Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inhibiting the Otub1/phosphorylated STAT3 axis for the treatment of non-small cell lung cancer

Abstract

The transcription factor STAT3 is a promising target for the treatment of non-small cell lung cancer (NSCLC). STAT3 activity is mainly dependent on phosphorylation at tyrosine 705 (pSTAT3-Y705), but the modulation on pSTAT3-Y705 is elusive. By screening a library of deubiquitinases (Dubs), we found that the Otub1 increases STAT3 transcriptional activity. As a Dub, Otub1 binds to pSTAT3-Y705 and specifically abolishes its K48-linked ubiquitination, therefore preventing its degradation and promoting NSCLC cell survival. The Otub1/pSTAT3-Y705 axis could be a potential target for the treatment of NSCLC. To explore this concept, we screen libraries of FDA-approved drugs and natural products based on STAT3-recognition element-driven luciferase assay, from which crizotinib is found to block pSTAT3-Y705 deubiquitination and promotes its degradation. Different from its known action to induce ALK positive NSCLC cell apoptosis, crizotinib suppresses ALK-intact NSCLC cell proliferation and colony formation but not apoptosis. Furthermore, crizotinib also suppresses NSCLC xenograft growth in mice. Taken together, these findings identify Otub1 as the first deubiquitinase of pSTAT3-Y705 and provide that the Otub1/pSTAT3-Y705 axis is a promising target for the treatment of NSCLC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Otub1 promotes STAT3 transcriptional activity.
Fig. 2: Otub1 stabilizes phosphorylated STAT3 at Y705 but not other forms.
Fig. 3: Otub1 binds to pY705 and increases its K48-linked polyubiquitination.
Fig. 4: Otub1 promotes NSCLC cell survival and its expression level is associated with poor outcomes of NSCLC patients.
Fig. 5: Crizotinib inhibits STAT3 phosphorylation at Y705 in NSCLC cells by promoting its turnover in proteasomes via K48-linked polyubiquitination.
Fig. 6: Crizotinib inhibits NSCLC cell proliferation by arresting cells at G2 phase.
Fig. 7: Inhibition of the Otub1/pSTAT3 axis by crizotinib impairs the growth of NSCLC xenografts in immunodeficient mice.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Duma N, Santana-Davila R, Molina JR. Non-small cell lung cancer: epidemiology, screening, diagnosis, and treatment. Mayo Clin Proc. 2019;94:1623–40.

    Article  CAS  PubMed  Google Scholar 

  2. Schneider JL, Lin JJ, Shaw AT. ALK-positive lung cancer: a moving target. Nat Cancer. 2023;4:330–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Holla VR, Elamin YY, Bailey AM, Johnson AM, Litzenburger BC, Khotskaya YB, et al. ALK: a tyrosine kinase target for cancer therapy. Cold Spring Harb Mol Case Stud. 2017;3:a001115.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Abdelaziz HM, Gaber M, Abd-Elwakil MM, Mabrouk MT, Elgohary MM, Kamel NM, et al. Inhalable particulate drug delivery systems for lung cancer therapy: nanoparticles, microparticles, nanocomposites and nanoaggregates. J Control Release. 2018;269:374–92.

    Article  CAS  PubMed  Google Scholar 

  5. Zou S, Tong Q, Liu B, Huang W, Tian Y, Fu X. Targeting STAT3 in cancer immunotherapy. Mol Cancer. 2020;19:145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chuang TP, Lai WY, Gabre JL, Lind DE, Umapathy G, Bokhari AA, et al. ALK fusion NSCLC oncogenes promote survival and inhibit NK cell responses via SERPINB4 expression. Proc Natl Acad Sci USA. 2023;120:e2216479120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Xu X, Li D, Liu J, Ma Z, Huang H, Min L, et al. Downregulation of PTPRK promotes cell proliferation and metastasis of NSCLC by enhancing STAT3 activation. Anal Cell Pathol. 2019;2019:4265040.

