Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Preclinical characterization of [18F]D2-LW223: an improved metabolically stable PET tracer for imaging the translocator protein 18 kDa (TSPO) in neuroinflammatory rodent models and non-human primates

Abstract

Positron emission tomography (PET) targeting translocator protein 18 kDa (TSPO) can be used for the noninvasive detection of neuroinflammation. Improved in vivo stability of a TSPO tracer is beneficial for minimizing the potential confounding effects of radiometabolites. Deuteration represents an important strategy for improving the pharmacokinetics and stability of existing drug molecules in the plasma. This study developed a novel tracer via the deuteration of [18F]LW223 and evaluated its in vivo stability and specific binding in neuroinflammatory rodent models and nonhuman primate (NHP) brains. Compared with LW223, D2-LW223 exhibited improved binding affinity to TSPO. Compared with [18F]LW223, [18F]D2-LW223 has superior physicochemical properties and favorable brain kinetics, with enhanced metabolic stability and reduced defluorination. Preclinical investigations in rodent models of LPS-induced neuroinflammation and cerebral ischemia revealed specific [18F]D2-LW223 binding to TSPO in regions affected by neuroinflammation. Two-tissue compartment model analyses provided excellent model fits and allowed the quantitative mapping of TSPO across the NHP brain. These results indicate that [18F]D2-LW223 holds significant promise for the precise quantification of TSPO expression in neuroinflammatory pathologies of the brain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chemical structures and radiosynthesis of TSPO ligands.
Fig. 2: Ex vivo and in vivo metabolic stability assessment.
Fig. 3: PET imaging study and biochemical analysis in LPS inflammation mouse models.
Fig. 4: PET imaging study and biochemical analysis in MCAO rat models.
Fig. 5: PET imaging and kinetic modeling of [18F]D2-LW223 conducted twice in three cynomolgus monkey brains under baseline conditions.
Fig. 6: PET-MR images and quantitative analysis in monkey brain.

Similar content being viewed by others

References

  1. Castellani G, Croese T, Peralta Ramos JM, Schwartz M. Transforming the understanding of brain immunity. Science. 2023;380:eabo7649.

    Article  CAS  PubMed  Google Scholar 

  2. DiSabato DJ, Quan N, Godbout JP. Neuroinflammation: the devil is in the details. J Neurochem. 2016;139:136–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wu F, Liu L, Zhou H. Endothelial cell activation in central nervous system inflammation. J Leukoc Biol. 2017;101:1119–32.

    Article  CAS  PubMed  Google Scholar 

  4. Agirman G, Yu KB, Hsiao EY. Signaling inflammation across the gut-brain axis. Science. 2021;374:1087–92.

    Article  CAS  PubMed  Google Scholar 

  5. Linnerbauer M, Wheeler MA, Quintana FJ. Astrocyte crosstalk in CNS inflammation. Neuron. 2020;108:608–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Prinz M, Jung S, Priller J. Microglia biology: one century of evolving concepts. Cell. 2019;179:292–311.

    Article  CAS  PubMed  Google Scholar 

  7. Katsumoto A, Lu H, Miranda AS, Ransohoff RM. Ontogeny and functions of central nervous system macrophages. J Immunol. 2014;193:2615–21.

    Article  CAS  PubMed  Google Scholar 

  8. Butovsky O, Weiner HL. Microglial signatures and their role in health and disease. Nat Rev Neurosci. 2018;19:622–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Culty M, Li H, Boujrad N, Amri H, Vidic B, Bernassau JM, et al. In vitro studies on the role of the peripheral-type benzodiazepine receptor in steroidogenesis. J Steroid Biochem Mol Biol. 1999;69:123–30.

    Article  CAS  PubMed  Google Scholar 

  10. Papadopoulos V, Baraldi M, Guilarte TR, Knudsen TB, Lacapère JJ, Lindemann P, et al. Translocator protein (18kDa): new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function. Trends Pharmacol Sci. 2006;27:402–9.

    CAS  Google Scholar 

  11. Guilarte TR. TSPO in diverse CNS pathologies and psychiatric disease: a critical review and a way forward. Pharmacol Ther. 2019;194:44–58.

