whereas the quantitative

analysis of facial protrusion, the nasolabiomental relationship and
lateral soft tissue fullness has more clinical significance in
diagnosis, treatment planning and assessment of facial coordina-
tion. Currently, the diagnosis of DFD is usually based on
cephalometric analysis of lateral X-ray or computed tomography
(CT) data [8, 9]. However, orthognathic surgeons can analyze the
ratio of face width to face height using only soft tissue images.
When doctors evaluate facial esthetics, they usually measure facial
data by using a ruler or facial arch depending on their work
experience, which is time-consuming, subjective and highly
experience dependent. Therefore, clinical work still lacks an
objective and rapid assessment method for facial soft tissue.
The rapid development of artificial intelligence (AI) in the

medical field offers a possibility for addressing this problem [10].
In deep learning (DL) strategies, convolutional neural networks
(CNNs) are widely used in medical image analysis and have good
image processing capabilities. Sun et al. used a CNN on the LFW
database to achieve a facial recognition accuracy of up to 97.45%
[11]. Jeong SH [12] used VGG19’s CNN to assess whether patients
needed orthognathic surgery, with an accuracy of 89.3%. They
found that the CNN was relatively accurate at determining the
outline of soft tissue needed for orthognathic surgery based on
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images alone. Although VGG networks have shown that increasing
network depth affects the final performance of the network to
some extent, it consumes more computing resources and uses
more parameters, thus resulting in a greater memory footprint.
Patcas R noted that facial attractiveness in patients with cleft
palate can be objectively assessed using AI [13]. Plastic surgeons
have used CNNs to assess sex typing after facial feminization
surgery [14] and age changes after rhinoplasty and cosmetic
surgery [15]. Horst et al.’s DL-based algorithm predicts 3D soft
tissue contours after mandibular extension [16], and its prediction
accuracy is greater than that of the mass tensor model; moreover,
the error accuracy is within the clinically acceptable range [16].
Oguzhan Topsakal et al., using an open-source 3D deformable
software, successfully synthesized 980 3D face model datasets
using DL [17]. However, whether the accuracy of these synthetic
faces can meet medical requirements requires further research.
Heatmap regression is a mainstream method for facial key point

recognition. It has the advantages of intuitive visualization,
appropriate model selection and interpretability of results
[18–20]. Liu et al. [21], Wan et al. [22, 23], Kumar et al. [24] and
Huang et al. [25] have all developed face key point detection
methods based on heatmap regression. Jun Wan et al. established
a more effective facial shape constraint model by designing soft
transform modules and hard transform modules to cooperate with
each other in a reference heatmap transformer (RHT). Moreover,
through RHT fusion and a multiscale feature fusion module
(MSFFM), converted heatmap features can be fused with semantic
features learned from original faces to generate more accurate
landmark heatmaps and achieve more accurate landmark detec-
tion [26]. Seoungyyoon Kang et al. proposed an effective
semisupervised face feature detection framework based on a
hybrid representation called HybridMatch. These methods reduce
quantization errors by using high-resolution one-dimensional
heatmap representations and promote fast convergence of
semisupervised learning by using low-resolution two-dimensional
heatmap representations. Moreover, these methods have
achieved excellent performance on open source datasets [27].
Although soft tissue cephalometry plays a very important role

in the diagnosis of facial deformities, it has not been widely used
in clinical practice due to its cumbersome measurement
methods and subjective results. Facial detection technology
based on DL has been widely studied. However, due to the
privacy of medical data, there are currently no facial deformity
datasets specifically for orthognathic surgery research, and no
researchers have attempted to construct a network model that
can simultaneously detect multiple pose images, such as front,
side, smile, and open mouth images, that can be used for facial
deformity diagnosis.
In this study, we successfully collected a dataset of facial

developmental deformities that can be used in orthognathic
surgery and developed a network model based on a heatmap
regression algorithm with a powerful spatial generalization ability
that can realize accurate recognition of multiple landmarks in the
maxillofacial region. According to these automatically recognized
anatomical landmarks, clinicians can objectively obtain facial
morphometric indicator data and provide a reliable method for
facial soft tissue topography analysis (Fig. 1).

MATERIALS AND METHODS
Datasets
The open-source Wider Facial Landmark in the Wild (WFLW) [28] and
300W [29] face key point datasets were used in this study. The WFLW
dataset is a 98-point dataset that is divided into two parts: 7500 faces in
the training set and 2500 faces in the test set (full) [28]. The 300W dataset
is a 68-point dataset with a total of 3148 images in the training set and 689
images in the test set (full) [29]. Using 822 facial images of dental
deformities used in the study by Jeong SH [12] as a reference and because
the open source dataset lacked the DFD and postural images needed for

this study, 1030 facial images of patients with maxillofacial deformities
who were treated at the Third Affiliated Hospital of Air Force Military
Medical University from November 2021 to December 2022 were collected
(n1= 1030). The deformities included Class II and Class III bone
malocclusions and maxillofacial asymmetric deformities (MADs). In
addition, 5 facial postural images were collected from 150 volunteers
who were treated from September to December 2022 and who were
determined by specialists to not have a history of facial hypoplasia or
congenital malformation, infection, trauma, or tumor. These included
resting frontal view (RFV), slight mouth opening (SMO), large mouth
opening (LMO), postural smile (PS), and resting lateral view (RLV) images,
with 750 photos collected in total (n2= 750). The subjects, randomly
numbered 1–150, included 105 males and 45 females aged 19–48 years,
with a mean age of 27.91 years. A total of 1780 images of DFD patients and
volunteers were combined into the custom dataset, which was used as the
training set (n= n1+ n2). Using the same inclusion criteria and image
acquisition requirements, multipose facial images of another 50 volunteers
were collected for the test set (n3= 250). These volunteers included 40
males and 10 females aged 18–39 years, with an average age of 27.98
years. The ratio of the test set to the training set was 14% (n3/n). To test
the generalization ability of the network model, photos of the volunteers
were taken via mobile phones rather than professional equipment.
Because this study involved facial images of volunteers and patients, the
datasets generated and/or analyzed during the current study are not
publicly available and may be obtained from the corresponding authors
upon reasonable request upon successful publication of the paper.

RFV. The patient sat in a fixed position, and the overall structure of the facewas
exposed up to the forehead and back to the auricular region. For these images,
the occluded hair was fixed, the eyes looked straight ahead, the line of the pupils
was parallel to the ground, the lips were naturally closed, the lower jaw was in a
resting position, the nose was in the center of the image, the shoulders were
relaxed, the back was straight, and the breathing was gentle. These images are
mainly used to assess facial symmetry.

SMO. The mouth was open with the incisal edges of the upper and lower
central incisors exposed when the mandible was lowered. The images
were taken at a distance of 5–20mm, and the shooting position was the
same as that of the RFV images. These images are generally used to
evaluate the effect of open-mouth training.

