Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ginsenoside Rg1 ameliorates stress-exacerbated Parkinson’s disease in mice by eliminating RTP801 and α-synuclein autophagic degradation obstacle

Abstract

Emerging evidence shows that psychological stress promotes the progression of Parkinson’s disease (PD) and the onset of dyskinesia in non-PD individuals, highlighting a potential avenue for therapeutic intervention. We previously reported that chronic restraint-induced psychological stress precipitated the onset of parkinsonism in 10-month-old transgenic mice expressing mutant human α-synuclein (αSyn) (hαSyn A53T). We refer to these as chronic stress-genetic susceptibility (CSGS) PD model mice. In this study we investigated whether ginsenoside Rg1, a principal compound in ginseng notable for soothing the mind, could alleviate PD deterioration induced by psychological stress. Ten-month-old transgenic hαSyn A53T mice were subjected to 4 weeks’ restraint stress to simulate chronic stress conditions that worsen PD, meanwhile the mice were treated with Rg1 (40 mg· kg−1 ·d−1, i.g.), and followed by functional magnetic resonance imaging (fMRI) and a variety of neurobehavioral tests. We showed that treatment with Rg1 significantly alleviated both motor and non-motor symptoms associated with PD. Functional MRI revealed that Rg1 treatment enhanced connectivity between brain regions implicated in PD, and in vivo multi-channel electrophysiological assay showed improvements in dyskinesia-related electrical activity. In addition, Rg1 treatment significantly attenuated the degeneration of dopaminergic neurons and reduced the pathological aggregation of αSyn in the striatum and SNc. We revealed that Rg1 treatment selectively reduced the level of the stress-sensitive protein RTP801 in SNc under chronic stress conditions, without impacting the acute stress response. HPLC-MS/MS analysis coupled with site-directed mutation showed that Rg1 promoted the ubiquitination and subsequent degradation of RTP801 at residues K188 and K218, a process mediated by the Parkin RING2 domain. Utilizing αSyn A53T+; RTP801−/− mice, we confirmed the critical role of RTP801 in stress-aggravated PD and its necessity for Rg1’s protective effects. Moreover, Rg1 alleviated obstacles in αSyn autophagic degradation by ameliorating the RTP801-TXNIP-mediated deficiency of ATP13A2. Collectively, our results suggest that ginsenoside Rg1 holds promise as a therapeutic choice for treating PD-sensitive individuals who especially experience high levels of stress and self-imposed expectations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Rg1 confers protection against psychological stress-induced Parkinson’s disease.
Fig. 2: Rg1 ameliorates dopaminergic neuron degeneration and αSyn accumulation.
Fig. 3: Rg1 reverses RTP801 upregulation in CSGS model.
Fig. 4: Rg1 promotes RTP801 degradation via the E3 ligase Parkin.
Fig. 5: RTP801 is a pivotal factor in stress-induced PD susceptibility and the therapeutic potential of Rg1.
Fig. 6: Rg1 mitigates RTP801-induced autophagic degradation impairment.
Fig. 7: Abnormal RTP801-TXNIP-ATP13A2 pathway was mitigated by Rg1 to rescue autolysosomal dysfunction.
Fig. 8: Ginsenoside Rg1 alleviates stress-exacerbated Parkinson’s disease by promoting RTP801 degradation.

Similar content being viewed by others

References

  1. Przedborski S. The two-century journey of Parkinson disease research. Nat Rev Neurosci. 2017;18:251–9.

    Article  PubMed  CAS  Google Scholar 

  2. Emamzadeh FN, Surguchov A. Parkinson’s disease: biomarkers, treatment, and risk factors. Front Neurosci. 2018;12:612.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lang AE, Siderowf AD, Macklin EA, Poewe W, Brooks DJ, Fernandez HH, et al. Trial of cinpanemab in early Parkinson’s disease. N Engl J Med. 2022;387:408–20.

    Article  PubMed  CAS  Google Scholar 

  4. Pagano G, Taylor KI, Anzures-Cabrera J, Marchesi M, Simuni T, Marek K, et al. Trial of prasinezumab in early-stage Parkinson’s disease. N Engl J Med. 2022;387:421–32.

    Article  PubMed  CAS  Google Scholar 

  5. Zou K, Guo W, Tang G, Zheng B, Zheng Z. A case of early onset Parkinson’s disease after major stress. Neuropsychiatr Dis Treat. 2013;9:1067–9.

    PubMed  PubMed Central  Google Scholar 

  6. Blauwendraat C, Nalls MA, Singleton AB. The genetic architecture of Parkinson’s disease. Lancet Neurol. 2020;19:170–8.