    Article  CAS  PubMed  Google Scholar 

  12. Setiawan E, Wilson AA, Mizrahi R, Rusjan PM, Miler L, Rajkowska G, et al. Role of translocator protein density, a marker of neuroinflammation, in the brain during major depressive episodes. JAMA Psychiatry. 2015;72:268–75.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Phelps ME. Positron emission tomography provides molecular imaging of biological processes. Proc Natl Acad Sci USA. 2000;97:9226–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rong J, Haider A, Jeppesen TE, Josephson L, Liang SH. Radiochemistry for positron emission tomography. Nat Commun. 2023;14:3257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Deng X, Rong J, Wang L, Vasdev N, Zhang L, Josephson L, et al. Chemistry for positron emission tomography: recent advances in 11C-, 18F-, 13N-, and 15O-Labeling reactions. Angew Chem Int Ed Engl. 2019;58:2580–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang L, Hu K, Shao T, Hou L, Zhang S, Ye W, et al. Recent developments on PET radiotracers for TSPO and their applications in neuroimaging. Acta Pharm Sin B. 2021;11:373–93.

    Article  CAS  PubMed  Google Scholar 

  17. Kouli A, Spindler LRB, Fryer TD, Hong YT, Malpetti M, Aigbirhio FI, et al. Neuroinflammation is linked to dementia risk in Parkinson’s disease. Brain. 2024;147:923–35.

    Article  PubMed  Google Scholar 

  18. M Malpetti M, Cope TE, Street D, Jones PS, Hezemans FH, Mak E, et al. Microglial activation in the frontal cortex predicts cognitive decline in frontotemporal dementia. Brain. 2023;146:3221–31.

    Article  Google Scholar 

  19. Walsh J, Tozer DJ, Sari H, Hong YT, Drazyk A, Williams G, et al. Microglial activation and blood-brain barrier permeability in cerebral small vessel disease. Brain. 2021;144:1361–71.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Shah F, Hume SP, Pike VW, Ashworth S, McDermott J. Synthesis of the enantiomers of [N-methyl-11C]PK11195 and comparison of their behaviours as radioligands for PK binding sites in rats. Nucl Med Biol.1994;21:573–81.

    Article  CAS  PubMed  Google Scholar 

  21. Chauveau F, Becker G, Boutin H. Have (R)-[11C]PK11195 challengers fulfilled the promise? A scoping review of clinical TSPO PET studies. Eur J Nucl Med Mol Imaging. 2021;49:201–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kreisl WC, Jenko KJ, Hines CS, Lyoo CH, Corona W, Morse CL, et al. A genetic polymorphism for translocator protein 18 kDa affects both in vitro and in vivo radioligand binding in human brain to this putative biomarker of neuroinflammation. J Cereb Blood Flow Metab. 2013;33:53–8.

    Article  CAS  PubMed  Google Scholar 

  23. MacAskill MG, Stadulyte A, Williams L, Morgan TEF, Sloan NL, Alcaide-Corral CJ, et al. Quantification of macrophage-driven inflammation during myocardial infarction with 18F-LW223, a novel TSPO radiotracer with binding independent of the rs6971 human polymorphism. J Nucl Med. 2021;62:536–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tan Z, Haider A, Zhang S, Chen J, Wei J, Liao K, et al. Quantitative assessment of translocator protein (TSPO) in the non-human primate brain and clinical translation of [18F]LW223 as a TSPO-targeted PET radioligand. Pharmacol Res. 2023;189:106681.

    Article  CAS  PubMed  Google Scholar 

  25. Cargnin S, Serafini M, Pirali T. A primer of deuterium in drug design. Future Med Chem. 2019;11:2039–42.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang MR, Maeda J, Ito T, Okauchi T, Ogawa M, Noguchi J, et al. Synthesis and evaluation of N-(5-fluoro-2-phenoxyphenyl)-N-(2-[18F]fluoromethoxy-d2-5-methoxybenzyl)acetamide: a deuteriu-m substituted radioligand for peripheral benzodiazepine receptor. Bioorg Med Chem. 2005;13:1811–8.