LMO. The mouth was open with the mandible lowered to the lowest
possible position and the incisal edges of the upper and lower central
incisors exposed. The shooting position was the same as that of the RFV
images. These images are used to assess joint function or mandibular
motor function.

PS. This expression is also known as a social smile; it can be reasonably
reproduced in daily life through training and does not change with
changes in mood. The shooting position was the same as that used for the
RFV images. These images are mainly used in smile analysis to evaluate
gum exposure, crown ratio and smile arc.

Fig. 1 Flowchart of the diagnostic system.
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RLV. The patient was seated with the body turned 90°, but the position
otherwise remained unchanged. The camera height was parallel to the
orbital ear plane, and the shooting position was the same as that of the
RFV images. These images are mainly used to evaluate the anteroposterior
position of the patient’s upper and lower lips and facial soft tissue and the
proportional relationship between face height and the size of the
mandibular plane angle.

Ground truth annotations
All the code used in this study was written in the Python 3.8 environment.
The Tkinter plug-in was used to develop a marking tool for facial image
marks. Three physicians with experience in orthognathic surgery (1
associate chief physician, 1 attending physician, and 1 resident physician)
were involved in the process. After unified calibration, image annotation

software was used to independently label the training set and test set
images 3 times according to the 34 proposed marker definitions (Table 1).
To ensure that the distance between subsequent landmarks could be
calculated, a 1 cm measuring scale was added to the custom dataset
(Fig. 2).

Preprocessing and cropping procedure
In practical applications, the obtained image may not be the same size as
the training set images, and the aspect ratio of the input image may not
meet the requirements of the network model. Therefore, in this study,
artificial intelligence was fully utilized to process all the input images at a
unified aspect ratio to meet the needs of neural networks in terms of the
input image size. The resolution of the images taken by a conventional
camera was 6000 × 4000. To balance the accuracy and computing speed of

Table 1. Definition of anatomical landmarks.

No. Name Abbreviation Definition

1 Right tragus TR The midpoint where the right tragus meets the soft tissue of the cheek

2 Right soft gonion GoR The most outwards, downwards, and backwards projection of the soft tissue contour
of the right mandible

3 Gnathion Gna The lowest point of the mental soft tissue in the midsagittal plane

4 Left soft gonion GoL The most outwards, downwards, and backwards projection of the soft tissue contour
of the left mandible

5 Left tragus TL The midpoint where the left tragus meets the soft tissue of the cheek

6 Nasion N The midpoint on the soft tissue contour of the base of the nasal root

7 Pronasale Prn The most anterior midpoint of the nasal tip

8 Right alar curvature AcR The point located at the facial insertion of the right alar base

9 Subnasale Sn The midpoint on the nasolabial soft tissue contour between the columella crest and
the upper lip

10 Left alar curvature AcL The point located at the facial insertion of the left alar base

11 Right exocanthion ExR The soft tissue point located at the right outer commissure of each eye fissure

12 Right superior palpebral
margin

UPmR The middle point of the right upper palpebral margin

13 Right endocanthion EnR The soft tissue point located at the right inner commissure of each eye fissure

14 Right lower palpebral margin LPmR The middle point of the right lower palpebral margin

15 Left endocanthion EnL The soft tissue point located at the left inner commissure of each eye fissure

16 Left superior palpebral margin UPmL The middle point of the left upper palpebral margin

17 Left exocanthion ExL The soft tissue point located at the right outer commissure of each eye fissure

18 Left lower palpebral margin LPmL The middle point of the left lower palpebral margin

19 Right cheilion CR The point located at the right labial commissure

20 Labiale superius LS The midpoint of the vermilion line of the upper lip

21 Left cheilion CL The point located at the left labial commissure

22 Labiale inferius Li The most inferior point of the upper lip in the midsagittal plane

23 Stomion superius Sts The most inferior point of the upper lip in the midsagittal plane

24 Stomion inferius Sti The most inferior point of the lower lip in the midsagittal plane

25 Right pupil PuR The center of the right pupil

26 Left pupil PuL The center of the left pupil

27 Upper incisor UI The most mesial point of the crown of the upper central incisor

28 Lower incisor LI The most mesial point of the crown of the lower central incisor

29 Subspinale Ss The most posterior midpoint of the philtrum

30 Sublabiale Sl The most posterior midpoint on the labiomental soft tissue contour that defines the
border between the lower lip and the chin

31 Soft pogonion Pog The most anterior midpoint of the chin

32 Soft gnathion Gn The mental soft tissue at the most anterior and inferior point of the median sagittal
direction

33 0 Left end of 1 cm scale

34 1 Right end of 1 cm scale

L stands for left side, R stands for right side.
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the DL model for predicting the key points of the face, the resolution of the
image needed to be reduced to 256 × 256. For the training set images, the
main body of the facial image was obtained by the maximum (x1) and
minimum (x2) horizontal coordinates and the maximum (y1) and minimum
(y2) longitudinal coordinates of the annotated marks. For the test set
images, the application programming interface (API) in MediaPipe [30] was
used for face detection to obtain the coordinate values (x1, y1) and (x2, y2),
and the boundary range of the face was subsequently obtained, as shown
in Fig. 3. The surface height (h) was obtained by calculating y1-y2, and the
surface width (w) was obtained by calculating x1-x2. To guarantee that
complete facial information was acquired, the boundaries had to be
expanded. If h > w, for the upper boundary, the scale coefficient was set to
k= 0.3, which enlarged the boundary by y1+ (h × k). For the lower
boundary, the scale coefficient was set to k= 0.1, which enlarged the
boundary by y2− (h × k). The height of the enlarged image was set to h̕.
To ensure the authenticity of the facial aspect ratio, the aspect ratio of the
cropped image should be 1:1, and the image boundary was expanded by
x1+ (h1−w)/2 and ×2− (h1−w)/2. The expanded image width was w̕.
The image was clipped using the above steps. Finally, Resize was used to
adjust the resolution of the cropped image to 256 × 256.
After cropping, the image was enhanced through random operations

such as rotation, mirroring, grayscale, and HSV format conversion during
model training. The dataset was expanded 4 times to aid in generalized
learning (Fig. 3).

Heatmap principle of landmark recognition
In the landmark principle of Gaussian heatmap regression, the model
regresses the heatmap at the pixel level and subsequently uses the
predicted heatmap to infer the key point location. Using the opposite
network structure to HR-Net, the input image is downsampled several
times to obtain features of different sizes that are then fused; at the same
time, upsampling ensures that the minimum size features are fully utilized
to obtain richer semantic information.
This method pays more attention than other methods to local features.