    Article  PubMed  CAS  Google Scholar 

  7. Chen YP, Yu SH, Zhang GH, Hou YB, Gu XJ, Ou RW, et al. The mutation spectrum of Parkinson-disease-related genes in early-onset Parkinson’s disease in ethnic Chinese. Eur J Neurol. 2022;29:3218–28.

    Article  PubMed  Google Scholar 

  8. van der Heide A, Meinders MJ, Bloem BR, Helmich RC. The impact of the COVID-19 pandemic on psychological distress, physical activity, and symptom severity in Parkinson’s disease. J Parkinsons Dis. 2020;10:1355–64.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Helmich RC, Bloem BR. The impact of the COVID-19 pandemic on Parkinson’s disease: hidden sorrows and emerging opportunities. J Parkinsons Dis. 2020;10:351–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Edwards E, Carroll C. In reply to: Helmich and Bloem (2020) “The impact of the COVID-19 pandemic on Parkinson’s disease: hidden sorrows and emerging opportunities”. J Parkinsons Dis. 2020;10:1267–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Zhang Z, Chu SF, Wang SS, Jiang YN, Gao Y, Yang PF, et al. RTP801 is a critical factor in the neurodegeneration process of A53T alpha-synuclein in a mouse model of Parkinson’s disease under chronic restraint stress. Br J Pharmacol. 2018;175:590–605.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Lin XM, Pan MH, Sun J, Wang M, Huang ZH, Wang G, et al. Membrane phospholipid peroxidation promotes loss of dopaminergic neurons in psychological stress-induced Parkinson’s disease susceptibility. Aging Cell. 2023;22:e13970.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Baida G, Bhalla P, Kirsanov K, Lesovaya E, Yakubovskaya M, Yuen K, et al. REDD1 functions at the crossroads between the therapeutic and adverse effects of topical glucocorticoids. EMBO Mol Med. 2015;7:42–58.

    Article  PubMed  CAS  Google Scholar 

  14. Malagelada C, Jin ZH, Greene LA. RTP801 is induced in Parkinson’s disease and mediates neuron death by inhibiting Akt phosphorylation/activation. J Neurosci. 2008;28:14363–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Emmanouilidou E, Elenis D, Papasilekas T, Stranjalis G, Gerozissis K, Ioannou PC, et al. Assessment of alpha-synuclein secretion in mouse and human brain parenchyma. PLoS One. 2011;6:e22225.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Jang A, Lee HJ, Suk JE, Jung JW, Kim KP, Lee SJ. Non-classical exocytosis of alpha-synuclein is sensitive to folding states and promoted under stress conditions. J Neurochem. 2010;113:1263–74.

    Article  PubMed  CAS  Google Scholar 

  17. Yamada K, Iwatsubo T. Extracellular alpha-synuclein levels are regulated by neuronal activity. Mol Neurodegener. 2018;13:9.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Molitoris JK, McColl KS, Swerdlow S, Matsuyama M, Lam M, Finkel TH, et al. Glucocorticoid elevation of dexamethasone-induced gene 2 (Dig2/RTP801/REDD1) protein mediates autophagy in lymphocytes. J Biol Chem. 2011;286:30181–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Yang SJ, Wang JJ, Cheng P, Chen LX, Hu JM, Zhu GQ. Ginsenoside Rg1 in neurological diseases: from bench to bedside. Acta Pharmacol Sin. 2023;44:913–30.

    Article  PubMed  CAS  Google Scholar 

  20. Zhang Z, Song Z, Shen F, Xie P, Wang J, Zhu AS, et al. Ginsenoside Rg1 prevents PTSD-like behaviors in mice through promoting synaptic proteins, reducing Kir4.1 and TNF-alpha in the hippocampus. Mol Neurobiol. 2021;58:1550–63.

    Article  PubMed  CAS  Google Scholar 

  21. Li J, Gao W, Zhao Z, Li Y, Yang L, Wei W, et al. Ginsenoside Rg1 reduced microglial activation and mitochondrial dysfunction to alleviate depression-like behaviour via the GAS5/EZH2/SOCS3/NRF2 axis. Mol Neurobiol. 2022;59:2855–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Zhang QS, Heng Y, Chen Y, Luo P, Wen L, Zhang Z, et al. A novel bibenzyl compound (20C) protects mice from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid toxicity by regulating the alpha-synuclein-related inflammatory response. J Pharmacol Exp Ther. 2017;363:284–92.

    Article  CAS  Google Scholar 

  23. Lyu D, Wang F, Zhang M, Yang W, Huang H, Huang Q, et al. Ketamine induces rapid antidepressant effects via the autophagy-NLRP3 inflammasome pathway. Psychopharmacology. 2022;239:3201–12.

    Article  PubMed  CAS  Google Scholar 

  24. Yan CG, Wang XD, Zuo XN, Zang YF. DPABI: data processing & analysis for (resting-state) brain imaging. Neuroinformatics. 2016;14:339–51.