    Article  CAS  PubMed  Google Scholar 

  27. Moon BS, Jung JH, Park HS, Contino M, Denora N, Lee BC, et al. Preclinical comparison study between [18F]fluoromethyl-PBR28 and its deuterated analog in a rat model of neuroinflammation. Bioorg Med Chem Lett. 2018;28:2925–9.

    Article  CAS  PubMed  Google Scholar 

  28. Mori W, Yamasaki T, Fujinaga M, Ogawa M, Zhang Y, Hatori A, et al. Development of 2-(2-(3-(4-([18F]Fluoromethoxy-d2)phenyl)-7-methyl-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)-4-isopropoxyisoindoline-1,3-dione for Positron-Emission-Tomography Imaging of Phosphodiesterase 10A in the Brain. J Med Chem. 2019;62:688–98.

    Article  CAS  PubMed  Google Scholar 

  29. Haley TJ, McCormick WG. Pharmacological effects produced by intracerebral injection of drugs in the conscious mouse. Br J Pharmacol Chemother. 1957;12:12–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ansari S, Azari H, Caldwell KJ, Regenhardt RW, Hedna VS, Waters MF, et al. Endothelin-1 induced middle cerebral artery occlusion model for ischemic stroke with laser Doppler flowmetry guidance in rat. J Vis Exp. 2013;72:50014.

    Google Scholar 

  31. Nadler LS, Raetzman LT, Dunkle KL, Mueller N, Siegel RE. GABAA receptor subunit expression and assembly in cultured rat cerebellar granule neurons. Brain Res Dev Brain Res. 1996;97:216–225.

    Article  CAS  PubMed  Google Scholar 

  32. Nie B, Wang L, Hu Y, Liang S, Tan Z, Chai P, et al. A population stereotaxic positron emission tomography brain template for the macaque and its application to ischemic model. Neuroimage. 2019;203:116163.

    Article  CAS  PubMed  Google Scholar 

  33. Friston KJ. Commentary and opinion: II. Statistical parametric mapping: ontology and current issues. J Cereb Blood Flow Metab. 1995;15:361–70.

    Article  CAS  PubMed  Google Scholar 

  34. Gunn RN, Gunn SR, Cunningham VJ. Positron emission tomography compartmental models. J Cereb Blood Flow Metab. 2001;21:635–52.

    Article  CAS  PubMed  Google Scholar 

  35. Akaike H. A new look at the statistical model identification. IEEE Trans Autom Control. 1974;19:716–23.

    Article  Google Scholar 

  36. Cunningham VJ, Rabiner EA, Slifstein M, Laruelle M, Gunn RN. Measuring drug occupancy in the absence of a reference region: the Lassen plot re-visited. J Cereb Blood Flow Metab. 2010;30:46–50.

    Article  PubMed  Google Scholar 

  37. Pajouhesh H, Lenz GR. Medicinal chemical properties of successful central nervous system drugs. NeuroRx. 2005;2:541–53.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Melander L, Saunders WH. Reaction rates of isotopic molecules. New York : Jr. John Wiley and Sons; 1980. 331+xiv pages.

  39. Schou M, Halldin C, Sóvágó J, Pike VW, Hall H, Gulyás B, et al. PET evaluation of novel radiofluorinated reboxetine analogs as norepinephrine transporter probes in the monkey brain. Synapse. 2004;53:57–67.

    Article  CAS  PubMed  Google Scholar 

  40. Donohue SR, Krushinski JH, Pike VW, Chernet E, Phebus L, Chesterfield AK, et al. Synthesis, ex vivo evaluation, and radiolabeling of potent 1,5-diphenylpyrrolidin-2-one cannabinoid subtype-1 receptor ligands as candidates for in vivo imaging. J Med Chem. 2008;51:5833–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jahan M, Eriksson O, Johnström P, Korsgren O, Sundin A, Johansson L, et al. Decreased defluorination using the novel beta-cell imaging agent [18F]FE-DTBZ-d4 in pigs examined by PET. EJNMMI Res. 2011;1(Dec):33.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Sridharan S, Lepelletier FX, Trigg W, Banister S, Reekie T, Kassiou M, et al. Comparative evaluation of three TSPO PET radiotracers in a LPS-induced model of mild neuroinflammation in rats. Mol Imaging Biol. 2017;19:77–89.