Furthermore, when the output feature map is large and the resolution is
high, the landmarks predicted by this method are more accurate. The

mathematical formula for generating a heatmap of the Gaussian kernel
function is shown in (1).

f ðx; yÞ ¼ e�
ðx�x0 Þ2þðy�y0 Þ2

2σ2 (1)

Here, σ is the Gaussian nuclear radius, the center of x0 is the Gaussian
kernel abscissa, and y0 is the Gaussian kernel center ordinate.
The Gaussian kernel image is shown in Fig. 4. In the heatmap, the pixel

value of a coordinate where a marker is located is 1, and the pixel value
decreases outwards until it reaches 0. Due to the slow operation speed of
regression based on heatmaps, the size of images is usually reduced. Since
the resolution of the input image affects the prediction accuracy and
operation speed [31], to balance the problems of speed and accuracy, the
resolution of the input image is reduced to 1/4 of the original image in BHR-
Net, and the number of pixels in the output image is set to 128*128 to
reduce the normalization error of the model. Then, a heatmap is generated
according to the size of the reduced image and the number and coordinates
of the landmarks. The number of heatmaps is equal to the number of
landmarks, and each heatmap corresponds to a key point coordinate.

Architecture of BHR-Net
In this paper, we propose a simple and effective high-resolution back
network that combines U-Net and HR-Net model structures to improve the
semantic representation of high-resolution outputs. Before an image is
input to BHR-Net, the resolution must be reduced to 1/4 of that of the
original image to balance the prediction speed and prediction accuracy.
The input image resolution is set to 256 × 256, and the output heatmap
resolution of the network model is 64 × 64. In actual application, the
resolution of the input image can be appropriately adjusted according to
the number of soft tissue landmarks. For example, the resolution of the
model output heatmap in the 34-point dataset is adjusted to 128 × 128,
which significantly improves the prediction accuracy.
The main body of the network model is divided into two parts, an

encoder and a decoder. The encoder uses a method similar to U-Net to
downsample the input features three consecutive times to obtain deeper
features while saving the feature maps of different scales for skip

Fig. 2 Schematic diagram of the RFV, SMO, LMO, RLV and PS anatomical landmarks. When labeling RLV images, because the contralateral
anatomical structure was not visible, the corresponding labels were assigned to the same anatomical position on the visible side.
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connections with the corresponding feature maps in the decoder. The
encoder also uses a convolution layer with a step size of 2 to replace the
maximum pooling layer for downsampling (Stage 1). The decoder uses the
HR-Net method to carry out feature fusion on all feature graphs of different
scales. In our method, the number of features to be fused decreases at
each stage. In Stage 2, feature graphs of all sizes that are output from the
encoder are fused. The number of feature graphs is gradually reduced in
Stage 2, Stage 3 and Stage 4, as only higher resolution feature maps are
retained. Stage 4 inputs only the highest resolution feature maps. Finally,
the lowest resolution feature maps of Stage 2, Stage 3 and Stage 4 are
selected, and feature fusion is carried out with the output of Stage 4 to
obtain the final output. This approach effectively improves the utilization
rate of the feature graph with the lowest resolution and the strongest
semantic feature and improves the prediction accuracy. To increase the
depth of the network and extract deeper features, Stage 2 is repeated
twice, and Stage 3 is repeated four times (Fig. 5).

Improvements to BHR-Net
The smallest resolution feature map in HR-Net is output after only one
fusion, although it often contains richer semantic information. The feature
extraction method of BHR-Net constructed in this paper is the opposite of
that of HR-Net. The upsampled low-resolution feature maps are fused with
other high-resolution feature maps, and then features are extracted
through a convolution operation until the highest feature map size is
restored. In addition, the feature maps at each resolution other than the
highest resolution are also output separately, and the feature maps at
different resolutions are simultaneously upsampled to the same resolution
as the highest feature map and fused. The final result is obtained through
the convolution operation. In this way, even the smallest resolution feature
map can be fully utilized.

Loss function
This model uses the L2 loss function, also known as the mean squared
error (MSE), which is commonly used in the field of key point detection.
The average error between the predicted value and the actual value is
evaluated by calculating the sum of squares of the distance between the
predicted value and the actual value, and its range is 0 to +∞. The formula
of the L2 loss function is shown in (2).

L2ðY; f ðxÞÞ ¼ 1
n

Xn

i¼0

ðYi � f ðxÞiÞ2 (2)

Where Y represents the predicted value, f(x) represents the true value,
and n represents the number of key points. The gradient of the L2 loss
function is x and is continuous at 0. The gradient is proportional to the size
of the error; the larger the error is, the larger the gradient and the faster
the convergence rate, and the smaller the error is, the smaller the gradient.
However, the function is highly sensitive to outliers, large errors have too
much influence on the direction of the gradient update, and the weights
cannot be effectively updated if the errors are too small (Fig. 6).

Model training
The network model used in this study is developed primarily based on the
open-source HR-net framework model, and the PyTorch DL framework is
used for training on the Linux system Ubuntu 20.04. The central processing
unit (CPU) is an Intel (R) Xeon(R) Platinum 8358P (15 cores, 2.60 GHz). The
graphics processing unit (GPU) is an NVIDIA GeForce RTX3090 (24G), and
Compute Unified Device Architecture (CUDA) version 11.3 is used. All
hyperparameter settings in the experiment are shown in Table 2.

Fig. 4 Schematic diagram of the Gaussian kernel.

Fig. 3 Image preprocessing and image enhancement. a Original image. b The coordinate values (x1, y1) and (x2, y2) were obtained, and the
surface height h and surface widthwwere obtained by calculating y1-y2. c If h > w, for the upper boundary, the scale coefficient was set to k= 0.3,
and the boundary was enlarged by y1+ (h × k). For the lower boundary, the scale coefficient was set to k= 0.1, and the boundary was enlarged by
y2− (h × k). The height of the enlarged image was termed h̕. d To ensure the authenticity of the face aspect ratio, the aspect ratio of the cropped
image should be 1:1, and the image boundary was expanded by x1− (h1−w)/2 and ×2+ (h1−w)/2. The expanded image width was termed w̕.
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First, before model training, the stability of the 3-observer labeled
dataset is analyzed by the intragroup correlation coefficient (ICC). As
shown in Fig. 2, 34 points are manually marked in the images of both the
custom training set and the test set, including 32 anatomical points and “0”
and “1” points. All 34 markers could be automatically recognized by BHR-
Net. In this manuscript, 14 anatomic markers (Figs. 7 and 8) that constitute
the measurement indicators for preoperative diagnosis of orthognathic
surgery are selected, while the other 18 markers are not closely related to
the topic of this paper.
Then, the preprocessed images are input into the BHR-Net model, and

the average coordinate values of the open-source dataset and the
manually annotated custom dataset are used for training. The Adam
optimizer is used during training, the batch size is set to 16, and the
initial learning rate is set to 0.001. When there are 20 training rounds and
the loss value is no longer reduced, the learning rate is reduced tenfold
to obtain the global optimal solution, and the training ends after 300
epochs.