    Article  PubMed  Google Scholar 

  25. Barriere DA, Ella A, Szeremeta F, Adriaensen H, Meme W, Chaillou E, et al. Brain orchestration of pregnancy and maternal behavior in mice: a longitudinal morphometric study. Neuroimage. 2021;230:117776.

    Article  PubMed  Google Scholar 

  26. Deng S, Franklin CG, O’Boyle M, Zhang W, Heyl BL, Jerabek PA, et al. Hemodynamic and metabolic correspondence of resting-state voxel-based physiological metrics in healthy adults. Neuroimage. 2022;250:118923.

    Article  PubMed  CAS  Google Scholar 

  27. Wang J, Wang X, Xia M, Liao X, Evans A, He Y. GRETNA: a graph theoretical network analysis toolbox for imaging connectomics. Front Hum Neurosci. 2015;9:386.

    PubMed  PubMed Central  CAS  Google Scholar 

  28. Yang X, Williams JK, Yan R, Mouradian MM, Baum J. Increased dynamics of alpha-synuclein fibrils by beta-synuclein leads to reduced seeding and cytotoxicity. Sci Rep. 2019;9:17579.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chen C, Chu SF, Ai QD, Zhang Z, Chen NH. CKLF1/CCR5 axis is involved in neutrophils migration of rats with transient cerebral ischemia. Int Immunopharmacol. 2020;85:106577.

    Article  PubMed  CAS  Google Scholar 

  30. Zhou X, Zhang YN, Li FF, Zhang Z, Cui LY, He HY, et al. Neuronal chemokine-like-factor 1 (CKLF1) up-regulation promotes M1 polarization of microglia in rat brain after stroke. Acta Pharmacol Sin. 2022;43:1217–30.

    Article  PubMed  CAS  Google Scholar 

  31. Xu J, Ao YL, Huang C, Song X, Zhang G, Cui W, et al. Harmol promotes alpha-synuclein degradation and improves motor impairment in Parkinson’s models via regulating autophagy-lysosome pathway. NPJ Parkinsons Dis. 2022;8:100.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Green C, Sydow A, Vogel S, Anglada-Huguet M, Wiedermann D, Mandelkow E, et al. Functional networks are impaired by elevated tau-protein but reversible in a regulatable Alzheimer’s disease mouse model. Mol Neurodegener. 2019;14:13.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Tuite P. Magnetic resonance imaging as a potential biomarker for Parkinson’s disease. Transl Res. 2016;175:4–16.

    Article  PubMed  Google Scholar 

  34. Lv H, Wang Z, Tong E, Williams LM, Zaharchuk G, Zeineh M, et al. Resting-state functional MRI: everything that nonexperts have always wanted to know. Am J Neuroradiol. 2018;39:1390–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  35. Oh JY, Lee YS, Hwang TY, Cho SJ, Jang JH, Ryu Y, et al. Acupuncture regulates symptoms of Parkinson’s disease via brain neural activity and functional connectivity in mice. Front Aging Neurosci. 2022;14:885396.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Cavdar S, Ozgur M, Cakmak YO, Kuvvet Y, Kunt SK, Saglam G. Afferent projections of the subthalamic nucleus in the rat: emphasis on bilateral and interhemispheric connections. Acta Neurobiol Exp. 2018;78:251–63.

    Article  Google Scholar 

  37. Simonsen U, Comerma-Steffensen S, Andersson KE. Modulation of dopaminergic pathways to treat erectile dysfunction. Basic Clin Pharmacol Toxicol. 2016;119:63–74.

    Article  PubMed  CAS  Google Scholar 

  38. Pautrat A, Rolland M, Barthelemy M, Baunez C, Sinniger V, Piallat B, et al. Revealing a novel nociceptive network that links the subthalamic nucleus to pain processing. Elife. 2018;7:e36607.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Green AL, Paterson DJ. Using deep brain stimulation to unravel the mysteries of cardiorespiratory control. Compr Physiol. 2020;10:1085–104.

    Article  PubMed  Google Scholar 

  40. Laansma MA, Bright JK, Al-Bachari S, Anderson TJ, Ard T, Assogna F, et al. International multicenter analysis of brain structure across clinical stages of Parkinson’s disease. Mov Disord. 2021;36:2583–94.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Low A, Foo H, Yong TT, Tan LCS, Kandiah N. Hippocampal subfield atrophy of CA1 and subicular structures predict progression to dementia in idiopathic Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2019;90:681–7.

    Article  PubMed  Google Scholar 

  42. Hanna C, Hamilton J, Arnavut E, Blum K, Thanos PK. Brain mapping the effects of chronic aerobic exercise in the rat brain using FDG PET. J Pers Med. 2022;12:860.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Chen H, Lei H, Xu Q. Neuronal activity pattern defects in the striatum in awake mouse model of Parkinson’s disease. Behav Brain Res. 2018;341:135–45.

