Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Exploring the constitutive activation mechanism of the class A orphan GPR20

Abstract

GPR20, an orphan G protein-coupled receptor (GPCR), shows significant expression in intestinal tissue and represents a potential therapeutic target to treat gastrointestinal stromal tumors. GPR20 performs high constitutive activity when coupling with Gi. Despite the pharmacological importance of GPCR constitutive activation, determining the mechanism has long remained unclear. In this study, we explored the constitutive activation mechanism of GPR20 through large-scale unbiased molecular dynamics simulations. Our results unveil the allosteric nature of constitutively activated GPCR signal transduction involving extracellular and intracellular domains. Moreover, the constitutively active state of the GPR20 requires both the N-terminal cap and Gi protein. The N-terminal cap of GPR20 functions like an agonist and mediates long-range activated conformational shift. Together with the previous study, this study enhances our knowledge of the self-activation mechanism of the orphan receptor, facilitates the drug discovery efforts that target GPR20.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: GPR20 is coupled with the Gi protein.
Fig. 2: Cα RMSF analysis and extracellular conformations.
Fig. 3: Conformational changes in GPR20 activation pathways.
Fig. 4: Dynamic cross-correlation maps of four systems.
Fig. 5: Key residues linking ligand-binding pocket to G protein regions.
Fig. 6: Three R3.50–D7.49 states and FEL profiles of R1483.50 and D2937.49 torsions across systems.
Fig. 7: Intracellular conformations and SASA values.

Similar content being viewed by others

References

  1. Sriram K, Insel PA. G protein-coupled receptors as targets for approved drugs: how many targets and how many drugs? Mol Pharmacol. 2018;93:251–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Zhang M, Chen T, Lu X, Lan X, Chen Z, Lu S. G protein-coupled receptors (GPCRs): advances in structures, mechanisms, and drug discovery. Signal Transduct Target Ther. 2024;9:88.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Hauser AS, Attwood MM, Rask-Andersen M, Schiöth HB, Gloriam DE. Trends in GPCR drug discovery: new agents, targets and indications. Nat Rev Drug Discov. 2017;16:829–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Chung S, Funakoshi T, Civelli O. Orphan GPCR research. Br J Pharmacol. 2008;153:S339–S346.

    Article  PubMed  CAS  Google Scholar 

  5. Tang XL, Wang Y, Li DL, Luo J, Liu MY. Orphan G protein-coupled receptors (GPCRs): biological functions and potential drug targets. Acta Pharmacol Sin. 2012;33:363–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Stockert JA, Devi LA. Advancements in therapeutically targeting orphan GPCRs. Front Pharmacol. 2015;6:138138.

    Article  Google Scholar 

  7. Watkins LR, Orlandi C. In vitro profiling of orphan G protein coupled receptor (GPCR) constitutive activity. Br J Pharmacol. 2021;178:2963–75.

    Article  PubMed  CAS  Google Scholar 

  8. Lu SM, Jang W, Inoue A, Lambert NA. Constitutive G protein coupling profiles of understudied orphan GPCRs. PLoS One. 2021;16:e0247743.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Leurs R, Smit MJ, Alewijnse AE, Timmerman H. Agonist-independent regulation of constitutively active G-protein-coupled receptors. Trends Biochem Sci. 1998;23:418–22.

    Article  PubMed  CAS  Google Scholar 

  10. Parnot C, Miserey-Lenkei S, Bardin S, Corvol P, Clauser E. Lessons from constitutively active mutants of G protein-coupled receptors. Trends Endocrin Met. 2002;13:336–43.

    Article  CAS  Google Scholar 

  11. Allen LF, Lefkowitz RJ, Caron MG, Cotecchia S. G-protein-coupled receptor genes as protooncogenes - constitutively activating mutation of the alpha-1b-adrenergic receptor enhances mitogenesis and tumorigenicity. Proc Natl Acad Sci USA. 1991;88:11354–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Tao YX. Constitutive activation of G protein-coupled receptors and diseases: insights into mechanisms of activation and therapeutics. Pharmacol Ther. 2008;120:129–48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Hase M, Yokomizo T, Shimizu T, Nakamura M. Characterization of an orphan G protein-coupled receptor, GPR20, that constitutively activates G(i) proteins. J Biol Chem. 2008;283:12747–55.