Performance evaluation indices and results
Interocular normalization (ION) aims to remove unreasonable changes due
to inconsistencies in the dimensions of the face. The mathematical formula
for ION is shown in (3):

ei ¼
kxprei � xgtik2

dIOD
(3)

Here, xprei denotes the coordinate point prediction, and xgti denotes the
real coordinate points. The subscripts xi are numbered one-to-one relative
to the key points in Table 1. For example, in ION, dIOD ¼
D x36; y36ð Þ; x45; y45ð Þð Þ indicates the outer canthal spacing between two
eyes.
The mathematical formula of the mean normalized error (MNE) [32] is

shown in (4). Here, xprei denotes the coordinate point prediction, xgti
denotes the real coordinate points, dIOD denotes ION, and N is the number
of key points. MNE represents the average error of N key point coordinates

Fig. 6 L2 loss function and its gradient diagram.

Fig. 5 Architecture diagram of the Back High-Resolution Network outlining the deep learning model architecture. The architecture has 4
stages. Stage 1 obtains the branches of feature maps with different resolutions. Stage 2 to Stage 4 obtain and fuse multidimensional feature
maps. Using the opposite network structure of HR-Net, the input image is downsampled several times to obtain features of different sizes,
which are then fused; at the same time, upsampling ensures that the minimum size features are fully utilized to obtain richer semantic
information.
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based on ION.

e ¼
PN

i¼1 kxprei � xgtik2
N ´ dIOD

´ 100% (4)

For the failure rate (FR) [32] during sample prediction, if the normalized
MSE is greater than 10%, then prediction failure is considered to have
occurred. The proportion of the number of prediction failures in all
samples to the total sample is expressed as the failure rate.

In this study, we tested BHR-Net on the WFLW and 300W datasets and
found that both MNE and FR improved. Moreover, the test results of BHR-
Net improved by the heatmap regression method are obviously better
than those of HR-Net on custom datasets (Table 3).

Model testing and data analysis
BHR-Net was tested on a set of 50 human faces using the average value of
manually marked data as the control group. The accuracy of BHR-Net in
the recognition of landmarks was evaluated using the measurement
indicators in Table 4. The statistical analysis software SAS was used to
conduct a single-sample t test (the test standard was 2mm) and a paired t
test for measurement indicators.

Model application
Shahidi et al. [33] and Leonardi et al. [34] tested approximately 40 patients
in their studies. In this study, after the model test was successful, facial
anterior-lateral images of 30 patients with maxillofacial deformities
diagnosed by experts were selected for application validation. The
diagnosis was made by measuring indicators, and the accuracy was
judged by a confusion matrix. Moreover, the preoperative and post-
operative data of the AI group and the manual group were analyzed via
paired t tests.

Fig. 7 Schematic diagram of the distances between anatomical landmarks. 1. Facial esthetic line: The E line is composed of the line
between Prn and Pog. 2. Facial midline (FM): the marker is on the facial midline; the points N, Prn, Sn, As, Ls and IIs are marked through the
least square regression imaginary straight line. 3. In the plane Cartesian coordinate system, when the k value is positive, the confluence plane
is inclined upwards; when the k value is negative, the confluence plane is inclined downwards; and when k= 0, the confluence plane is
parallel to the horizontal plane. 4. The serial number of the marker points refers to the code of the marker points constituting the
measurement index in each image shown in Fig. 2.

Fig. 8 Angle diagram between anatomical landmarks.

Table 2. Experimental hyperparameter settings.

Optimizer Adam

Initial learning rate 0.001

Learning rate decay strategy Step beam attenuator

Learning rate attenuation frequency Training 20 rounds of loss
value does not decrease,
the learning rate is
reduced by 10 times

Submitted spec 16

Training rounds 300
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RESULTS
Multiple pose images are included in this study, and the markers
that constitute the face measurement indicators in each pose
image are not consistent. However, the DL algorithm requires the
number of mark points in each pose to be consistent. Therefore,
34 points are marked and trained in this study, but statistical
analysis is performed only for the landmark points constituting the
measurement indices in any attitude image .

Stability of manually labeled data (Tables 5 and 6, Figs. 9 and 10)
The following intraobserver ICCs were <0.75: Pog, N point in RFV,
N point in PS, and intraobserver Y axis of CL point in SMO. The
ICCs of the axis of other landmarks are ≥0.75.
The coordinate axes with an ICC < 0.75 between observers are Li

in SMO and UI and X-axis in PS; the N-point, Prn, As, IIs, and Pog in

RFV; Y-axis in Mes, N, and Prn in SMO; and CL in PS. All other ICCs
are ≥0.75.

Accuracy of landmark recognition (Table 7, Fig. 11)
In the test set of 50 patients, the average values of the predicted
marker points are compared with those marked by the manual
group. 1. The accuracy of the submental points in the RFV, SMO,
LMO and PS poses is low (p > 0.05), and the 95% confidence
interval contains 0; therefore, these differences cannot be
rejected. 2. The accuracy of the nasal root point in the SMO and
LMO postures is low (p > 0.05), and the 95% confidence interval
contains 0; therefore, the difference cannot be rejected. 3. In RLV,
3 cases of error exist at the Prn point, and 1 case of error exists at
the Sn point; these cases should be eliminated from the statistical
analysis. The landmark accuracy in all the other pose images is

Table 3. Comparison of MNE and FR according to the experimental results for each model.

Index Network model WFLW 300W Customize

Common Challenging Full

MNE(%) Resnet50 7.1 8.6 15.4 10.7 –

Mobile-net 6.9 8.2 17.5 11.4 –

DeCaFa [45] 6.6 – – – –

PIP-Net [18] 6.5 – – – –

EfficientNet-B3 [46] 7.8 – – – –

ATPN [47] 6.1 – – – –

3FabRec [48] 6.2 7.3 9.7 8.3 –

HR-net 5.9 7.3 9.4 8.1 7.5

BHR-net 5.2 6.9 9.4 7.8 2.5

FR > 10% (%) Resnet50 11.9 10.9 20.6 11.6 –

Mobile-net 14.35 10.2 29.4 17.3 –

DeCaFa [45] 8.9 – – – –

PIP-Net [18] 8.2 – – – –

EfficientNet–B3 [46] 19.7 – – – –

ATPN [47] 7.4 – – – –

3FabRec [48] 8.2 – – – –

HR-net 7.1 8.6 16.3 12.1 7.2

BHR-net 6.9 7.8 13.7 10.6 1.4

% omitted, – not counted.
The data in bold are the results of the BHR-net.

Table 4. Measurements based on landmarks.