    Article  PubMed  Google Scholar 

  44. Kravitz AV, Freeze BS, Parker PR, Kay K, Thwin MT, Deisseroth K, et al. Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature. 2010;466:622–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Owen SF, Berke JD, Kreitzer AC. Fast-spiking interneurons supply feedforward control of bursting, calcium, and plasticity for efficient learning. Cell. 2018;172:683–95.e15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Niyomrat K, Cheaha D, Nukitram J, Kumarnsit E. Locomotor activity and resting local field potential oscillatory rhythms of 6-OHDA mouse model of Parkinson’s disease in response to acute and repeated treatments with L-dopa. Neurosci Lett. 2021;759:136007.

    Article  PubMed  CAS  Google Scholar 

  47. Juszczak GR, Stankiewicz AM. Glucocorticoids, genes and brain function. Prog Neuropsychopharmacol Biol Psychiatry. 2018;82:136–68.

    Article  PubMed  CAS  Google Scholar 

  48. Fushimi S, Nohno T, Katsuyama H. Chronic stress induces type 2b skeletal muscle atrophy via the inhibition of mTORC1 signaling in mice. Med Sci. 2023;11:19.

    CAS  Google Scholar 

  49. Yuan T, Fu D, Xu R, Ding J, Wu J, Han Y, et al. Corticosterone mediates FKBP51 signaling and inflammation response in the trigeminal ganglion in chronic stress-induced corneal hyperalgesia mice. J Steroid Biochem Mol Biol. 2023;231:106312.

    Article  PubMed  CAS  Google Scholar 

  50. Nechushtai L, Frenkel D, Pinkas-Kramarski R. Autophagy in Parkinson’s disease. Biomolecules. 2023;13:1435.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Li R, Lu Y, Zhang Q, Liu W, Yang R, Jiao J, et al. Piperine promotes autophagy flux by P2RX4 activation in SNCA/alpha-synuclein-induced Parkinson disease model. Autophagy. 2022;18:559–75.

    Article  PubMed  CAS  Google Scholar 

  52. Zhang F, Wu Z, Long F, Tan J, Gong N, Li X, et al. The roles of ATP13A2 gene mutations leading to abnormal aggregation of alpha-synuclein in Parkinson’s disease. Front Cell Neurosci. 2022;16:927682.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Wang R, Tan J, Chen T, Han H, Tian R, Tan Y, et al. ATP13A2 facilitates HDAC6 recruitment to lysosome to promote autophagosome-lysosome fusion. J Cell Biol. 2019;218:267–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. van der Heide A, Speckens AEM, Meinders MJ, Rosenthal LS, Bloem BR, Helmich RC. Stress and mindfulness in Parkinson’s disease—a survey in 5000 patients. NPJ Parkinsons Dis. 2021;7:7.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Huang P, Zhang LY, Tan YY, Chen SD. Links between COVID-19 and Parkinson’s disease/Alzheimer’s disease: reciprocal impacts, medical care strategies and underlying mechanisms. Transl Neurodegener. 2023;12:5.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Damodaran S, Cressman JR, Jedrzejewski-Szmek Z, Blackwell KT. Desynchronization of fast-spiking interneurons reduces beta-band oscillations and imbalance in firing in the dopamine-depleted striatum. J Neurosci. 2015;35:1149–59.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Seo HW, Suh JH, So SH, Kyung JS, Kim YS, Han CK. Subacute oral toxicity and bacterial mutagenicity study of Korean Red Ginseng oil. J Ginseng Res. 2017;41:595–601.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Key R&D Program of China (2022YFC3500300), the National Natural Science Foundation of China (82130109, 81973499), the CAMS Innovation Fund for Medical Sciences (CIFMS) (2021-I2M-1-020).

Author information

Authors and Affiliations

Authors

Contributions

NHC, ZZ, SFC, and SSW conceived and designed the study. SSW, YP, PLF, JRY, WYM and XY performed the experiments. JRY, QLW, HYW and YJT participated in data analysis. SSW and ZZ wrote the manuscript. NHC, SFC, ZZ, YP and WBH revised the manuscript. All the authors have read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Zhao Zhang, Shi-feng Chu or Nai-hong Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Ss., Peng, Y., Fan, Pl. et al. Ginsenoside Rg1 ameliorates stress-exacerbated Parkinson’s disease in mice by eliminating RTP801 and α-synuclein autophagic degradation obstacle. Acta Pharmacol Sin (2024). https://doi.org/10.1038/s41401-024-01374-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41401-024-01374-w

Keywords

Search

Quick links