    Article  PubMed  CAS  Google Scholar 

  14. Iida K, Ahmed AHA, Nagatsuma AK, Shibutani T, Yasuda S, Kitamura M, et al. Identification and therapeutic targeting of GPR20, selectively expressed in gastrointestinal stromal tumors, with DS-6157a, a first-in-class antibody-drug conjugate. Cancer Discov. 2021;11:1508–23.

    Article  PubMed  CAS  Google Scholar 

  15. Corless CL, Fletcher JA, Heinrich MC. Biology of gastrointestinal stromal tumors. J Clin Oncol. 2004;22:3813–25.

    Article  PubMed  CAS  Google Scholar 

  16. George S, Heinrich MC, Somaiah N, Van Tine BA, McLeod R, Laadem A, et al. A phase 1, multicenter, open-label, first-in-human study of DS-6157a in patients (pts) with advanced gastrointestinal stromal tumor (GIST). Clin Cancer Res. 2023;29:3659–67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Klug LR, Khosroyani HM, Kent JD, Heinrich MC. New treatment strategies for advanced-stage gastrointestinal stromal tumours. Nat Rev Clin Oncol. 2022;19:328–41.

    Article  PubMed  Google Scholar 

  18. Galandrin S, Oligny-Longpré G, Bouvier M. The evasive nature of drug efficacy: implications for drug discovery. Trends Pharmacol Sci. 2007;28:423–30.

    Article  PubMed  CAS  Google Scholar 

  19. Rajagopal S, Rajagopal K, Lefkowitz RJ. Teaching old receptors new tricks: biasing seven-transmembrane receptors. Nat Rev Drug Discov. 2010;9:373–86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Toyooka M, Tujii T, Takeda S. The N-terminal domain of GPR61, an orphan G-protein-coupled receptor, is essential for its constitutive activity. J Neurosci Res. 2009;87:1329–33.

    Article  PubMed  CAS  Google Scholar 

  21. Ersoy BA, Pardo L, Zhang SM, Thompson DA, Millhauser G, Govaerts C, et al. Mechanism of N-terminal modulation of activity at the melanocortin-4 receptor GPCR. Nat Chem Biol. 2012;8:725–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Coleman JU, Ngo T, Smith NJ. The G protein-coupled receptor N-terminus and receptor signalling: N-tering a new era. Cell Signal. 2017;33:1–9.

    Article  PubMed  CAS  Google Scholar 

  23. Zhang H, Chu G, Wang G, Yao M, Lu S, Chen T. Mechanistic understanding of the palmitoylation of Go protein in the allosteric regulation of adhesion receptor GPR97. Pharmaceutics. 2022;14:1856.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Hilger D, Masureel M, Kobilka BK. Structure and dynamics of GPCR signaling complexes. Nat Struct Mol Biol. 2018;25:4–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Dokholyan NV. Controlling allosteric networks in proteins. Chem Rev. 2016;116:6463–87.

    Article  PubMed  CAS  Google Scholar 

  26. Wright SC, Lukasheva V, Le Gouill C, Kobayashi H, Breton B, Mailhot-Larouche S, et al. BRET-based effector membrane translocation assay monitors GPCR-promoted and endocytosis-mediated Gq activation at early endosomes. Proc Natl Acad Sci USA. 2021;118:e2025846118.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Zhao LH, Yuan QN, Dai AT, He XH, Chen CW, Zhang C, et al. Molecualr recognition of two endogenous hormones by the human parathyroid hormone receptor-1. Acta Pharmacol Sin. 2023;44:1227–37.