    Article  Google Scholar 

  8. Zhu H, Chang LL, Yan FJ, Hu Y, Zeng CM, Zhou TY, et al. AKR1C1 activates STAT3 to promote the metastasis of non-small cell lung cancer. Theranostics. 2018;8:676–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hong D, Kurzrock R, Kim Y, Woessner R, Younes A, Nemunaitis J, et al. AZD9150, a next-generation antisense oligonucleotide inhibitor of STAT3 with early evidence of clinical activity in lymphoma and lung cancer. Sci Transl Med. 2015;7:314ra185.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zheng Q, Dong H, Mo J, Zhang Y, Huang J, Ouyang S, et al. A novel STAT3 inhibitor W2014-S regresses human non-small cell lung cancer xenografts and sensitizes EGFR-TKI acquired resistance. Theranostics. 2021;11:824–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dong Y, Chen J, Chen Y, Liu S. Targeting the STAT3 oncogenic pathway: cancer immunotherapy and drug repurposing. Biomed Pharmacother. 2023;167:115513.

    Article  CAS  PubMed  Google Scholar 

  12. Johnson DE, O’Keefe RA, Grandis JR. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol. 2018;15:234–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bharadwaj U, Kasembeli MM, Robinson P, Tweardy DJ. Targeting Janus kinases and signal transducer and activator of transcription 3 to treat inflammation, fibrosis, and cancer: rationale, progress, and caution. Pharmacol Rev. 2020;72:486–526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li H, Zhu X, Sun Z, Wang Q, Song S, Xu Y, et al. Bruceine B displays potent antimyeloma activity by inducing the degradation of the transcription factor c-Maf. ACS Pharmacol Transl Sci. 2024;7:176–85.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang Z, Tong J, Tang X, Juan J, Cao B, Hurren R, et al. The ubiquitin ligase HERC4 mediates c-Maf ubiquitination and delays the growth of multiple myeloma xenografts in nude mice. Blood. 2016;127:1676–86.

    Article  CAS  PubMed  Google Scholar 

  16. He YM, Zhou XM, Jiang SY, Zhang ZB, Cao BY, Liu JB, et al. TRIM25 activates AKT/mTOR by inhibiting PTEN via K63-linked polyubiquitination in non-small cell lung cancer. Acta Pharmacol Sin. 2022;43:681–91.

    Article  CAS  PubMed  Google Scholar 

  17. Scuto A, Krejci P, Popplewell L, Wu J, Wang Y, Kujawski M, et al. The novel JAK inhibitor AZD1480 blocks STAT3 and FGFR3 signaling, resulting in suppression of human myeloma cell growth and survival. Leukemia. 2011;25:538–50.

    Article  CAS  PubMed  Google Scholar 

  18. Schust J, Sperl B, Hollis A, Mayer TU, Berg T. Stattic: a small-molecule inhibitor of STAT3 activation and dimerization. Chem Biol. 2006;13:1235–42.

    Article  CAS  PubMed  Google Scholar 

  19. Desai A, Lovly CM. Strategies to overcome resistance to ALK inhibitors in non-small cell lung cancer: a narrative review. Transl Lung Cancer Res. 2023;12:615–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sun J, Du Y, Song Q, Nan J, Guan P, Guo J, et al. E2F is required for STAT3-mediated upregulation of cyclin B1 and Cdc2 expressions and contributes to G2-M phase transition. Acta Biochim Biophys Sin. 2019;51:313–22.

    Article  CAS  PubMed  Google Scholar 

  21. Bosch-Barrera J, Queralt B, Menendez JA. Targeting STAT3 with silibinin to improve cancer therapeutics. Cancer Treat Rev. 2017;58:61–9.

    Article  CAS  PubMed  Google Scholar 

  22. Liang Q, Xia W, Li W, Jiao J. RNF20 controls astrocytic differentiation through epigenetic regulation of STAT3 in the developing brain. Cell Death Differ. 2018;25:294–306.

    Article  CAS  PubMed  Google Scholar 

  23. Cai H, Chen Y, Feng Y, Asadi M, Kaufman L, Lee K, et al. SARS-CoV-2 viral protein ORF3A injures renal tubules by interacting with TRIM59 to induce STAT3 activation. Mol Ther. 2023;31:774–87.