No. Measurements Abbreviation Marker number Definition

Distance 1 D1 Large/D2 Slight UI-LI 27-28 The distance of UI-LI

2 D3 Ls-E 20 Horizontal distance from Ls to E

3 D4 Li-E 22 Horizontal distance from Li to E

4 D5 IIs-E 30 Horizontal distance from IIs to E

5 D6 Left/D7 Right C-Mes 19-32/21-32 The distance of C-Mes

6 D8 Pog-FM 31 Horizontal distance from Pog to FM

7 D9 Gn-FM 32 Horizontal distance from Gn to FM

8 D10 Mes-FM 3 Horizontal distance from Mes to FM

Slope 1 K CR-CL/x0 19/21 The slope of the bilateral Angle line to the horizontal plane

Angle 1 Facial angle N-Sn-Pog 6-9-31 Angle between N-Sn and Sn-Pog

2 Nasofacial angle Prn-N-Pog 7-6-31 Angle between Prn-N and N-Pog

3 Nasomental angle N-Prn-Pog 6-7-31 Angle between N-Prn and Prn-Pog

4 Mentolabial angle Li-IIs-Pog 22-30-31 Angle between Li-IIs and IIs-Pog

5 ANB angle As-N-IIs 29-6-30 Angle between As-N and N-IIs
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very high (p= 0), the 95% confidence interval does not contain 0,
and the difference can clearly be rejected. 4. When the error
standard is controlled to 2mm, the Mes point and N point have
the lowest proportions in each pose. 5. When the error standard is
controlled to 4 mm, the proportion of points marked <4mm in all
the images is as high as 94%, except for the nose root point of the
LMO images, which is 86%.

Accuracy of the test indicators (Tables 8–11, Fig. 12)
In the 50-image test set, the measurement indices of the predicted
markers are compared with those of the mean coordinate values
of manually labeled markers: the p values of D2, D3, D4, D5, D6,
D7, D8 and k are ≥0.05, and no significant difference exists. The p
values for D1, D9 and D10 are 0, indicating a statistically significant
difference.

Table 5. Intraobserver ICCs of 14 landmarks in the manual group.

No Name observer RFV RLV SMO LMO PS

x y x y x y x y x y

1 Mes A 0.92 0.99 0.92 0.97 0.97 0.99 0.98 1.00 0.93 1.00

B 0.95 1.00 0.95 0.99 0.95 0.99 0.97 1.00 0.91 0.99

C 0.95 1.00 0.82 0.91 1.00 1.00 0.97 0.99 0.91 1.00

2 N A 0.98 0.44 1.00 0.96 0.99 0.83 0.99 0.97 0.99 0.80

B 0.97 0.70 1.00 0.98 0.99 0.90 0.99 0.96 0.99 0.79

C 0.98 0.77 1.00 0.93 1.00 1.00 0.99 0.90 0.99 0.54

3 Prn A 0.99 0.91 1.00 0.96 0.99 0.93 0.99 0.96 0.99 0.89

B 0.98 0.84 1.00 0.97 0.99 0.91 0.99 0.98 0.99 0.92

C 0.99 0.85 1.00 0.90 1.00 1.00 0.99 0.95 0.99 0.83

4 Sn A 0.98 0.93 1.00 0.95 0.99 0.93 0.99 0.97 0.99 0.97

B 0.99 0.95 1.00 0.98 0.99 0.96 1.00 0.99 0.99 0.98

C 0.99 0.98 0.99 0.87 1.00 1.00 1.00 0.98 0.99 0.96

5 CR A 0.98 0.98 1.00 0.95 1.00 0.98 0.99 0.97 0.99 0.98

B 0.97 0.97 – – 0.99 0.96 1.00 0.98 0.99 0.98

C 0.99 0.98 – – 1.00 1.00 0.99 0.96 0.99 0.94

6 Ls A 0.98 0.98 – – 0.99 0.99 0.98 0.99 0.98 0.99

B 0.99 0.97 1.00 0.98 0.99 0.97 0.99 0.99 0.99 0.98

C 0.99 0.99 0.98 0.89 1.00 1.00 0.99 0.98 0.98 0.97

7 CL A 0.97 0.98 – – 1.00 0.98 0.99 0.96 0.99 0.99

B 0.96 0.98 – – 0.84 0.67 1.00 0.98 0.99 0.99

C 0.99 0.99 – – 1.00 1.00 0.99 0.97 0.99 0.97

8 Li A 0.96 0.98 1.00 0.96 0.99 0.99 0.98 1.00 0.97 0.99

B 0.98 0.98 1.00 0.98 0.75 0.82 0.97 1.00 0.97 0.99

C 0.98 0.99 1.00 0.94 1.00 1.00 0.99 1.00 0.98 0.99

9 UI A – – – – 0.98 0.98 0.97 0.98 0.98 0.98

B – – – – 0.98 0.98 0.99 1.00 0.89 0.99

C – – – – 1.00 1.00 0.99 0.99 0.98 0.96

10 LI A – – – – 0.97 0.99 0.98 0.99 – –

B – – – – 0.99 0.99 0.99 1.00 – –

C – – – – 1.00 1.00 0.99 0.99 – –

11 As A 0.99 0.82 1.00 0.95 – – – – – –

B 0.98 0.92 1.00 0.97 – – – – – –

C 1.00 0.96 1.00 0.88 – – – – – –

12 IIs A 0.96 0.95 1.00 0.97 – – – – – –

B 0.98 0.90 1.00 0.98 – – – – – –

C 0.98 0.97 1.00 0.93 – – – – – –

13 Pog A 0.95 0.56 1.00 0.95 – – – – – –

B 0.96 0.70 1.00 0.98 – – – – – –

C 0.98 0.71 1.00 0.93 – – – – – –

14 Gn A 0.96 0.81 0.98 0.95 – – – – – –

B 0.96 0.87 0.99 0.98 – – – – – –

C 0.97 0.87 0.94 0.86 – – – – – –

– not counted.
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After comparison of facial angles, the p values of the facial
angle, nasofacial angle, nasomental angle and ANB angle are all
≥0.05, and the correlation coefficients are all ≥0.9, indicating no
significant differences. The p value of the difference in the
mentolabial angle is <0.05, which indicates a significant
difference.

Confusion matrix
Thirty patients were examined—10 patients each with Class II or
Class III deformities or MADs. The diagnostic accuracy for Class II
and III deformities is 100%. The classification and diagnostic
accuracy of MADs is 70%. The classification and diagnostic
accuracy of the occlusal plane is 100% (Tables 12 and 13).

Table 6. Interobserver ICCs of 14 landmarks in the manual group.