    Article  PubMed  CAS  Google Scholar 

  28. Mizumura T, Kondo K, Kurita M, Kofuku Y, Natsume M, Imai S, et al. Activation of adenosine A2A receptor by lipids from docosahexaenoic acid revealed by NMR. Sci Adv. 2020;6:eaay8544.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Dror RO, Arlow DH, Maragakis P, Mildorf TJ, Pan AC, Xu HF, et al. Activation mechanism of the β2-adrenergic receptor. Proc Natl Acad Sci USA. 2011;108:18684–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Suomivuori CM, Latorraca NR, Wingler LM, Eismann S, King MC, Kleinhenz ALW, et al. Molecular mechanism of biased signaling in a prototypical G protein-coupled receptor. Science. 2020;367:881–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Lu SY, He XH, Yang Z, Chai ZT, Zhou SH, Wang JY, et al. Activation pathway of a G protein-coupled receptor uncovers conformational intermediates as targets for allosteric drug design. Nat Commun. 2021;12:4721–35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Han YX, Dawson JRD, DeMarco KR, Rouen KC, Bekker S, Yarov-Yarovoy V, et al. Elucidation of a dynamic interplay between a beta-2 adrenergic receptor, its agonist, and stimulatory G protein. Proc Natl Acad Sci USA. 2023;120:e2215916120.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Zhang MY, Yasen M, Lu SY, Ma DN, Chai ZT. Decoding the conformational selective mechanism of FGFR isoforms: a comparative molecular dynamics simulation. Molecules. 2023;28:2709–27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Latorraca NR, Wang JK, Bauer B, Townshend RJL, Hollingsworth SA, Olivieri JE, et al. Molecular mechanism of GPCR-mediated arrestin activation. Nature. 2018;557:452–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Ye SX, Zaitseva E, Caltabiano G, Schertler GFX, Sakmar TP, Deupi X, et al. Tracking G-protein-coupled receptor activation using genetically encoded infrared probes. Nature. 2010;464:1386–9.

    Article  PubMed  CAS  Google Scholar 

  36. Yuan SG, Filipek S, Palczewski K, Vogel H. Activation of G-protein-coupled receptors correlates with the formation of a continuous internal water pathway. Nat Commun. 2014;5:4733.

    Article  PubMed  CAS  Google Scholar 

  37. Kumar R, Iyer VG, Im W. CHARMM-GUI: a graphical user interface for the CHARMM users. Abstr Pap Am Chem Soc. 2007;233:273.

    Google Scholar 

  38. Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46:W296–W303.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. J Chem Phys. 1983;79:926–35.

    Article  CAS  Google Scholar 

  40. York DM, Wlodawer A, Pedersen LG, Darden TA. Atomic-level accuracy in simulations of large protein crystals. Proc Natl Acad Sci USA. 1994;91:8715–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Ryckaert JP, Ciccotti G, Berendsen HJC. Numerical-integration of cartesian equations of motion of a system with constraints - molecular-dynamics of N-alkanes. J Comput Phys. 1977;23:327–41.

    Article  CAS  Google Scholar 

  42. Daidone I, Amadei A. Essential dynamics: foundation and applications. Wires Comput Mol Sci. 2012;2:762–70.

    Article  CAS  Google Scholar 

  43. Roe DR, Cheatham TE. PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J Chem Theory Comput. 2013;9:3084–95.

    Article  PubMed  CAS  Google Scholar 

  44. Wang EC, Sun HY, Wang JM, Wang Z, Liu H, Zhang JZH, et al. End-point binding free energy calculation with MM/PBSA and MM/GBSA: strategies and applications in drug design. Chem Rev. 2019;119:9478–508.

    Article  PubMed  CAS  Google Scholar 

  45. Rizzo RC, Aynechi T, Case DA, Kuntz ID. Estimation of absolute free energies of hydration using continuum methods: accuracy of partial, charge models and optimization of nonpolar contributions. J Chem Theory Comput. 2006;2:128–39.

    Article  PubMed  CAS  Google Scholar 

  46. Hou TJ, Wang JM, Li YY, Wang W. Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J Chem Inf Model. 2011;51:69–82.

    Article  PubMed  CAS  Google Scholar 

  47. Juan A, Ballesteros HW. Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. Methods Neurosci. 1995;19:366–428.

    Google Scholar 

  48. DeVree BT, Mahoney JP, Vélez-Ruiz GA, Rasmussen SGF, Kuszak AJ, Edwald E, et al. Allosteric coupling from G protein to the agonist-binding pocket in GPCRs. Nature. 2016;535:182–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Yao XJ, Ruiz GV, Whorton MR, Rasmussen SGF, DeVree BT, Deupi X, et al. The effect of ligand efficacy on the formation and stability of a GPCR-G protein complex. Proc Natl Acad Sci USA. 2009;106:9501–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Mahoney JP, Sunahara RK. Mechanistic insights into GPCR-G protein interactions. Curr Opin Struc Biol. 2016;41:247–54.