    Article  CAS  PubMed  Google Scholar 

  43. Kim K, Kim H, Bae SH, Lee SY, Kim YH, Na J, et al. [18F]CB251 PET/MR imaging probe targeting translocator protein (TSPO) independent of its polymorphism in a neuroinflammation model. Theranostics. 2020;10:9315–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pulagam KR, Colás L, Padro D, Plaza-García S, Gómez-Vallejo V, Higuchi M, et al. Evaluation of the novel TSPO radiotracer [18F] VUIIS1008 in a preclinical model of cerebral ischemia in rats. EJNMMI Res. 2017;7:93.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Wang L, Cheng R, Fujinaga M, Yang J, Zhang Y, Hatori A, et al. A facile radiolabeling of [18F]FDPA via spirocyclic iodonium Ylides: preliminary PET imaging studies in preclinical models of neuroinflammation. J Med Chem. 2017;60:5222–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Anholt RR, Murphy KM, Mack GE, Snyder SH. Peripheral-type benzodiazepine receptors in the central nervous system: localization to olfactory nerves. J Neurosci. 1984;4:593–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Turkheimer FE, Rizzo G, Bloomfield PS, Howes O, Zanotti-Fregonara P, Bertoldo A, et al. The methodology of TSPO imaging with positron emission tomography. Biochem Soc Trans. 2015;43:586–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kreisl WC, Fujita M, Fujimura Y, Kimura N, Jenko KJ, Kannan P, et al. Comparison of [11C]-(R)-PK11195 and [11C]PBR28, two radioligands for translocator protein (18 kDa) in human and monkey: implications for positron emission tomographic imaging of this inflammation biomarker. Neuroimage. 2010;49:2924–32.

    Article  CAS  PubMed  Google Scholar 

  49. Yan X, Siméon FG, Liow JS, Morse CL, Montero Santamaria JA, Jenkins M, et al. In vivo evaluation of a novel 18F-labeled PET radioligand for translocator protein 18 kDa (TSPO) in monkey brain. Eur J Nucl Med Mol Imaging. 2023;50:2962–2970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zanotti-Fregonara P, Zhang Y, Jenko KJ, Gladding RL, Zoghbi SS, Fujita M, et al. Synthesis and evaluation of translocator 18 kDa protein (TSPO) positron emission tomography (PET) radioligands with low binding sensitivity to human single nucleotide polymorphism rs6971. ACS Chem Neurosci. 2014;5:963–71.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (82071974, 82371998), the Guangdong Science and Technology Planning Project, China (2022A0505050042), the Science and Technology Program of Guangzhou, China (202206010106, 2023A03J0566), and the Frontier Technology Program of the First Affiliated Hospital of Jinan University, China (JNU1AF-CFTP-2022-a01214).

Author information

Authors and Affiliations

Authors

Contributions

Study conceptualization: HX, SHL, and LW Probe development and characterization: KL, JHC, JM, CCD, CYB, YBG, YFJ, HYW, LH, JQH, JJW, and CYZ. Data acquisition, analyses, and quality control: KL, JHC, HX, SHL, and LW. KL, JHC, TW, YLL, and SY established animal models and performed immunofluorescence staining experiments. Manuscript drafting, editing, and reviewing: KL, JHC, HX, SHL, and LW. All authors reviewed and approved the final version of this manuscript.

Corresponding authors

Correspondence to Hao Xu, Steven H. Liang or Lu Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, K., Chen, Jh., Ma, J. et al. Preclinical characterization of [18F]D2-LW223: an improved metabolically stable PET tracer for imaging the translocator protein 18 kDa (TSPO) in neuroinflammatory rodent models and non-human primates. Acta Pharmacol Sin (2024). https://doi.org/10.1038/s41401-024-01375-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41401-024-01375-9

Keywords

Search

Quick links