No. Name Time RFV RLV SMO LMO PS

x y x y x y x y x y

1 Mes 1 0.93 0.99 0.91 0.97 0.95 0.99 0.96 1.00 0.83 0.98

2 0.88 1.00 0.83 0.88 0.94 0.99 0.95 1.00 0.89 0.98

3 0.90 0.99 0.86 0.90 0.93 0.99 0.95 1.00 0.88 0.98

2 N 1 0.97 0.69 1.00 0.96 0.99 0.73 0.99 0.90 0.99 0.55

2 0.98 0.55 1.00 0.89 0.99 0.80 0.99 0.93 0.98 0.56

3 0.97 0.58 1.00 0.91 0.99 0.78 0.99 0.95 0.99 0.60

3 Prn 1 0.98 0.82 1.00 0.94 0.98 0.72 0.99 0.92 0.98 0.64

2 0.98 0.73 1.00 0.82 0.98 0.77 0.99 0.91 0.98 0.39

3 0.99 0.66 1.00 0.85 0.98 0.81 0.99 0.87 0.98 0.33

4 Sn 1 0.98 0.93 1.00 0.95 0.99 0.89 0.99 0.94 0.99 0.91

2 0.99 0.88 0.99 0.82 0.99 0.85 0.99 0.93 0.98 0.90

3 0.99 0.84 0.99 0.85 0.99 0.84 0.99 0.91 0.99 0.90

5 CR 1 0.95 0.97 – – 0.96 0.95 0.95 0.94 0.97 0.96

2 0.93 0.95 – – 0.96 0.95 0.94 0.90 0.97 0.97

3 0.93 0.97 – – 0.96 0.95 0.95 0.91 0.97 0.97

6 Ls 1 0.99 0.96 1.00 0.96 0.99 0.94 0.99 0.98 0.98 0.96

2 0.99 0.93 0.98 0.86 0.99 0.94 0.99 0.98 0.97 0.98

3 0.98 0.95 0.98 0.88 0.99 0.95 0.97 0.99 0.97 0.98

7 CL 1 0.95 0.97 – – 0.97 0.94 0.96 0.87 0.98 0.95

2 0.97 0.95 – – 0.97 0.93 0.95 0.86 0.96 0.97

3 0.96 0.96 – – 0.81 0.67 0.96 0.82 0.97 0.97

8 Li 1 0.96 0.98 1.00 0.96 0.97 0.99 0.97 1.00 0.96 0.98

2 0.97 0.97 1.00 0.90 0.97 0.99 0.97 1.00 0.96 0.98

3 0.97 0.98 1.00 0.91 0.74 0.82 0.96 0.99 0.97 0.98

9 UI 1 – – – – 0.90 0.93 0.98 0.98 0.51 0.94

2 – – – – 0.92 0.94 0.98 0.99 0.49 0.97

3 – – – – 0.91 0.95 0.97 0.99 0.52 0.96

10 LI 1 – – – – 0.92 0.96 0.97 0.98 – –

2 – – – – 0.93 0.97 0.98 0.98 – –

3 – – – – 0.95 0.96 0.98 0.99 – –

11 As 1 0.99 0.85 1.00 0.95 – – – – – –

2 0.99 0.82 1.00 0.83 – – – – – –

3 0.99 0.53 1.00 0.84 – – – – – –

12 IIs 1 0.97 0.75 1.00 0.97 – – – – – –

2 0.98 0.75 1.00 0.89 – – – – – –

3 0.97 0.73 1.00 0.91 – – – – – –

13 Pog 1 0.94 0.67 1.00 0.95 – – – – – –

2 0.96 0.49 1.00 0.89 – – – – – –

3 0.94 0.65 1.00 0.92 – – – – – –

14 Gn 1 0.94 0.90 0.97 0.95 – – – – – –

2 0.94 0.83 0.94 0.82 – – – – – –

3 0.92 0.77 0.95 0.85 – – – – – –

– not counted.
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The preoperative and postoperative effects in 30 patients were
assessed by paired t tests between the AI and manual groups. The
p value for patients with Type II and Type III bone malocclusion in
the AI group is 0, indicating significant differences. The p value for
patients with mandibular deformity in the AI group is 0.26, which
is not significantly different, and the p value for patients with
mandibular deformity in the manual group is 0.93. A comparison
indicated that the results of the AI group are consistent with those
of the manual group (Table 14).

DISCUSSION
The aim of this study is to construct a network model that can
automatically acquire facial features and provide diagnostic
information for personalized diagnosis and treatment rather than
building a database of average faces. Therefore, 34 markers are
labeled for training purposes, focusing on the accuracy of 16
markers (including scale markers 0 and 1) that are closely related
to orthognathic surgery diagnosis. This is a strength of this study.
Through the introduction of a scale, the detection results of BHR-
Net can be applied to clinical work to assist clinicians in diagnostic
analysis. The other 18 markers have low correlations with the
disease types studied in this paper, and the findings with these
markers will be published in a separate paper due to space
constraints. In repetitive inspection work, the network model
successfully constructed in this paper can effectively avoid
background dependence of manual measurement and reduce
measurement error [35].
Soft tissue measurements are important components of

cephalometric measurements and are highly important for the
diagnosis and analysis of orthognathic surgery cases and for the
design of corrections [28]. The use of the soft tissue concept in
orthognathic treatment has become a topic of interest [29]. As
shown in Table 4, in clinical practice, the mouth opening is the
distance between two UI-LI points. The line between the Prn and
Pog marks represents Rickett’s E line. The horizontal distance from
Ls, Li and IIs to the E line can determine the relationship between
the nose, lip and chin. The distance between points C and Me on

Fig. 9 Statistical analysis of the intraobserver ICC distribution for 14
landmarks in the manual group.

Fig. 10 Statistical analysis of the interobserver ICC distribution for 14
markers in the manual group.
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both sides is used to judge the degree of deflection of the chin.
The slope k formed by the line at point C on both sides and the
horizontal line can indicate whether the occlusal plane is
horizontal. Landmarks such as N, Sn, Pog, Prn, Li, IIs, and AS

constitute corresponding measurement angles to judge the
degree of facial soft tissue deformity [29] (Figs. 7 and 8). The
values measured between these landmarks are reference indices
for clinicians during diagnosis and are important for accurately

Fig. 11 Statistical graph of error values of landmarks. A RFV, B SMO, C LMO, D PS, E RLV.

Table 8. Single sample t test results of the distance measurement indices of BHR-Net and the manual group.

No. Abb BHR-Net Manual group

M SD 95% confidence interval M SD 95% confidence interval

Lower limit Upper limit Lower limit Upper limit

Distance (mm) 1 D1 39.25 7.19 37.19 41.31 38.32 7.08 36.29 40.36

2 D2 14.89 5.21 13.4 16.39 15.38 5.35 13.84 16.92

3 D3 2.25 1.73 1.75 2.74 2.38 1.68 1.90 2.86

4 D4 1.72 1.24 1.37 2.08 1.67 1.35 1.28 2.05

5 D5 3.89 1.39 3.49 4.29 3.73 1.40 3.33 4.13

6 D6 52.00 4.62 50.69 53.32 52.6 4.54 51.31 53.89

7 D7 52.08 4.47 50.81 53.34 52.17 4.52 50.88 53.45

8 D8 1.43 1.15 1.10 1.76 0.97 0.81 0.74 1.20

9 D9 1.78 1.34 1.40 2.16 0.85 0.64 0.67 1.04

10 D10 2.34 1.69 1.88 2.84 1.13 0.81 0.90 1.36

Slope 11 0 0.03 −0.01 0.01 0 0.03 −0.01 0

Table 9. Mean, standard deviation, 95% confidence interval and correlation coefficient of the slope and distance difference in the test set.