    Article  CAS  Google Scholar 

  51. Yan F, Mosier PD, Westkaemper RB, Roth BL. Gα-subunits differentially alter the conformation and agonist affinity of κ-opioid receptors. Biochem-Us. 2008;47:1567–78.

    Article  CAS  Google Scholar 

  52. Rasmussen SGF, DeVree BT, Zou YZ, Kruse AC, Chung KY, Kobilka TS, et al. Crystal structure of the β2 adrenergic receptor-Gs protein complex. Nature. 2011;477:549–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Delean A, Stadel JM, Lefkowitz RJ. A ternary complex model explains the agonist-specific binding-properties of the adenylate cyclase-coupled beta-adrenergic-receptor. J Biol Chem. 1980;255:7108–17.

    Article  CAS  Google Scholar 

  54. Alhadeff R, Vorobyov I, Yoon HW, Warshel A. Exploring the free-energy landscape of GPCR activation. Proc Natl Acad Sci USA. 2018;115:10327–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Hauser AS, Kooistra AJ, Munk C, Heydenreich FM, Veprintsev DB, Bouvier M, et al. GPCR activation mechanisms across classes and macro/microscales. Nat Struct Mol Biol. 2021;28:879–88.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Wingler LM, Lefkowitz RJ. Conformational basis of G protein-coupled receptor signaling versatility. Trends Cell Biol. 2020;30:736–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Zhou QT, Yang DH, Wu M, Guo Y, Guo WJ, Zhong L, et al. Common activation mechanism of class A GPCRs. Elife. 2019;8:e50279.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Filipek S. Molecular switches in GPCRs. Curr Opin Struc Biol. 2019;55:114–20.

    Article  CAS  Google Scholar 

  59. Lin X, Jiang S, Wu YR, Wei XH, Han GW, Wu LJ, et al. The activation mechanism and antibody binding mode for orphan GPR20. Cell Discov. 2023;9:23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Rosenbaum DM, Zhang C, Lyons JA, Holl R, Aragao D, Arlow DH, et al. Structure and function of an irreversible agonist-β2 adrenoceptor complex. Nature. 2011;469:236–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Cao AM, Quast RB, Fatemi F, Rondard P, Pin JP, Margeat E. Allosteric modulators enhance agonist efficacy by increasing the residence time of a GPCR in the active state. Nat Commun. 2021;12:5426.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Sounier R, Mas C, Steyaert J, Laeremans T, Manglik A, Huang WJ, et al. Propagation of conformational changes during μ-opioid receptor activation. Nature. 2015;524:375–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Venkatakrishnan AJ, Deupi X, Lebon G, Heydenreich FM, Flock T, Miljus T, et al. Diverse activation pathways in class A GPCRs converge near the G-protein-coupling region. Nature. 2016;536:484–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Venkatakrishnan AJ, Ma AK, Fonseca R, Latorraca NR, Kelly B, Betz RM, et al. Diverse GPCRs exhibit conserved water networks for stabilization and activation. Proc Natl Acad Sci USA. 2019;116:3288–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Tehan BG, Bortolato A, Blaney FE, Weir MP, Mason JS. Unifying family A GPCR theories of activation. Pharmacol Ther. 2014;143:51–60.

    Article  PubMed  CAS  Google Scholar 

  66. Wingler LM, Skiba MA, McMahon C, Staus DP, Kleinhenz ALW, Suomivuori CM, et al. Angiotensin and biased analogs induce structurally distinct active conformations within a GPCR. Science. 2020;367:888–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Smith JS, Lefkowitz RJ, Rajagopal S. Biased signalling: from simple switches to allosteric microprocessors. Nat Rev Drug Discov. 2018;17:243–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Wootten D, Christopoulos A, Marti-Solano M, Babu MM, Sexton PM. Mechanisms of signalling and biased agonism in G protein-coupled receptors. Nat Rev Mol Cell Bio. 2018;19:638–53.

    Article  CAS  Google Scholar 

  69. Chen HW, Huang WJ, Li XC. Structures of oxysterol sensor EBI2/GPR183, a key regulator of the immune response. Structure. 2022;30:1016–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Wang Y, Zhuang YW, DiBerto JF, Zhou XE, Schmitz GP, Yuan QN, et al. Structures of the entire human opioid receptor family. Cell. 2023;186:413–27.