    Article  CAS  PubMed  Google Scholar 

  24. Cho JJ, Xu Z, Parthasarathy U, Drashansky TT, Helm EY, Zuniga AN, et al. Hectd3 promotes pathogenic Th17 lineage through Stat3 activation and Malt1 signaling in neuroinflammation. Nat Commun. 2019;10:701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sun X, Chen S, Zhao Y, Wu T, Zhao Z, Luo W, et al. OTUD6A in tubular epithelial cells mediates angiotensin II-induced kidney injury by targeting STAT3. Am J Physiol Cell Physiol. 2024;326:C400–13.

    Article  CAS  PubMed  Google Scholar 

  26. Du X, Pang J, Gu B, Si T, Chang Y, Li T, et al. A bio-orthogonal linear ubiquitin probe identifies STAT3 as a direct substrate of OTULIN in glioblastoma. Nucl Acids Res. 2023;51:1050–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang M, Han X, Yu T, Wang M, Luo W, Zou C, et al. OTUD1 promotes pathological cardiac remodeling and heart failure by targeting STAT3 in cardiomyocytes. Theranostics. 2023;13:2263–80.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ren Y, Zhao P, Liu J, Yuan Y, Cheng Q, Zuo Y, et al. Deubiquitinase USP2a sustains interferons antiviral activity by restricting ubiquitination of activated STAT1 in the nucleus. PLoS Pathog. 2016;12:e1005764.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Harada D, Takigawa N, Kiura K. The role of STAT3 in non-small cell lung cancer. Cancers. 2014;6:708–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xu YH, Lu S. A meta-analysis of STAT3 and phospho-STAT3 expression and survival of patients with non-small-cell lung cancer. Eur J Surg Oncol. 2014;40:311–7.

    Article  CAS  PubMed  Google Scholar 

  31. Baietti MF, Simicek M, Abbasi Asbagh L, Radaelli E, Lievens S, Crowther J, et al. OTUB1 triggers lung cancer development by inhibiting RAS monoubiquitination. EMBO Mol Med. 2016;8:288–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sheryazdanova A, Amoedo ND, Dufour S, Impens F, Rossignol R, Sablina A. The deubiquitinase OTUB1 governs lung cancer cell fitness by modulating proteostasis of OXPHOS proteins. Biochim Biophys Acta Mol Basis Dis. 2023;1869:166767.

    Article  CAS  PubMed  Google Scholar 

  33. Jeon DS, Park CK, Kim SJ, Park CK, Chang YS, Jung CY, et al. Real-world outcome of crizotinib for anaplastic lymphoma kinase-positive lung cancer: multicenter retrospective analysis in South Korea. Thorac Cancer. 2024;15:448–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Du X, Shao Y, Qin HF, Tai YH, Gao HJ. ALK-rearrangement in non-small-cell lung cancer (NSCLC). Thorac Cancer. 2018;9:423–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Metro G, Tazza M, Matocci R, Chiari R, Crino L. Optimal management of ALK-positive NSCLC progressing on crizotinib. Lung Cancer. 2017;106:58–66.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thanked Prof. Zheng Hui from Soochow University, China, for his generous gift of the Dub library. The authors also thanked Prof. Michael F. Moran from University of Toronto, Canada, for his kind discussion and text editing of the text.

Funding

This work was partly supported by Special Projects in Key Areas for Guangdong Provincial Colleges and Universities (#2021ZDZX2009 to XLM), the National Natural Science Foundation of China (#32100577 to YR), the Guangzhou Municipal Science and Technology Project (#202002030059 to XLM), and by Guangzhou Medical University Discipline Construction Funds (Basic Medicine) (#JCXKJS2022A05 to XLM).

Author information

Authors and Affiliations

Authors

Contributions

XLM designed the study; ZYL, YWZ, HXZ, YJO, QYJ, PFL, and YMH conducted experiments. XLM, ZYL, and YWZ analyzed data; XLM, ZYL, and YR wrote the manuscript.

Corresponding author

Correspondence to Xin-liang Mao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Consent for publication

All authors have read the manuscript and agree to publish.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Zy., Zhang, Yw., Zhuang, Hx. et al. Inhibiting the Otub1/phosphorylated STAT3 axis for the treatment of non-small cell lung cancer. Acta Pharmacol Sin (2024). https://doi.org/10.1038/s41401-024-01366-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41401-024-01366-w

Keywords

Search

Quick links