No. Abb M SD 95% confidence interval P

Lower limit Upper limit

Distance (mm) 1 D1 0.77 2.03 0.2 1.35 0.01

2 D2 −0.48 1.67 −0.96 −0.1 0.05

3 D3 −0.13 0.69 −0.33 0.06 0.18

4 D4 0.06 0.63 −0.13 0.24 0.55

5 D5 0.16 0.59 −0.01 0.32 0.06

6 D6 −0.59 2.02 −1.17 −0.02 0.05

7 D7 −0.08 1.88 −0.62 −0.45 0.76

8 D8 0.46 1.44 0.48 0.87 0.29

9 D9 0.93 0.71 0.72 1.13 <0.01

10 D10 1.22 0.89 0.97 1.48 <0.01

Slope 11 0 0.02 0 0.01 0.59
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evaluating the postoperative outcome of orthognathic surgery.
Therefore, the identification of anatomic landmarks quickly and
accurately is worth studying. However, in clinical practice, due to
the inconsistent positioning of markers, the measurement of
indicators between markers is complicated, which may lead to
large differences between the values measured by each doctor,
and the results are unreliable.
The application of AI in orthognathic surgery has been widely

studied, and researchers have been committed to studying
automatic mark recognition to reduce the time needed for
cephalometric analysis and to improve recognition accuracy. Ye-
Hyun Kim compared the depth and structure of different network
models in determining whether orthognathic surgery is needed
and reported that ResNet-18 had the best results [36]. Ji-Hoon
Park and Hye-Won Hwang identified radiograph markers by
comparing You-Only Look-Once version 3 (YOLOv3) and the single
shot multibox detector (SSD). YOLOv3 was shown to have better
accuracy than the other methods [37, 38]. Yao J et al suggested
that these results are accurate for the automatic recognition of
landmarks when the error is less than 2mm and that the results
are acceptable when the error is less than 4mm [39]. Shahidi S
identified 16 landmarks on 40 skull radiographs with an average
error of 2.59 mm [33], and Leonardi R identified 10 landmarks on
41 radiographs [34]. Based on facial soft tissue images, Jeong SH
used the Visual Geometry Group 19 (VGG19) network model to
recognize facial soft tissue images with an accuracy of 89.3% [12];
however, VGG consumed more memory and occupied more

computing resources than the other models. Recent studies all
have certain limitations, such as high operational costs, few
training sets, and few measurements [40]. The results of this study
show that among the 14 markers identified via statistical analysis,
when the standard error is 4 mm, the accuracy of all the markers is
as high as 94%, except for the N point of the LMO image, for
which the accuracy is 86%. When the standard error is 2 mm, the
accuracy of Pog, Li and Mes on lateral images is 86%, and the
accuracy of the other landmarks is greater than 90%. On the other
hand, the accuracy of Mes, N, Pog and Li on frontal images,
including RFV/SMO/LMO/PS, is low, which may be related to the
flat anatomical position, which is not conducive to BHR-Net
detection. For these landmarks, the next step is to apply the latest
network model proposed by Wan et al. [26] and Kang et al. [27] to
improve the accuracy of the detection results.
There are many models that implement facial feature detection,

such as Google MediaPipe [30], Face++ [41], and Baidu [42, 43]. In
contrast, the model in this study was designed according to
clinical diagnostic requirements, and the 32 markers selected were
clearly defined anatomically and may not be fully included in the
68-point 300 W model or the 98-point WFLW model. Therefore, in
this study, a custom dataset applicable to BHR-Net was
constructed, and BHR-Net was compared with existing models
(Table 3). The NMS of BHR-Net on the WFLW dataset is 5.2%, and
the failure rate is 6.9%. For the 300 W dataset, the common test
result is 6.9%, the challenge test result is 9.4%, the full test result is
7.8%, and the custom dataset NMS result is only 2.5%. The failure

Table 10. Results of single sample t tests of the angle measurement indices of BHR-Net and the manual group.

No. Measurements BHR-Net Manual group

M SD 95% confidence interval M SD 95% confidence interval

Lower limit Upper limit Lower limit Upper limit

Angle (°) 1 Facial angle 163.62 5.97 161.90 165.34 163.60 7.05 161.68 165.63

2 Nasofacial angle 28.39 3.62 27.35 29.43 28.59 3.84 27.49 29.70

3 Nasomental angle 133.39 5.86 131.71 135.07 133.07 5.98 131.36 134.79

4 Mentolabial angle 136.40 9.88 133.57 139.24 139.21 7.70 137.01 141.43

5 ANB angle 7.74 2.38 7.05 8.42 7.69 2.55 6.95 8.42

Table 11. Mean value, standard deviation and P value of each angle difference in the test set.

No. Measurements M SD 95% confidence interval P

Lower limit Upper limit

Angle (°) 1 Facial angle 0.02 2.35 −0.65 0.7 0.95

2 Nasofacial angle −0.21 1.61 −0.67 0.26 0.37

3 Nasomental angle 0.31 2.13 −0.28 0.93 0.31

4 Mentolabial angle −2.81 7.05 −4.84 −0.79 0.01

5 ANB angle 0.05 1.12 −0.27 0.37 0.75

Fig. 12 Statistical analysis of the difference between the AI and manual groups in the test set. A Distance. B Angle.
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rate of BHR-Net is also the lowest of all the models, and the failure
rate of the custom dataset is only 1.4%. However, compared with
the detection results of 300W and WFLW based on the latest
heatmap regressions of Wan et al. [26] and Kang et al. [27], there is
still a gap. This study can learn from their network model for
further research.
When a facial image has a large posture, heavy occlusion and

complex illumination, most facial landmark detection methods
cannot learn the discriminant feature representation and effective
facial shape constraints or accurately predict the value of each
element in the landmark heatmap, limiting their detection
accuracy [26]. Therefore, when constructing a custom dataset,
this study first adopts a data enhancement method to adjust the
training set image through four methods: “rotate”, “stylistic shifts”,
“graying” and “horizontal flipping”. Second, to avoid different
image recognition effects of different qualities, the number of
pixels in the input image is set to only 256 × 256, which is the
capability that can be achieved by the current camera equipment.
Third, the backgrounds of the custom training set images
collected in this study are white or blue, without interference or
other scenes. Therefore, after the training of BHR-Net in this study,
only the rear camera of the mobile phone is used to obtain the
input image; moreover, professional equipment and places are
not required for image acquisition, as only the input image needs
to meet the acquisition requirements. Then, through automatic
cropping of the facial image, a uniform size of the input image can