    Article  PubMed  CAS  Google Scholar 

  71. Zhuang YW, Wang Y, He BQ, He XH, Zhou XE, Guo SM, et al. Molecular recognition of morphine and fentanyl by the human μ-opioid receptor. Cell. 2022;185:4361–75.

    Article  PubMed  CAS  Google Scholar 

  72. Martin AL, Steurer MA, Aronstam RS. Constitutive activity among orphan class-A G protein coupled receptors. PLoS One. 2015;10:e0138463.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Mafi A, Kim SK, Goddard WA. The dynamics of agonist-β2-adrenergic receptor activation induced by binding of GDP-bound Gs protein. Nat Chem. 2023;15:1127–37.

    Article  PubMed  CAS  Google Scholar 

  74. Mafi A, Kim S-K, Goddard WA III. The mechanism for ligand activation of the GPCR–G protein complex. Proc Natl Acad Sci USA. 2022;119:e2110085119.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Su M, Wang J, Xiang G, Do HN, Levitz J, Miao Y, et al. Structural basis of agonist specificity of α1A-adrenergic receptor. Nat Commun. 2023;14:4819.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Liu H, Zhang Q, He XH, Jiang MT, Wang SW, Yan XC, et al. Structural insights into ligand recognition and activation of the medium-chain fatty acid-sensing receptor GPR84. Nat Commun. 2023;14:3271.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Yin H, Inoue A, Ma ZX, Zhu XY, Xia RX, Xu ZM, et al. Structural basis of omega-3 fatty acid receptor FFAR4 activation and G protein coupling selectivity. Cell Res. 2023;33:644–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Wingler LM, McMahon C, Staus DP, Lefkowitz RJ, Kruse AC. Distinctive activation mechanism for angiotensin receptor revealed by a synthetic nanobody. Cell. 2019;176:479–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Weis WI, Kobilka BK. The molecular basis of G protein-coupled receptor activation. Annu Rev Biochem. 2018;87:897–919.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Harris JA, Faust B, Gondin AB, Dämgen MA, Suomivuori CM, Veldhuis NA, et al. Selective G protein signaling driven by substance P-neurokinin receptor dynamics. Nat Chem Biol. 2022;18:109–15.

    Article  PubMed  CAS  Google Scholar 

  81. Kato HE, Zhang Y, Hu HL, Suomivuori CM, Kadji FMN, Aoki J, et al. Conformational transitions of a neurotensin receptor 1-Gi1 complex. Nature. 2019;572:80–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Egloff P, Hillenbrand M, Klenk C, Batyuk A, Heine P, Balada S, et al. Structure of signaling-competent neurotensin receptor 1 obtained by directed evolution in Escherichia coli. Proc Natl Acad Sci USA. 2014;111:E655–E662.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Flock T, Ravarani CNJ, Sun DW, Venkatakrishnan AJ, Kayikci M, Tate CG, et al. Universal allosteric mechanism for Gα activation by GPCRs. Nature. 2015;524:173–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Izairi R, Kamberaj H. Comparison study of polar and nonpolar contributions to solvation free energy. J Chem Inf Model. 2017;57:2539–53.

    Article  PubMed  CAS  Google Scholar 

  85. Wang Y, Li M, Liang W, Shi X, Fan J, Kong R, et al. Delineating the activation mechanism and conformational landscape of a class B G protein-coupled receptor glucagon receptor. Comput Struct Biotechnol J. 2022;20:628–39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Stahl EL, Schmid CL, Acevedo-Canabal A, Read C, Grim TW, Kennedy NM, et al. G protein signaling-biased mu opioid receptor agonists that produce sustained G protein activation are noncompetitive agonists. Proc Natl Acad Sci USA. 2021;118:e2102178118.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Han JM, Zhang JY, Nazarova AL, Bernhard SM, Krumm BE, Zhao L, et al. Ligand and G-protein selectivity in the κ-opioid receptor. Nature. 2023;617:417–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Civelli O. GPCR deorphanizations: the novel, the known and the unexpected transmitters. Trends Pharmacol Sci. 2005;26:15–9.

    Article  PubMed  CAS  Google Scholar 

  89. Bond RA, IJzerman AP. Recent developments in constitutive receptor activity and inverse agonism, and their potential for GPCR drug discovery. Trends Pharmacol Sci. 2006;27:92–6.

