Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Palmitoyltransferase ZDHHC3 is essential for the oncogenic activity of PML/RARα in acute promyelocytic leukemia

Abstract

The oncogenic fusion protein promyelocytic leukemia/retinoic acid receptor alpha (PML/RARα) is critical for acute promyelocytic leukemia (APL). PML/RARα initiates APL by blocking the differentiation and increasing the self-renewal of leukemic cells. The standard clinical therapies all-trans retinoic acid (ATRA) and arsenic trioxide (ATO), which induce PML/RARα proteolysis, have dramatically improved the prognosis of APL patients. However, the emergence of mutations conferring resistance to ATRA and ATO has created challenges in the treatment of APL patients. Exploring pathways that modulate the oncogenic activity of PML/RARα could help develop novel therapeutic strategies for APL, particularly for drug-resistant APL. Herein, we demonstrated for the first time that palmitoylation of PML/RARα was a critical determinant of its oncogenic activity. PML/RARα palmitoylation was found to be catalyzed mainly by the palmitoyltransferase ZDHHC3. Mechanistically, ZDHHC3-mediated palmitoylation regulated the oncogenic transcriptional activity of PML/RARα and APL pathogenesis. The knockdown or overexpression of ZDHHC3 had respective effects on the expression of proliferation- and differentiation-related genes. Consistently, the depletion or inhibition of ZDHHC3 could significantly arrest the malignant progression of APL, particularly drug-resistant APL, whereas ZDHHC3 overexpression appeared to have a promoting effect on the malignant progression of APL. Thus, our study not only reveals palmitoylation as a novel regulatory mechanism that modulates PML/RARα oncogenic activity but also identifies ZDHHC3 as a potential therapeutic target for APL, including drug-resistant APL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PML/RARα undergoes S-palmitoylation in the RARα region.
Fig. 2: PML/RARα is palmitoylated by ZDHHC3 in the RARα region.
Fig. 3: ZDHHC3 regulates the oncogenic activity of PML/RARα.
Fig. 4: ZDHHC3 knockdown reshaped the proliferation and differentiation landscape of APL.
Fig. 5: ZDHHC3-mediated palmitoylation is essential for transcriptional function of PML/RARα.
Fig. 6: Inhibition of palmitoylation showed therapeutic effect on APL and drug-resistant APL.

Similar content being viewed by others

References

  1. Yilmaz M, Kantarjian H, Ravandi F. Acute promyelocytic leukemia current treatment algorithms. Blood Cancer J. 2021;11:123.

    Article  PubMed  PubMed Central  Google Scholar 

  2. de Thé H, Pandolfi PP, Chen Z. Acute promyelocytic leukemia: a paradigm for oncoprotein-targeted cure. Cancer Cell. 2017;32:552–60.

    Article  PubMed  Google Scholar 

  3. Madan V, Shyamsunder P, Han L, Mayakonda A, Nagata Y, Sundaresan J, et al. Comprehensive mutational analysis of primary and relapse acute promyelocytic leukemia. Leukemia. 2016;30:1672–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Liu J, Zhu HH, Jiang H, Jiang Q, Huang XJ. Varying responses of PML-RARA with different genetic mutations to arsenic trioxide. Blood. 2016;127:243–50.

    Article  CAS  PubMed  Google Scholar 

  5. Sanz MA, Fenaux P, Tallman MS, Estey EH, Löwenberg B, Naoe T, et al. Management of acute promyelocytic leukemia: updated recommendations from an expert panel of the European LeukemiaNet. Blood. 2019;133:1630–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Diverio D, Riccioni R, Mandelli F, Lo Coco F. The PML/RAR alpha fusion gene in the diagnosis and monitoring of acute promyelocytic leukemia. Haematologica. 1995;80:155–60.

    CAS  PubMed  Google Scholar 

  7. Raelson JV, Nervi C, Rosenauer A, Benedetti L, Monczak Y, Pearson M, et al. The PML/RAR alpha oncoprotein is a direct molecular target of retinoic acid in acute promyelocytic leukemia cells. Blood. 1996;88:2826–32.

    Article  CAS  PubMed  Google Scholar 

  8. Tan Y, Wang X, Song H, Zhang Y, Zhang R, Li S, et al. A PML/RARα direct target atlas redefines transcriptional deregulation in acute promyelocytic leukemia. Blood. 2021;137:1503–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. de Thé H, Chen Z. Acute promyelocytic leukaemia: novel insights into the mechanisms of cure. Nat Rev Cancer. 2010;10:775–83.