be obtained by adjusting the height-to-width ratio even if the size
of the input image is different. In this study, in both the LMO and
SMO images, there is 1 case of marker recognition error due to the
lower central incisor teeth being unexposed. In LMO, N-point
displacement occurs at the maximum opening in some volun-
teers’ images, which increases the difficulty of recognition.
Therefore, to ensure more accurate results from the mouth
opening test, individuals should avoid looking up, and the middle
and upper parts of the face should be kept relatively static. The
camera should be perpendicular to the opening plane.
At present, there are few applied studies on the measurement of

multipose facial soft tissue images by neural networks. Most related
research has been limited to automatic landmark recognition, and
further accuracy analysis of additional measurement indicators has
been insufficient [37–39]. Among the 14markers analyzed in this study,
the accuracy of Mes, N and Pog in RFV is low. This difficulty is related to
the difficulty of AI recognition caused by the fact that these three
markers are in a facial area that has a large radian or is relatively flat. The
stability analysis of the manual group showed the same result.
The results of manual labeling showed that the horizontal position of
the landmarks in the middle of the face is relatively easy to determine,
while stability in the vertical direction is relatively poor. Therefore, to
reduce bias in system training during the construction of the training
set, the average value of 9 annotations can be used as the training set,
but the early labeling work is very large. Among the 10 distance
indicators and 5 angle indicators calculated in this study, the distances
from Pog to the midline of the plane and to the mentolabial angle are
relatively poor due to the difficulty and low accuracy of Pog
recognition, while the other measurement indicators all achieved the
expected effect. By continuously improving the accuracy of marker
recognition, better prediction results can be obtained. Expanding the
number of training sets to ensure that themodel obtains more training
data is the most effective way to improve the accuracy of marker
recognition.
Through a retrospective study of the case data of 30 patients

with malformations, this model showed that based on the
anatomical markers identified by BHR-Net, clinicians can objec-
tively obtain the values of the measurement indicators, which can
aid in the diagnosis and analysis of Class II and III patients. The
preoperative and postoperative measurements were significantly
different, and the results were credible. This is because all patients
in this group underwent bilateral sagittal split osteotomy (BSSO),
and mandibular movement significantly changed the mandibular
profile [44].
Several studies have suggested that the mandibular contour

has the greatest influence on facial symmetry [13]; therefore, in
the present study, we focused on the changes in the mandible
and occlusal plane in MAD patients. The slope k of the line at point
C on both sides was used to evaluate the difference in roll
direction, and the diagnostic accuracy reached 100%. However,
when the distance between point C and point Mes on both sides
was used to evaluate the difference in yaw direction, the results
exhibited no significant difference, and the accuracy was only
70%. However, these results do not indicate poor performance of
the proposed network model. First, only 10 MAD patients were

Table 12. Confusion matrix results for the classification and diagnosis
of bone malocclusion.

Prediction

II III Left skew Right skew

Actual II 10 0 Left skew 4 1

III 0 10 Right skew 2 3

Evaluation criteria: 1. Face angle ≤157° for Class II. ≥165° for Class III. 2. The
distance between point C on both sides and Mes is determined.

Table 13. Confusion matrix results of occlusal plane classification
diagnosis for MAD.

Prediction

−k k= 0 +k

Actual −k 5 0 0

k= 0 0 2 0

+k 0 0 3

Evaluation criteria: In the plane rectangular coordinate system, when the
value of k is positive, the occlusal plane is oblique upwards. When the k
value is negative, the occlusal plane is oblique downwards. At k= 0, the
occlusal plane is parallel to the horizontal plane.

Table 14. Preoperative and postoperative comparison results of 20 patients with Class II and Class III malocclusion and 10 patients with MAD
analyzed by AI and manual analysis.

AI Manual group

M SD 95% confidence interval P M SD 95% confidence interval P

Lower limit Upper limit Lower limit Upper limit

II (°) −7.2 3.04 −9.4 −5.06 0 −4.47 2.84 −6.3 −2.24 0

III (°) 7.8 1.31 4.87 10.78 0 4.87 3.98 2.02 7.71 0

MAD (mm) −1.99 5.22 −5.73 1.74 0.26 0.65 2.41 −1.66 1.79 0.93

G. Zhou et al.

14

BDJ Open           (2024) 10:14 



analyzed in this study, resulting in an overly small sample size.
Second, after the bone tissue is restored to normal after MAD
surgery, the shape of the soft tissue still causes facial asymmetry in
some patients after surgery. These results suggest that doctors
should fully consider the influence of soft tissue when planning
mandibular surgery. Correcting only the symmetry of hard tissue
cannot completely address facial asymmetry in patients.
This study has four distinct advantages. First, highly professional

custom image datasets suitable for orthognathic surgery were
successfully collected, including 1030 maxillofacial developmental
deformity images and 1183 facial multipose images; the training
set of this study contained professional and diverse images.
Second, the stability of the 3-person annotated data was first
proven through ICC analysis, and the average coordinate values of
the 3 independent annotated coordinate values were subse-
quently obtained to construct the training set and test set. This
method can avoid system error and test set measurement bias
caused by the single-person annotated training set. Third, the
BHR-Net model constructed in this paper has strong general-
izability. The network achieves accurate recognition and applica-
tion of multipose facial image landmarks and provides a reference
for rapid measurement and diagnosis in orthognathic surgery.
Finally, a scale is innovatively added to the facial image, which
enables the calculation of not only the angle between the
landmarks but also the real distance.
It is undeniable that the development trend of 2D models is 3D,

and the research basis of 3D models is 2D, which is why we chose
2D images. Our future research direction will focus on 3D models
and the realization of automatic model diagnosis.

LIMITATIONS
Although this study achieved some satisfactory results, there are
still several shortcomings. First, the number of training set
samples is insufficient, resulting in insufficiently accurate training
results for some landmarks. Second, the background color and
posture of the customized training set images are not rich, so the
background color of the input image needs to be consistent with
or similar to the background color of the training set. Third, the
performance of the computing equipment is not strong enough,
resulting in insufficient resolution of the input and output images.
Fourth, the number of patients included for the validation of the
model was insufficient, and additional clinical cases should be
collected to verify the accuracy of the model. Finally, no further
framework has been proposed for the diagnosis of facial
deformities. The diagnosis must eventually be made manually
by clinical doctors.

CONCLUSIONS
In this study, a network model based on heatmap regression is
successfully developed. The powerful spatial generalization ability
of the model allows it to effectively identify the landmarks in
maxillofacial multipose images and objectively and rapidly
evaluate the deformities of facial features to accurately diagnose
those deformities. As a result, a rapid and objective tool for
measuring soft tissue topography in clinical practice was
successfully developed in this work.

DATA AVAILABILITY
The code for this model is available at https://github.com/zhougui?
tab=repositories. The custom datasets in this study may be made available upon
reasonable request by the reader by contacting the corresponding author and
signing a confidentiality agreement with permission. Corresponding author’s
email: MQ18710966911@163.com.
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