    Article  PubMed  CAS  Google Scholar 

  90. Lu SY, He XH, Ni D, Zhang J. Allosteric modulator discovery: from serendipity to structure-based design. J Med Chem. 2019;62:6405–21.

    Article  PubMed  CAS  Google Scholar 

  91. Wootten D, Christopoulos A, Sexton PM. Emerging paradigms in GPCR allostery: implications for drug discovery. Nat Rev Drug Discov. 2013;12:630–44.

    Article  PubMed  CAS  Google Scholar 

  92. Zhang MY, Lan XB, Li XL, Lu SY. Pharmacologically targeting intracellular allosteric sites of GPCRs for drug discovery. Drug Discov Today. 2023;28:103803.

    Article  PubMed  CAS  Google Scholar 

  93. Lin X, Li MY, Wang ND, Wu YR, Luo ZP, Guo SM, et al. Structural basis of ligand recognition and self-activation of orphan GPR52. Nature. 2020;579:152–7.

    Article  PubMed  CAS  Google Scholar 

  94. Li H, Zhang JY, Yu YA, Luo F, Wu LJ, Liu JL, et al. Structural insight into the constitutive activity of human orphan receptor GPR12. Sci Bull. 2023;68:95–104.

    Article  CAS  Google Scholar 

  95. Ping YQ, Xiao P, Yang F, Zhao RJ, Guo SC, Yan X, et al. Structural basis for the tethered peptide activation of adhesion GPCRs. Nature. 2022;604:763–70.

    Article  PubMed  CAS  Google Scholar 

  96. Xu PY, Huang SJ, Guo SM, Yun Y, Cheng X, He XH, et al. Structural identification of lysophosphatidylcholines as activating ligands for orphan receptor GPR119. Nat Struct Mol Biol. 2022;29:863–70.

    Article  PubMed  CAS  Google Scholar 

  97. Wang Y, Yu Z, Xiao W, Lu S, Zhang J. Allosteric binding sites at the receptor–lipid bilayer interface: novel targets for GPCR drug discovery. Drug Discov Today. 2021;26:690–703.

    Article  PubMed  CAS  Google Scholar 

  98. Grimme S. Exploration of chemical compound, conformer, and reaction space with meta-dynamics simulations based on tight-binding quantum chemical calculations. J Chem Theory Comput. 2019;15:2847–62.

    Article  PubMed  CAS  Google Scholar 

  99. Lu S, Chen Y, Wei J, Zhao M, Ni D, He X, et al. Mechanism of allosteric activation of SIRT6 revealed by the action of rationally designed activators. Acta Pharm Sin B. 2021;11:1355–61.

    Article  PubMed  CAS  Google Scholar 

  100. Ni D, Wei J, He X, Rehman AU, Li X, Qiu Y, et al. Discovery of cryptic allosteric sites using reversed allosteric communication by a combined computational and experimental strategy. Chem Sci. 2021;12:464–76.

    Article  CAS  Google Scholar 

  101. Liu HL, Zhong HY, Zhang YX, Xue HR, Zhang ZS, Fu KQ, et al. Structural basis of tolvaptan binding to the vasopressin V2 receptor. Acta Pharmacol Sin. 2024, https://doi.org/10.1038/s41401-024-01325-5.

  102. He XH, You CZ, Jiang HL, Jiang Y, Xu HE, Chen X. AlphaFold2 versus experiemntal structures: evaluation on G protein-coupled receptors. Acta Pharmacol Sin. 2023;44:1–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the National Key R&D Program of China (No. 2023YFC3404700) and the National Natural Science Foundation of China (No. 22077082).

Author information

Authors and Affiliations

Authors

Contributions

SYL and TC conceived and designed the experiments; MYZ performed the experiments; MYZ, JYA and NL analyzed the data; MYZ wrote the original manuscript; SYL and TC reviewed and edited the manuscript; SYL and TC contributed reagents/materials/analysis tools.

Corresponding authors

Correspondence to Ting Chen or Shao-yong Lu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, My., Ao, Jy., Liu, N. et al. Exploring the constitutive activation mechanism of the class A orphan GPR20. Acta Pharmacol Sin (2024). https://doi.org/10.1038/s41401-024-01385-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41401-024-01385-7

Keywords

Search

Quick links