    Article  PubMed  Google Scholar 

  10. Ko PJ, Dixon SJ. Protein palmitoylation and cancer. EMBO Rep. 2018;19:e46666.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Jin J, Zhi X, Wang X, Meng D. Protein palmitoylation and its pathophysiological relevance. J Cell Physiol. 2021;236:3220–33.

    Article  CAS  PubMed  Google Scholar 

  12. Lv K, Ren JG, Han X, Gui J, Gong C, Tong W. Depalmitoylation rewires FLT3-ITD signaling and exacerbates leukemia progression. Blood. 2021;138:2244–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shao X, Xu A, Du W, Xu T, Huang Y, Xia Z, et al. The palmitoyltransferase ZDHHC21 regulates oxidative phosphorylation to induce differentiation block and stemness in AML. Blood. 2023;142:365–81.

    CAS  PubMed  Google Scholar 

  14. Tohumeken S, Baur R, Böttcher M, Stoll A, Loschinski R, Panagiotidis K, et al. Palmitoylated proteins on AML-derived extracellular vesicles promote myeloid-derived suppressor cell differentiation via TLR2/Akt/mTOR signaling. Cancer Res. 2020;80:3663–76.

    Article  CAS  PubMed  Google Scholar 

  15. Lu Y, Yan JS, Xia L, Qin K, Yin QQ, Xu HT, et al. 2-Bromopalmitate targets retinoic acid receptor alpha and overcomes all-trans retinoic acid resistance of acute promyelocytic leukemia. Haematologica. 2019;104:102–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ying M, Shao X, Jing H, Liu Y, Qi X, Cao J, et al. Ubiquitin-dependent degradation of CDK2 drives the therapeutic differentiation of AML by targeting PRDX2. Blood. 2018;131:2698–711.

    Article  CAS  PubMed  Google Scholar 

  17. Yuan M, Chen X, Sun Y, Jiang L, Xia Z, Ye K, et al. ZDHHC12-mediated claudin-3 S-palmitoylation determines ovarian cancer progression. Acta Pharm Sin B. 2020;10:1426–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sobas M, Talarn-Forcadell MC, Martínez-Cuadrón D, Escoda L, García-Pérez MJ, Mariz J, et al. PLZF-RARα, NPM1-RARα, and other acute promyelocytic leukemia variants: the PETHEMA Registry experience and systematic literature review. Cancers. 2020;12:1313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhou F, Xue Y, Yao X, Xu Y. CSS-Palm: palmitoylation site prediction with a clustering and scoring strategy (CSS). Bioinformatics. 2006;22:894–6.

    Article  CAS  PubMed  Google Scholar 

  20. Xue Y, Chen H, Jin C, Sun Z, Yao X. NBA-Palm: prediction of palmitoylation site implemented in Naïve Bayes algorithm. BMC Bioinform. 2006;7:458.

    Article  Google Scholar 

  21. Malgapo MIP, Linder ME. Substrate recruitment by zDHHC protein acyltransferases. Open Biol. 2021;11:210026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Testa U, Grignani F, Barberi T, Fagioli M, Masciulli R, Ferrucci PF, et al. PML/RAR alpha+ U937 mutant and NB4 cell lines: retinoic acid restores the monocytic differentiation response to vitamin D3. Cancer Res. 1994;54:4508–15.

    CAS  PubMed  Google Scholar 

  23. Luo H, Li Q, O’Neal J, Kreisel F, Le Beau MM, Tomasson MH. c-Myc rapidly induces acute myeloid leukemia in mice without evidence of lymphoma-associated antiapoptotic mutations. Blood. 2005;106:2452–61.

    Article  CAS  PubMed  Google Scholar 

  24. Daniele G, Simonetti G, Fusilli C, Iacobucci I, Lonoce A, Palazzo A, et al. Epigenetically induced ectopic expression of UNCX impairs the proliferation and differentiation of myeloid cells. Haematologica. 2017;102:1204–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shehata MM, Sallam AM, Naguib MG, El-Mesallamy HO. Overexpression of BAMBI and SMAD7 impacts prognosis of acute myeloid leukemia patients: a potential TERT non-canonical role. Cancer Biomark. 2021;31:47–58.

    Article  CAS  PubMed  Google Scholar 

  26. Niyonzima N, Rahman J, Kunz N, West EE, Freiwald T, Desai JV, et al. Mitochondrial C5aR1 activity in macrophages controls IL-1β production underlying sterile inflammation. Sci Immunol. 2021;6:eabf2489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ghisi M, Kats L, Masson F, Li J, Kratina T, Vidacs E, et al. Id2 and E proteins orchestrate the initiation and maintenance of MLL-rearranged acute myeloid leukemia. Cancer Cell. 2016;30:59–74.

    Article  CAS  PubMed  Google Scholar 

  28. Eleveld-Trancikova D, Janssen RA, Hendriks IA, Looman MW, Moulin V, Jansen BJ, et al. The DC-derived protein DC-STAMP influences differentiation of myeloid cells. Leukemia. 2008;22:455–9.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang M, Zhou L, Xu Y, Yang M, Xu Y, Komaniecki GP, et al. A STAT3 palmitoylation cycle promotes TH17 differentiation and colitis. Nature. 2020;586:434–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen X, Niu W, Fan X, Yang H, Zhao C, Fan J, et al. Oct4A palmitoylation modulates tumorigenicity and stemness in human glioblastoma cells. Neuro Oncol. 2023;25:82–96.

    Article  PubMed  Google Scholar 

  31. Chan P, Han X, Zheng B, DeRan M, Yu J, Jarugumilli GK, et al. Autopalmitoylation of TEAD proteins regulates transcriptional output of the Hippo pathway. Nat Chem Biol. 2016;12:282–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yao H, Lan J, Li C, Shi H, Brosseau JP, Wang H, et al. Inhibiting PD-L1 palmitoylation enhances T-cell immune responses against tumours. Nat Biomed Eng. 2019;3:306–17.

    Article  CAS  PubMed  Google Scholar 

  33. Tang W, Xu N, Zhou J, He Z, Lenahan C, Wang C, et al. ALKBH5 promotes PD-L1-mediated immune escape through m6A modification of ZDHHC3 in glioma. Cell Death Discov. 2022;8:497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sharma C, Wang HX, Li Q, Knoblich K, Reisenbichler ES, Richardson AL, et al. Protein acyltransferase DHHC3 regulates breast tumor growth, oxidative stress, and senescence. Cancer Res. 2017;77:6880–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lin Z, Lv Z, Liu X, Huang K. Palmitoyl transferases act as novel drug targets for pancreatic cancer. J Transl Med. 2023;21:249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kilpatrick CL, Murakami S, Feng M, Wu X, Lal R, Chen G, et al. Dissociation of golgi-associated DHHC-type zinc finger protein (GODZ)- and Sertoli cell gene with a zinc finger domain-β (SERZ-β)-mediated palmitoylation by loss of function analyses in knock-out mice. J Biol Chem. 2016;291:27371–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. De Braekeleer E, Douet-Guilbert N, De Braekeleer M. RARA fusion genes in acute promyelocytic leukemia: a review. Expert Rev Hematol. 2014;7:347–57.

    Article  PubMed  Google Scholar 

  38. Zhang Q, Li H, Chen X, Gu F, Zhang L, Zhang L, et al. Identifying STRN3-RARA as a new fusion gene for acute promyelocytic leukemia. Blood. 2023;142:1494–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the National Key R&D Program of China (2021YFA1300604), the Natural Science Fund for Distinguished Young Scholars of Zhejiang Province (LR24H310001), and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Contributions

BY, MDY and XJS conceived the study and analyzed data; MDY, XJS and WW wrote the manuscript; XJS, WW, AXX, XTQ, and WXD performed the Western blotting and RNA sequencing assay; WW and MYC performed the cellular proliferation analysis and soft agar formation assay; JC and QJH conceived the experiments and helped organize the paper.

Corresponding authors

Correspondence to Mei-dan Ying or Bo Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, Xj., Wang, W., Xu, Ax. et al. Palmitoyltransferase ZDHHC3 is essential for the oncogenic activity of PML/RARα in acute promyelocytic leukemia. Acta Pharmacol Sin (2024). https://doi.org/10.1038/s41401-024-01371-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41401-024-01371-z

Keywords

Search

Quick links